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Preface

This book provides a selection of papers developed from talks presented at the
Fourth Conference of the International Society for Nonparametric Statistics
(ISNPS), held in Salerno (Italy) June 11-15, 2018. The papers cover a wide
spectrum of subjects within nonparametric and semiparametric statistics, including
theory, methodology, applications, and computational aspects. Among the most
common and relevant topics in the volume, we mention nonparametric curve
estimation, regression smoothing, models for time series and more generally
dependent data, varying coefficient models, symmetry testing, robust estimation,
rank-based methods for factorial design, nonparametric and permutation solution
for several different data, including ordinal data, spatial data, survival data and the
joint modeling of both longitudinal and time-to-event data, permutation and
resampling techniques, and practical applications of nonparametric statistics.

ISNPS was founded in 2010 “to foster the research and practice of nonpara-
metric statistics, and to promote the dissemination of new developments in the field
via conferences, books, and journal publication”. ISNPS had a distinguished
Advisory Committee that included R. Beran, P. Bickel, R. Carroll, D. Cook, P. Hall.
R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosen-blatt, G. Roussas, T.
SubbaRao, and G. Wahba; an Executive Committee that comprised of M. Akritas,
A. Delaigle, S. Lahiri and D. Politis; and a Council that included P. Bertail, G.
Claeskens, R. Cao, M. Hallin, H. Koul, J.-P. Kreiss, T. Lee, R. Liu, W. Gonzdles
Maintega, G. Michailidis, V. Panaretos, S. Paparoditis, J. Racine, J. Romo, and Q.
Yao.

The 4th ISNPS conference focused on recent advances and trends in several
areas of nonparametric statistics. It included 12 plenary and special invited sessions,
69 invited sessions, 30 contributed sessions, with about 450 participants from all
over the world, thus promoting and facilitating the exchange of research ideas and
collaboration among scientists and contributing to the further development of the
field.

We would like to thank Dr. Veronika Rosteck and Dr. Tatiana Plotnikova of
Springer for their support in this project. Finally, we are also extremely grateful to
all Referees who reviewed the papers included in this volume, giving a constructive
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feedback on a tight schedule for timely publication of the proceedings. Their
valuable contribution and their efforts significantly improved the quality of this
volume.

Co-editors also wish to thank Chiara Brombin for her great commitment and
support in coordinating and managing the referring and editorial process.

Salerno, Italy Michele La Rocca
Rome, Italy Brunero Liseo
Vicenza, Italy Luigi Salmaso

Co-Editors of the book
and Co-Chairs of the Fourth ISNPS Conference
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Portfolio Optimisation via Graphical )
Least Squares Estimation st

Saeed Aldahmani, Hongsheng Dai, Qiao-Zhen Zhang,
and Marialuisa Restaino

Abstract In this paper, an unbiased estimation method called GLSE (proposed by
Aldahmani and Dai [1]) for solving the linear regression problem in high-dimensional
data (n < p) is applied to portfolio optimisation under the linear regression frame-
work and compared to the ridge method. The unbiasedness of method helps in
improving the portfolio performance by increasing its expected return and decreas-
ing the associated risk when n < p, thus leading to a maximisation of the Sharpe
ratio. The verification of this method is achieved through conducting simulation and
data analysis studies and comparing the results with those of ridge regression. It is
found that GLSE outperforms ridge in portfolio optimisation when n < p.

Keywords Graphical model - Linear regression - Ridge regression

1 Introduction

In the world of finance, investors usually seek to construct a portfolio that maximises
expected returns and minimises their risk through diversifying and computing the
correct weights of the assets in that portfolio. This weights computation can be

S. Aldahmani (<)

Department of Statistics, College of Business and Economics, United Arab Emirates University,
Al Ain, UAE

e-mail: saldahmani @uaeu.ac.ae

H. Dai
Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK
e-mail: hdaia@essex.ac.uk

Q.-Z. Zhang
Institute of Statistics, Nankai University, Tianjin, China
e-mail: zhangqz @nankai.edu.cn

M. Restaino
University of Salerno, Fisciano, Italy
e-mail: mlrestaino @unisa.it

© Springer Nature Switzerland AG 2020 1
M. La Rocca et al. (eds.), Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 339, https://doi.org/10.1007/978-3-030-57306-5_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57306-5_1&domain=pdf
mailto:saldahmani@uaeu.ac.ae
mailto:hdaia@essex.ac.uk
mailto:zhangqz@nankai.edu.cn
mailto:mlrestaino@unisa.it
https://doi.org/10.1007/978-3-030-57306-5_1

2 S. Aldahmani et al.

achieved by what is technically known as portfolio optimisation, a problem that
was addressed by Markowitz [14] through utilising a model known as Markowitz
theory. The Markowitz theory for portfolio optimisation stipulates selecting portfolio
weights w that minimise the risk (variance) of the portfolio return for a predetermined
target return. This idea assumes that the future performance of asset returns’ mean
p and variance are known. However, in practice, these two factors are unknown and
should be estimated using a historical dataset. To select an optimal portfolio, investors
need to estimate the covariance matrix X of the returns and take its inverse. This is a
typical inverse problem if the number of assets p is too large in relation to the return
observations n; i.e. the inverse of the covariance matrix of the returns is singular.
Therefore, many regularisation methods have been proposed in the literature to find
covariance matrices and their inverses, such as in Bickel and Levina [2], Huang et
al. [10], Wong et al. [19]. However, the estimates of these methods are biased, which
might give undesirable weights for some higher return assets in portfolio.

Britten-Jones [3] utilised regression in order to find the portfolio weights as fol-
lows:

>

W=, (D

B1,
where ﬁ is the ordinary least squares (OLS) estimate of the coefficient parameter 8
for the linear regression model

y=xB+e, @)

where the response y = 1,.

When n < p, the popular ordinary least square method (OLS) becomes ineffec-
tive, and this has triggered the proposal of many methods to solve this issue, such
as Least Absolute Shrinkage and Selection Operator (LASSO) [18], Least Angle
Regression (LARS) [7] and ridge regression [9]. However, all these methods suffer
from the limitation of giving biased estimates. In addition, LASSO and LARS suffer
from the problem of not selecting more than n covariates [20] and giving a sparse
portfolio. Another problem with some of these methods is over-shrinking the final
regression coefficients [16], which might lead to inaccuracy in portfolio weights.
Apart from these methods, some other related approaches could be found in Can-
des and Tao [4], Meinshausen and Yu [15], DeMiguel et al. [6], Still and Kondor
[17], Carrasco and Noumon [5], Fastrich et al. [8] and Lin et al. [12]. These methods,
however, still give biased estimates and perhaps produce inaccurate weights for some
higher return and less risk assets in the portfolio.

Aldahmani and Dai [1] proposed an unbiased estimation method called GLSE
which can provide unbiased estimates for regression coefficients in high-dimensional
data (n < p). The GLSE method is closely related to the theory of graphical models,
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where least square estimation in conjunction with undirected Gaussian graphical
models is implemented.

GLSE can give unbiased coefficient estimates for all assets, which helps the low-
risk and high return assets maintain their correct weights in the portfolio and conse-
quently assists in maximising their expected returns and lower the associated risk.
Such an advantage will lead to increasing the Sharpe ratio and the expected rate
of returns and decreasing the risk of the portfolio for both in-and-out-of-sample
periods. This is particularly important upon comparison with other regularisation
methods such as ridge, where the weights of low-risk and high return assets may be
sharply reduced due to the method’s biasedness, thus causing the portfolio’s expected
returns to fall down and its risk to rise. Moreover, unlike other regularisation methods
which produce sparse portfolios(such as LASSO and LARS), GLSE and ridge share
the advantage of generating diversified portfolios across a large number of stocks, as
they produce non-sparse portfolios. This diversification of the portfolio leads to low-
ering the risk [13] due to the fact that when one or more sectors of the economy fail
or decline, the rest of the sectors can then mitigate the significant impact of the loss
caused by market fluctuations. However, due to the biasedness of ridge regression,
the weights of some low-risk and high return assets may be sharply reduced, which
may deprive ridge of its ability to reduce the risk through diversifying the assets.
This limitation can clearly be overcome by GLSE due to its unbiasedness feature.

In the rest of the paper, graph theory and Matrices are given in Sect. 2. Section 3
presents the main methodology of GLSE and its properties. Section 4 provides the
algorithm of graph structure selection. Simulation studies are given in Sect. 5, and a
real data analysis is presented in Sect. 6. The study is concluded in Sect. 6.

2 Graph Theory and Matrices

2.1 Graph Theory

An undirected graph G consists of two sets, a set P and a set £. The set P denotes
the vertices representing variables and £ is the set of edges (a subset of P x P)
connecting the vertices [11]. The elements in the set P are usually natural numbers,
ie. P=1,2,..., p, representing the labels of random variables. If all the pairs of
vertices in P in a graph G are joined by an edge, then the graph is complete. If
A C P, the subset A induces a subgraph G4 = (A, £4), where £4 = E N (A x A).
The subset graph G4 is complete if it induces a complete subgraph from G. This
subgraph is maximal if it cannot be extended by including one more neighbouring
vertex. A complete subset that is maximal is called a clique.
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2.1.1 Decomposition of a Graph

A triple (A, B, C) of disjoint subsets of the vertex set P of an undirected graph G is
said to form a decomposition of G if P = AU B U C and the following conditions
hold [11]:

e B separates A from C;
e B is a complete subset of P.

An undirected graph G is considered as decomposable if it holds one of the
following:

e Graph g is complete.
e There is a proper decomposition (A, B, C) into decomposable subgraphs g4 and
gpc where B separates A from C.

Consider a sequence of sets Cy, ..., C, that are the subsets of the vertex set P of
an undirected graph g such that C; U --- U C, = P. If the following holds, then the
given sequence is said to be a perfect sequence [11]:

S;=C;N(C,UC,U---UC;_y) CCi,

where j =2,...,g andi €{l,...,j— 1}. The sets §; are the separators. These
orderings, if they exist, might not be unique.

2.2 Matrices

A p x p matrix F can be written as (Fy;)i jep. ' € R” represent a vector. Denote
Fip = (Fij)kea, jen,asubmatrix of F. Denote [FAB]F asa p x p-dimensional matrix
obtained by filling up Os, with

N _ |FyxifjeA keB
((F4g] )jk = {0 otherwise. ©

Similarly, let x4 is a matrix only having covariates with indices in set A and
ssda = x/,x4. Then [(ssds)~'" represents a p x p-dimensional matrix obtained
by filling up Os, with

((ssdA)*l)jk ifj,ke A
0 otherwise.

([ssd)™1") ;= { )
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3 The Idea of GLSE

Suppose that the graph G is decomposable and let C denote the set of cliques and S
denote the set of separators [1]. Then the GLSE is given as follows:

B= |:Z[(8Sdc)l]r - Z[(ssds)l]r} X'y. (5)

CeC SeS

For the existence of the GLSE, the following condition must hold
Condition 3.1 The sample size n > maxcec{|C|}.

For unbiasedness of ﬁ, based on Aldahmani and Dai [1], the following condition is
imposed:

Condition 3.2 Write the cliques and separators of g in the perfect ordering, as
Ci,--,Cqand Sy, - -+, Sy, such that

Xcns, = X5, Is,,0\8 + El’ E(El) =0,
Xc\S = Xs, " Iscns +& EE) =0, k=2,---,q,

where rs, c,\s, are constant matrices with dimensions |s; x (¢ — si)|;

Under Conditions 3.1 and 3.2, Aldahmani and Dai [1] show that the above esti-
mator is unbiased;

E(B) = B.

4 Model Selection

A stepwise selection algorithm has been used by Aldahmani and Dai [1] to find
which graph G is the best for the data. The method considers adding/deleting edges
one by one to/from the current graph. When an edge under consideration is not in
the current graph, it will be added if the addition makes an improvement in terms of
the predetermined criteria; otherwise it will not be added. The same applies to the
case of edge deletion. According to Aldahmani and Dai [1], the best graph is given
by minimising a target function T(8, g, A,):

(B. &, hy) =arg min T(B, g i) (6)
B.g€G . rg

T(B, 8. Ag) = |1y — XBII* + A&l (7)
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where G is the set of all possible graphs, A, is a penalty term and |, | is the number
of edges in graph G. The following pseudocode is the algorithm used by Adlahmani
and Dai [1] to find the optimal graph that best fits the data:

Algorithm 1 Pseudocode of the GLSE graph selection

1: Start graph g = (P, £), which can be an empty (or a given decomposable) graph such that
n > maxcec |C| .

2: Generate all possible graphs, g;, such that there is only one edge difference between g; and the
current graph g. All such g; are decomposable and n > maxcec |C|.

3: Find the graph g} and the associated ;§ such that g} minimises the target function T(.) (given in
).

4: Go to step 2 with the selected graph g and iterate until the best one is found.

5: Output g and f!

It is worth noting that step 2 of Algorithm 1 can be improved significantly via
parallel computation.

5 Simulation Study

The aims of this simulation study are to investigate the performance of GLSE in
constructing a saturated optimal portfolio compared to ridge. The graph structure for
the covariates used in generating the dataset under this simulation study is presented
in Fig. 1.

This simulation involves a total of n = 48 observations corresponding to p = 60
variables derived from multivariate normal distribution, with mean 0.01 and variance
covariance matrix ¥, where 36 observations are used for the in-sample period through
estimating the portfolio’s weight and performance (Sharpe ratios, expected returns
and risk), and the remaining observations are used to find the performance of the
portfolio for the out-of-sample period. The true weight of the portfolio w is derived
based on the true covariance matrix X.

Table 1 gives the means of 500 simulated data for the in-and-out-of-sample port-
folio’s Sharpe ratios, expected returns and risk. It shows that out of the 500 simulated
data, the GLSE yields higher means of the portfolio’s Sharpe ratio and lower risk
than the ridge does for the out-of-sample period. However, for the in-sample period,
the ridge gives higher means of the portfolio’s expected returns than the GLSE does.
It should be noted that the ridge portfolio’s risk is very high compared to this under
the GLSE. In addition, the in-sample portfolio’s Sharpe ratio is negative for the ridge
but positive for the GLSE, which is desirable in finance.

The computational burden for the proposed algorithm is not too heavy with modern
parallel computing technology. The computational times for one run of the above
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Fig. 1 Graph structure for covariates under the simulation study

Table 1 The in-and-out-of-sample portfolio’s Sharpe ratios, expected returns and risk from the

simulated data

Ridge GLSE
In sample Out of sample In sample Out of sample
Sharpe ratio —0.007 0.005 0.733 0.570
Expected returns 0.149 0.030 0.127 0.107
Portfolio’s risk 1.282 1.236 0.526 0.516
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Table 2 Portfolio size and in- and out-of sample portfolio’s Sharpe ratios, expected returns and
risk find by the ridge and GLSE

Portfolio size Methods Sharpe ratio | Expected Portfolio’s
returns risk

150 stocks (in sample) Ridge 0.719 0.097 0.134
GLSE 2.023 0.061 0.030

150 stocks (out of sample) Ridge —-0.074 —0.010 0.135
GLSE 0.117 0.015 0.130

200 stocks (in sample) Ridge 0.792 0.056 0.071
GLSE 0.963 0.046 0.047

200 stocks (out of sample) Ridge 0.150 0.013 0.086
GLSE 0.224 0.015 0.068

generated datasets for both serial and parallel computing are considered. It is noted
that on a machine with 8 GB of memory and 3.60 GHz processor, the time taken
is approximately 20 min. When the parallel processing was used, with 5 cores, the
computational time reduced to approximately 2 min.

6 Data Analysis

Monthly returns of 875 stocks listed on the New York Stock Exchange (NYSE) cov-
ering the period from 02/12/2007 to 02/12/2017 are downloaded from Datastream.
Out of these stocks, 150 and 200 stocks are selected at random. Then, ridge and
GLSE are applied to construct two portfolios for the selected stocks. The in-sample
period for the above constructed portfolios is from 02/12/2007 to 01/12/2016. The
out-of-sample period, on the other hand, is from 02/12/2016 to 01/12/2017. For ridge,
cross validation is used for obtaining the penalty parameter. The in-and-out-of sam-
ple average returns, risk and Sharpe ratio are used to evaluate the performance of the
obtained portfolios. The results are shown in Table 2 and they reveal that the GLSE
method performs better than ridge in term of average returns, risk and the Sharpe
ratio of portfolios for both in-and-out-of-sample periods.

7 Conclusion

The unbiased GLSE method was used in this paper to construct a saturated optimal
portfolio in high-dimensional data (n < p). The results of applying this method were
compared to those of ridge and they showed that GLSE outperforms ridge in terms of
its ability to reduce the portfolio’s risk and increase its expected returns, consequently
maximising the Sharpe ratio. While both ridge and GLSE have practical implications
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in the world of finance in that they both lead to a non-sparse portfolio with diversified
assets, the GLSE overcomes ridge’s shortcoming where the weights of low-risk and
high return assets may be reduced due to its biasedness. Due to its unbiasedness,
GLSE thus maintains the higher weights of low-risk and high return assets, which,
as a result, minimises the chances of risk increase and income reduction in the
portfolio.
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Nonparametric Statistics st

Mayer Alvo

Abstract Neyman [7] was the first to propose a change in measure in the context of
goodness of fit problems. This provided an alternative density to the one for the null
hypothesis. Hoeffding introduced a change of measure formula for the ranks of the
observed data which led to obtaining locally most powerful rank tests. In this paper,
we review these methods and propose a new approach which leads on the one hand
to new derivations of existing statistics. On the other hand, we exploit these methods
to obtain Bayesian applications for ranking data.

Keywords Ranks + Change of measure - Bayesian methods

Mathematics Subject Classification (2010) 62F07 - 62G86 - 62H11

1 Introduction

In a landmark paper, [7] considered the nonparametric goodness of fit problem and
introduced the notion of smooth tests of fit by proposing a parametric family of
alternative densities to the null hypothesis. In this article, we describe a number of
applications of this change of measure. Hence, we obtain a new derivation of the
well-known Friedman statistic as the locally most powerful test in an embedded
family of distributions.

2 Smooth Models

Suppose that the probability mass function of a discrete k-dimensional random vector
X is given by
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m(x;;0)=exp(6'x; — K@) p;, j=1,....m, (1)

where x; is the jth value of X and p = ( p_,-)/ denotes the vector of probabilities
when 8 = 6. Here K (0) is a normalizing constant for which

Zw(x,-;@) =1.

J
We see that the model in (1) prescribes a change of measure from the null to the

alternative hypothesis. Let T = [x;, ..., x,,] be the k x m matrix of possible vector
values of X. Then under the distribution specified by p,

T = Cov, (X) = E,[(X — E[X]) (X — E[X])] 2)
=T (diag (p)) T — (Tp) (Tp)’, (3)

where the expectations are with respect to the model (1). This particular situation
arises often when dealing with the nonparametric randomized block design. Define

T(0)=(mr(x1;0),....,7(xn;0))
and suppose that we would like to test
Hy:0=0vsH; :0 #0.

Letting N denote a multinomial random vector with parameters (n, 7 (6)), we see
that the log likelihood as a function of 0 is, apart from a constant, proportional to

m

anlog (7r (xj; 9)) = an (O’xj — K(B))
Jj=1 Jj=1
=0 (> njx; | —nk@).
j=1

The score vector under the null hypothesis is then given by

n 1 On; (0
U@®;X)=Y N, (—Wj 3 7:;6(, )>
j=1

=T (N —np).

Under the null hypothesis,

E[U (05 X)] =0,
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and the score statistic is given by

%[ﬂN—mpﬂZ’ﬂT@ﬁﬂmﬂ:t%N—nm%TEATﬂN—wpngﬂ
“)
where r = rank (T'S7'T).

In the one-sample ranking problem whereby a group of judges are each asked to
rank a set of ¢ objects in accordance with some criterion, let P = {l/ pi=1..., t!}
be the space of all ! permutations of the integers 1, 2, ..., t and let the probability
mass distribution defined on P be given by

pz(ply"'5pf!)7

where p; = Pr (1/ j). Conceptually, each judge selects a ranking v in accordance
with the probability mass distribution p. In order to test the null hypothesis that each
of the rankings are selected with equal probability, that is,

Hy:p=pyvs H : p # py, 5

where p, = %1, define a k-dimensional vector score function X (v) on the space P
and following (1), let its smooth probability mass function be given as

1
7r(xj;0)=exp(0/xj—K(0));, j=1,...,1 (6)

where 6 is a t-dimensional vector, K () is a normalizing constant and x; is a t-
dimensional score vector to be specified in (8). Since

i o (x js 9) =1
Jj=1
it can be seen that K (0) = 0 and hence the hypotheses in (5) are equivalent to testing
Hy:0=0vs H :0#0. @)
It follows that the log likelihood function is proportional to
1) ~n[0h—K®O)],

where

!

o A A n;

n= 2 XjPnj | s Pnj = —~
j=1
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and n; represents the number of observed occurrences of the ranking ;. The Rao
score statistic evaluated at @ = 0 is

0 (a
U (6; X) =n%[ 71— K(0)]

. 0
=n|:77—%1((0)],

whereas the information matrix is
2

o
10) = —n [ﬁK(O)].

The test then rejects the null hypothesis whenever

2 A_ﬂ L A_i 2
n|:17 801((0)}1 (0)[71 aeK(O)]>xf(oz),

where X? () is the upper 100(1 — ) % critical value of a chi square distribution

with f = rank(Z (0)) degrees of freedom. We note that the test just obtained is the
locally most powerful test of H.
Specializing this test statistic to the Spearman score function of adjusted ranks

t+1 r+1\ .
Xj=<Vj(1)—T,...,Uj(t)—T),]:1,...,t!, ®)

we can show that the Rao score statistic is the well-known Friedman test [5].
12 - 417
W= _" Z R — i , )
t(@+1) P 2

where R; is the average of the ranks assigned to the ith object.

2.1 The Two-Sample Ranking Problem

The approach just described can be used to deal with the two-sample ranking problem
assuming again the Spearman score function. Let X |, X, be two independent random
vectors whose distributions as in the one sample case are expressed for simplicity as

m(x;:0) =exp{O0x; — K@)} pi(j), j=1,....001=1,2,
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where 6; = (01, ..., 0;;)' represents the vector of parameters for population /. We
are interested in testing

H0101=02VSH12017502.

The probability distribution {p; (j)} represents an unspecified null situation. Define

/
X n o
pl == Ty ey T 3
nj nj
where n;; represents the number of occurrences of the ranking v; in sample /.
Also, forl = 1, 2, set Z]. njj =n;,y =0, —6,and

01 =m+ bl’)’,
where
- mO+nb,  ny by — nj
ny+n, o l’l1+l’l2’ 2 I’ll-i—ng.

Let ¥, be the covariance matrix of X; under the null hypothesis defined as
X =1L - pp)

where I; = diag (p; (1), ..., p;(t)) and p, = (p; (1), ..., p; ). The loga-
rithm of the likelihood L as a function of (m, =) is proportional to

2t

log L (m,y) ~ > > ny{m+b~)x;— K (@6))}.

=1 j=I

In order to test
H()Ig] =02VSH1 291 #92

we calculate the Rao score test statistic which is given by
n (TSIA’1 - TSi’z)/ b (Tsi’1 - TSi’z) . (10)

It can be shown to have asymptotically a X? whenever n;/n — \; > 0asn — oo,

where n = n; + n,. Here D is the Moore—Penrose inverse of T SfJT/S and ¥ is a
consistent estimator of ¥ = f—I‘ + f—z’ and f is the rank of D, as required.
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2.2 The Use of Penalized Likelihood

In the previous sections, it was possible to derive test statistics for the one and
two-sample ranking problems by means of the change of measure paradigm. This
paradigm may be exploited to obtain new results for the ranking problems. Specifi-
cally, we consider a negative penalized likelihood function defined to be the negative
log likelihood function subject to a constraint on the parameters which is then mini-
mized with respect to the parameter. This approach yields further insight into ranking
problems.
For the one-sample ranking problem, let

A0, ¢c) = -0 anxj +nK(0)+/\(29i2—c> (11)
j=1

i=1

represent the penalizing function for some prescribed values of the constant c. We
shall assume for simplicity that ||x j || = 1. When ¢ is large (say ¢ > 10), the compu-
tation of the exact value of the normalizing constant K () involves a summation of
t! terms. [6] noted the resemblance of (6) to the continuous von Mises-Fisher density

oIl=
PP | s
27 1 (10IDT ()

exp (0'x) ,

where [|@]| is the norm of @ and x is on the unit sphere and /,(z) is the modified
Bessel function of the first kind given by

00 1 7\ 2k+v
1,(z) = kz:(; Fk+ D w+k+1) (E) .

This seems to suggest the approximation of the constant K (8) by

exp (—K(0)) ~ l . “0”% .
2T L (10T (S

In [1], penalized likelihood was used in ranking situations to obtain further insight
into the differences between groups of rankers.

3 Bayesian Models for Ranking Data

The fact that the model in (1) is itself parametric in nature leads one to consider
an extension to Bayesian considerations. Let R = (R(1), ..., R(¢))’ be a ranking ¢
items, labeled 1, ..., ¢ and define the standardized rankings as



Change of Measure Applications in Nonparametric Statistics 17

B t+1 t@t2 -1
y‘(R_Tl>/\/T’

where y is the t x 1 vector with || y|| = +/y'y = 1. We consider the following more
general ranking model:

T(ylk, 0) = C(k, 0) exp {k0'y}

where the parameter @ is a ¢ x 1 vector with ||@]| = 1, parameter x > 0, and C(k, 0)
is the normalizing constant. This model has a close connection to the distance-based
models considered in [3]. Here, 0 is a real-valued vector, representing a consensus
view of the relative preference of the items from the individuals. Since both |8 = 1
and ||y|| = 1, the term @’y can be seen as cos ¢ where ¢ is the angle between the
consensus score vector 8 and the observation y. The probability of observing a rank-
ing is proportional to the cosine of the angle from the consensus score vector. The
parameter  can be viewed as a concentration parameter. For small «, the distribution
of rankings will appear close to a uniform whereas for larger values of «, the distri-
bution of rankings will be more concentrated around the consensus score vector. We
call this new model an angle-based ranking model.

To compute the normalizing constant C(x, 6), let P, be the set of all possible

permutations of the integers 1, ..., 7. Then
(Cr.0)7" = exp {0 y}. (12)
yeP

Notice that the summation is over the ¢! elements in P. When ¢ is large, say greater
than 15, the exact calculation of the normalizing constant is prohibitive. Using the fact
that the set of ¢! permutations lie on a sphere in (¢ — 1)-space, our model resembles
the continuous von Mises-Fisher distribution, abbreviated as vM F (x|m, k), which is
defined on a (p — 1) unit sphere with mean direction m and concentration parameter
K:

p(x|k, m) = V,(k) exp(km'x),

where )
K2~

Vo) = —5——,
@m* 15 1(6)

and /1, (k) is the modified Bessel function of the first kind with order a. Consequently,
we may approximate the sum in (12) by an integral over the sphere:

=3
K2

2%!1% (R (5

C(k,0) ~Ci(k) =
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where I'(.) is the gamma function. In ([9], it is shown that this approximation is
very accurate for values of x ranging from 0.01 to 2 and ¢ ranging from 4 to 11.
Moreover, the error drops rapidly as ¢ increases. Note that this approximation allows
us to approximate the first and second derivatives of log C which can facilitate our
computation in what follows.

3.1 Maximum Likelihood Estimation (MLE) of Our Model

LetY = {y,...., yy} be arandom sample of N standardized rankings drawn from
p(y|k, 8). The log likelihood of (x, 0) is then given by

1(, 0) = nlog C; (k) + Y _k0'y;. (13)

i=1

Maximizing (13) subjectto [|@]| = 1 and x > 0, we find that the maximum likelihood

N
i=1Yi
N

estimator of @ is given by éM LE = ]Z—‘—, and & is the solution of
|Zi:l Yi

p = =G I ) HZL yi
W= = I=) N

=r (14)

A simple approximation to the solution of (14) following [4] is given by

. rit—1-— r2)
RMLE = T

A more precise approximation can be obtained from a few iterations of Newton’s
method. Using the method suggested by [8], starting from an initial value x¢, we can
recursively update x by iteration:

Ai(ki) —r i =0,1,2,....

R = KRj — , 1
o 1= A(Ri)? — Z2A,(R)

3.2 One-Sample Bayesian Method with Conjugate Prior

Taking a Bayesian approach, we consider the following conjugate prior for (x, 8) as

p(k, ) o [Ci(1)]" exp { Bormy6]} , (15)
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where ||mg|| = 1,1, Byp > 0.Given y, the posterior density of («, 8) can be expressed
by
[Ci )]V

p(a, 8ly) ocexp {Brm'0} V,(Bk) - V,(Br)

wherem = (ﬁomo +¥N, yi) g 8= Hﬁomo + 3V y;|. The posterior density

can be factored as

p(k,0ly) = p(Ols, y)p(kly), (16)

where p(0|k, y) ~ vM F(0|m, Bx) and

[Coo R (BR)
TS (K)]"°*N Br)'F

p(kly) «

The normalizing constant for p(x|y) is not available in closed form. For reasons
explained in [9], we approximate the posterior distribution using the method of
variational inference (abbreviated VI from here on). Variational inference provides
a deterministic approximation to an intractable posterior distribution through opti-
mization. We first adopt a joint VMF- Gamma distribution as the prior for (x, 6):

p(k, 0) = p(0|r)p(K)
= vMF (0|my, Byx) Gamma(k|ag, by),

where Gamma(k|ag, by) is the Gamma density function with shape parameter ag
and rate parameter by (i.e., mean equal to Z—g), and p(0|k) = vM F (8|my, Byk). The
choice of Gamma(k|ay, by) for p(x) is motivated by the fact that for large values
of k, p(k) in (15) tends to take the shape of a Gamma density. In fact, for large

o " . .
values of k, [ = (k) ~ Wireh and hence p(k) becomes the Gamma density with

shape (vy — 1)% + 1 and rate vy — Gp:

[C:(W)]™
Vi(Bok)

o KD exp(— (o — Bo)k).

p(K) &

Using the variational inference framework, [9] showed that the optimal posterior
distribution of # conditional on « is a von Mises-Fisher distribution vM F (0|m, k(3)

where
N
and m = (ﬁomo + Zy,) B

i=I

N
p= 50m0+zyi

i=l1

The optimal posterior distribution of « is a Gamma(k|a, b) with shape a and rate
b with
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-3 0
a=ay+ N (IT) + Bk [% lnlxzz(ﬁk)] (17)
b="b —l—NaI k) + 5 In I+—2 (Gyk) (18)
= Do P %(KJ) 0 3hor n /2 (fok) | -

Finally, the posterior mode k can be obtained from the previous iteration as

4 otherwise.

<l ifa>1
/%:{b na= (19)
b

3.3 Two-Sample Bayesian Method with Conjugate Prior

LetY; = {y“, e, yl-Ni} fori = 1, 2, be two independent random samples of stan-
dardized rankings each drawn, respectively, from p(y;|x;, 8;). Taking a Bayesian
approach, we assume that conditional on k, there are independent von Mises conju-
gate priors, respectively, for (01, 8;) as

p(B;1K) o [Ci(r)]"° exp { Biom6; } ,

where ||m;o|| = 1, V0, Bio = 0. We shall be interested in computing the Bayes factor
when considering two models. Under model 1, denoted M|, 8; = 6, whereas under
model 2, denoted M, equality is not assumed. The Bayes factor comparing the two
models is defined to be

_ | p(ilk, ) p(32lk, 02) p(011K) p(0:]K)d61d0rd K
[ P11k, 0)p(y2lk, 0) p(B|r)dOd K

TS pls. 81) p(611£)d61 | [ [ p(y2lk. 62) p(B2K)d6,] dr:
[ Pl 0)p(y21i, 0) p(Blk)dOdk '

By

The Bayes factor enables us to compute the posterior odds of model 2 to model 1. We
fist deal with the denominator in B;;. Under M/, we assume a joint von Mises-Fisher
prior on 6§ and a Gamma prior on £ :

p (0, k) = vMF (0lmo, Bor) G (klao, bo) .
Hence,

/ p(1lk, 0)p(y2lk, 0) p(Blr)dOdr = f CN () exp {Br6Tm | Vi (50k) G (xlao. bo) dOdss

- / N (k) Vs (Bor) V™ (B%) G (kla. bo) dik,
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where N = Ny + N, and

2 N;
m = 50m0+ZZyij 5_176:” m| .

i=1 j=1
Now,

an+N(g
P 2

)*'e—bwl(ﬂ) (BK)
2 dk

/C,N(/f)Vr(ﬁoﬁ)Vf](ﬁH)G(H\ao,bo)dﬁ=C(%)2/ NV AN
()7 (=)

=2
~C (%0) i fﬁ“ilefb"‘dﬁ,
where in the last step, we used the method of variational inference as an approxima-

tion, with
b ( ) t—1 -1
C=—2 (2" nN N [ ——
I" (ao) < * 2

-3 0
a =a0+N<tT> +ﬂl_*€ [%hllrzz(ﬂl_i)},

b]=b0+N2113(l_£)+60|: 11’1]:2(60,‘_4,):|
Ok 2 2

8505

and the posterior mode « is

K=
4 otherwise.

a—1
lb_l ifa; > 1,
by

It follows that the denominator of By is

For the numerator, we shall assume that conditional on «, there are independent
von Mises conjugate priors, respectively, for 8, 8, given by

p(B;k) o [Ci (k)] exp {Borm 0;} i = 1,2

where ||my|| = 1, By > 0. Hence,
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/ [/ pnlx, 91)P(91|/€)d91} [/ P21k, Oz)P(ezlﬁ)dez} ds
= / C,N (k) exp {ﬁm'Blel} exp {62/<J02Tm2} Vt2 (Bor) G (k|ag, by) dB1dO,dk

= / CY (k) V. (Bik) V! (Bak) V2 (Bok) G (klao, bo) dk

dr

<ﬂ0>22 (ﬁo)fzz / RO T ) (i) L) (o)
B B2 1(2%) (Bok) I(N%) (%)

o) (3) e
1 2

where fori =1, 2,

N;i
m; = |:5omo + Zyij:| B =l m; |

j=1
az_a0+N( ) Zﬁ, [aﬁ ln[;z(ﬁ,/{)i|

0 0
by, = bg+ N—Inl (k) + 205
2 dBok

Ep In /2 (60;%)]

and the posterior mode & is given recursively:

[lz—l .
% ifa, > 1,
“ otherwise.

It follows that the numerator of the Bayes factor is

Bo Bo %F(al)
C(ﬁl) <ﬁ2) bt -

The Bayes factor is then given by the ratio
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(@)% L(a))
&} !
By = —2 =
(57 ()
B B2 by?
_ (5152)2_ T (a)) by
BBo T (a2) b}

4 Conclusion

In this article, we have considered a few applications of the change of measure
paradigm. In particular, it was possible to obtain a new derivation of the Friedman
statistic. As well, extensions to the Bayesian models for ranking data were considered.
Further applications as, for example, to the sign and Wilcoxon tests are found in [2].
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Choosing Between Weekly and Monthly )
Volatility Drivers Within a Double st
Asymmetric GARCH-MIDAS Model

Alessandra Amendola, Vincenzo Candila, and Giampiero M. Gallo

Abstract Volatility in financial markets has both low- and high-frequency com-
ponents which determine its dynamic evolution. Previous modelling efforts in the
GARCH context (e.g. the Spline-GARCH) were aimed at estimating the low-
frequency component as a smooth function of time around which short-term dynam-
ics evolves. Alternatively, recent literature has introduced the possibility of consider-
ing data sampled at different frequencies to estimate the influence of macro-variables
on volatility. In this paper, we extend a recently developed model, here labelled Dou-
ble Asymmetric GARCH-MIDAS model, where a market volatility variable (in our
context, VIX) is inserted as a daily lagged variable, and monthly variations repre-
sent an additional channel through which market volatility can influence individual
stocks. We want to convey the idea that such variations (separately) affect the short-
and long-run components, possibly having a separate impact according to their sign.

Keywords Volatility - Asymmetry - GARCH-MIDAS - Forecasting

1 Introduction

Volatility modelling has been extensively studied: more than 30 years have gone by
since the seminal contributions by [9, 14]. As they have about 25 K citations each
(and some pertinent papers do not even mention them), it is clear that GARCH-type
models are the standard among academicians and practitioners alike. These models
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Fig. 1 S&P 500 Index and its realized volatility

build upon stylized facts of persistence in the conditional second moments (volatility
clustering), an analysis made easier by the direct measurement of volatility, starting
from the availability of ultra-high-frequency data (cf. [7]). Looking directly at the
series of the Standard and Poor’s (S&P) 500 Index and of its realized volatility, as
illustrated in Fig. 1, one encounters two of such stylized facts in need of adequate
modelling: the firstis that volatility has a slow-moving/state-dependent average local
level of volatility to be accounted for, and hence its dynamic evolution is driven by
two components: a high-frequency and a low-frequency one. Another is that peaks
of volatility are recorded in correspondence with streaks of downturns in the index,
a sign of well-documented asymmetry in the dynamics.

Various suggestions exist in the literature to model the first of these two stylized
facts: in a Markov Switching approach, GARCH parameters are state-dependent
([10, 13, 19], among others). The resulting high-frequency dynamics varies across
states and evolves around a constant average level of volatility within states as a low-
frequency component. In other contributions, the two components are additive; [12,
15] specify a model in which higher persistence is an identifying condition for the
long-run component. The most popular GARCH specification is one in which long-
and short-run components combine multiplicatively with the error term. Amado et
al. [4] survey the contributions in this field: the common feature is that long run is
a term which smoothly amplifies or dampens the short-run GARCH dynamics. The
long-run term can be a deterministic function of time as in the Spline GARCH [16];
a logistic function of a forcing variable as in the Smooth Transition approach ([1-3],
for instance); an exponential function of a one-sided filter of past values of a variable
sampled at a lower frequency than the daily series of interest, as in the GARCH-
MIDAS of [17]. In this paper, we take a modification of this latter model, called the
Double Asymmetric GARCH-MIDAS (DAGM) introduced by [5], where a rate of
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change at a low frequency is allowed to have differentiated effects according to its
sign, determining a local trend around which an asymmetric GARCH that describes
the short-run dynamics. A market volatility variable (in our context, we choose the
VIX index which is based on implied volatilities from at-the-money option prices)
is inserted as a daily lagged variable, and monthly variations represent an additional
channel through which market volatility can influence individual stocks.

The issue at stake in this empirically motivated paper is how this information
about market-based volatility can help in shaping the MIDAS-GARCH dynamics.
The idea we are pursuing is to illustrate

1. how a predetermined daily variable (in lagged levels) adds some significant
influence to the short-run component (an asymmetric GARCH in the form of
the GJR [18] model—this would be the first asymmetry considered); and, most
importantly,

2. how the same variable observed at a lower frequency (in lagged first differences)
can determine a useful combination (in the MIDAS sense seen in detail below)
for the low-frequency component in the slowly moving level of local average
volatility. In particular, it is of interest to explore what frequency (weekly or
monthly), works best in this context, and what horizon is informative. In so
doing, we maintain that positive changes (an increase in volatility) and negative
ones should be treated differently in the model (this is the second asymmetry
considered).

The results show that in characterizing the volatility dynamics, our model with
monthly data and six months of lagged information works best, together with the
contribution of the lagged VIX in the short-run component. Out-of-sample, the model
behaves well, with a performance which is dependent on the sub-period considered.
The rest of the paper is organized as follows: Sect. 2 addresses the empirical
question, illustrating first how the DAGM works and then we report the results of an
application of various GARCH, GARCH-MIDAS and DAGM models on the S&P
500 volatility, both in- and out-of-sample perspectives. Finally, Sect. 3 concludes.

2 Modelling Volatility with the DAGM Model

Let us focus on the GARCH-MIDAS model, here synthetically labelled GM: the
paper by [17] defines GARCH dynamics in the presence of mixed frequency vari-
ables. The short-run component varies with the same frequency as the dependent
variable while the long-run component filters the lower frequency macro-Variable(s)
(MV) observations. Recent contributions on (univariate) GARCH-MIDAS model
are [6, 8, 11].

The paper by [5] proposes a DAGM where asymmetry in the short run is captured
by a GJR-type [18] reaction to the sign of past returns, and positive and negative MV
values have different impacts on the long-run.
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2.1 The DAGM Framework

The DAGM-X model is defined as

Fig =T X &it&i, Withi=1,..., Ny, (1)

where

e r;, represents the log-return for day i of the period ¢;

e N, is the number of days for period ¢, witht = 1,..., T}

e &i|Pi_1, ~ N(0,1), where ®;_; , denotes the information set up to day i — 1 of
period ¢;

e g;, follows a unit-mean reverting GARCH(1,1) process (short-run component);

e 7, provides the slow-moving average level of volatility (long-run component).

The short-run component of the DAGM-X is given by

(rifl,t)2
T

g=U—a—p-y2)+(aty 1 ) + Bgict + ZViewas

)
where 1, is an indicator function and V;, is an additional, positive volatility deter-
minant, observed daily, whose importance on g; ; is given by z. In order to assure the
positivity of g; ,, we impose the constraint z > 0. In absence of V; ;, the DAGM-X
model becomes the DAGM specification.

The long-run component of the DAGM-X and DAGM is defined as

K K
T, = exp (m +O0TY 8@ X Ly, =0+ 07 Y S (w)_XIk]l(X,_k<0)) ,

k=1 k=1
3)
where
e m plays the role of an intercept;
e O, 0~ represent the asymmetric responses to the one-sided filter;
e §;(w)™ and 8; (w)~ are suitable functions weighing the past K realizations of the
additional stationary variable X,. As in the related literature, we opt for the Beta
function, that is

(k/K)* (1 = k/ K>

Or(w) = .
TS et = jK)e

“4)

Given that we are only interested in the case of larger weights put on the most recent
observations, we set w; = 1 and w, > 1. Note that the Beta function represented in
(4) is readily applicable for both the GM and the DAGM. In this latter case, it is
sufficient to replace §; (w) with 8;(w)™ and 8 (w) ™.

Thus, the short-run component includes a term related to negative returns (“bad
news” increasing volatility, the well-known leverage effect) and potentially a term
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associated with an additional MV observed with the same frequency of the dependent
variable. The long-run component avoids positive and negative compensations within
the one-sided filter, separating the positive MV variations from the negative ones.

Typically, MVs can only be observed at low frequency, but here we move out of
the classic MV framework where observations are available only at low frequency.
Thus we take a variable which is observable daily, but can be sampled at lower
frequencies, e.g. weekly or monthly. We take the DAGM to the empirical evaluation
of how different frequencies of observations in the MV may change the results both
in estimation and forecasting. Besides that, we include the same variable at high
frequency in the short-run component (“—X” specifications).

Assuming a conditional normal distribution for the error term ¢; , allows to apply
the standard statistical inference (for details on the asymptotic properties of the
GARCH-MIDAS class of models, see [22]) according to the maximization of the
following log-likelihood:

1 [ (ri,r)2
g =-2% [Z [logan) + log(gr, ) + g—ﬂ . 5)

=1 Li=1 it

2.2 The Role of VIX in the S&P 500 Volatility Dynamics

The returns of interest are daily log-differences of the S&P 500 Index (also examined
on a different sample and context in [5]), annualized on a sample period: 7 January
2000-7 September 2018 (number of daily observations: 4686, collected from Yahoo
Finance).

The MV in this paper is VIX (an implied volatility-based index built on the same
index, cf. [23]) which in our setup will appear: (i) lagged daily as a predetermined
variable in the short-run component g; of the GARCH-X; (ii) lagged variations—
end-of-month or end-of-week (with various choices of K) in the long-run component.
All the observations concerning VIX have been collected from the Thomson Reuters
Eikon provider. The distance between the estimated volatility, labelled as fli, and
the chosen volatility proxy, the realized volatility at five minutes, labelled as o;
and collected from the realized library of the Oxford-Man Institute, are investigated
through three loss functions': QLIKE, Root Mean Squared Error (RMSE) and Mean
Absolute Errors (MAE), defined as follows:

For ease of notation and because we are only interested in daily estimates, here the suffix ¢
identifying the period at lower frequency has been suppressed.
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QLIKE : E (ai Jhi + log(ﬁ,-)) :
N2
RMSE : |E ((ai —h,~> ); (6)

MAE:E(|0,» —12,-|).

2.2.1 Estimation and Diagnostics

The estimation and diagnostics results are shown in Table 1, where we report the
coefficients with their standard errors in parenthesis and their significance. GARCH
is the standard (1, 1) model; the GJR allows for an asymmetric response to the
lagged negative returns; the GARCH-X and GJR-GARCH-X and DAGM-X contain
an extra predetermined variable, the lagged daily VIX. The GM and DAGM are built
on a one-sided filter for the monthly VIX, while in the DAGM-W we consider the
weekly VIX. The last six months of VIX have been used in GM, DAGM, DAGM-X,
and DAGM-W, i.e. K = 6 and Ky.x = 24. The choice of the adopted MIDAS lags
derives from some preliminary estimations aiming at finding the best values accord-
ing to the Bayesian information criterion (BIC). The number of “*” indicates the
significance (10%, 5%, 1%, respectively) of the estimated coefficients heteroscedas-
ticity and autocorrelation consistent ([21], HAC) standard errors in parenthesis). LB;
and LM; report the p-value of the Ljung-Box and ARCH-LM tests on the squared
standardized residuals at lag /, respectively. RMSE is in percentage terms.

A few comments are in order: the GARCH models (first four columns) exhibit
customary results, with the possible surprise of the non-significance of the lagged
VIX in the X specifications. The GM has non-significant coefficient on the one-
sided filter and the wrong sign: as a matter of fact, the information criteria and the
QLIKE signal a worse fit of this model, relative to the standard models. When we
introduce our DAGM, the signs of the impact coefficients 9+ and 6~ are the right ones
(positive, negative, respectively), and significant. The information criteria and the
QLIKE report a marked improvement over the models previously considered, with
the best model being the DAGM-X model where the significant coefficients on the
low-frequency component are, besides the constant, those pertaining to the positive
changes (inducing an increase in volatility). Generally, the residual diagnostics show
a good fit of the models. In particular, almost all the models fail to reject the null
hypotheses of the Ljung-Box and ARCH-LM tests, independently of the order of lags
considered. The only model whose p-values are below the significance level of 5%
is the DAGM-X, for [ = 12, for both the Ljung-Box and ARCH-LM tests. Despite
this, the conclusion is that the DAGM-X provides the most convincing performance
with VIX contributing to a marked improvement over other models. The result can
be appraised graphically as in Fig. 2 where we show the close proximity of the fitted
values to the realized volatility.
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Table 1 DAGM and GARCH estimates
GARCH |GARCH- | GIR GIR-X |GM DAGM | DAGM-X | DAGM—
X w
a 0.105* | 0.116™ | 0.001 0.001 0.001 0.001 0.001 0.001
0.013)  [(0.019) | (0.01) 0.011)  [(0.011)  |(0.01) 0.014) | (0.011)
B 0.884" | 0.876™" |0.889" |0.878" |0.94™"  |0.874™" |0.852" |0.884™"
0.015)  [(0.018) | (0.015) | (0.02) 0.013)  [(0.015) | (0.018) | (0.015)
y 0.192"* 10225 0.1 |0.194™ | 0.198"™" |0.19"™
0.023)  [(0.037) [(0.023) [(0.022) |(0.022) |(0.023)
z 0.117 0.165 0257
(0.091) (0.104) (0.039)
m 5.169°" 4956 |0.686"" |5.123"
(0.315)  [(0.192) | (0.121) | (0.205)
0 —0.004
(0.005)
o 1.36
(1.385)
o+ 0.164™* 0.101™" |0.096™
0.042) | (0.027) | (0.028)
w5 13727 | 1.681"" | 13.876™
(0.368) | (0.546) | (0.693)
6~ —0.192""| —0.078 | —0.431""
(0.065) | (0.07) (0.11)
wy 1.017 1.124 1455
(0.883) | (0.765) | (0.492)
BIC 37586.899 | 37590.534 | 37393.477 | 37394.136 | 37546.527 | 37404.797 | 37367.454 | 37397.298
QLIKE |-3.867 |-3.865 |-3876 |—-3873 |—-3882 |-3882 |-3882 |-3.879
RMSE  [0418 0.433 0.395 0.418 0.402 0.376 0.364 0.382
LB> 0.274 0.388 0.329 0.123 0.506 0.129 0.048 0.186
LBy 0.322 0.361 0.518 0.239 0.416 0.384 0.229 0.384
LB3s 0.362 0.383 0.626 0.37 0.278 0.474 0.37 0.482
LM, 0.26 0.381 0.311 0.092 0.526 0.118 0.037 0.17
LMoy 0.318 0.349 0.485 0.159 0.41 0.366 0.203 0.345
LM3¢ 0.411 0.391 0.614 0.253 0.366 0.482 0.371 0.479

Notes Annualized scale. Sample period: 7 January 2000—7 September 2018. Number of daily obser-
vations: 4686. Ticker: S&P 500. Comparison of the DAGM with other GARCH models. Model

definitions and comments in the text. HAC standard errors in parentheses.

significance at the 10%, 5% and 1% levels, respectively

ko kk

, ¥ and *** denote
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Fig. 2 Realized and DAGM-X volatilities. Notes The figure plots the DAGM-X volatility (solid
black line) and the S&P 500 realized volatility (dashed grey line). Shaded areas represent NBER
recession periods. Annualized scale

2.2.2 Forecasting

Further insights can be had moving to an out-of-sample exercise where we estimate
the model over a 10-year period and project one-step ahead for one year and then
move forward the estimation and forecasting window. The results are summarized
in Fig. 3 where we report the presence in a Model Confidence Set as proposed by
[20]. The results (at o« = 10%) show that while the DAGM-X has a satisfactory
performance, at the same time the standard GARCH or GJR models enter the set.

3  Wrapping Up

The slow-moving feature of conditional volatility can be addressed within a Double
Asymmetric GARCH-MIDAS framework [5] where the low-frequency variable here
is a volatility measure (variations in VIX). The main novelty in this approach is that
the same variable can be inserted as a forcing variable (-X in levels) in the short-
run component, and we can explore which frequency is the most suitable for the
long-run component (in first differences). The fitting capabilities of this approach
are comforting, with monthly movements in volatility providing the best in-sample
results. In out-of-sample forecasting, though, the model is less satisfactory, in that it
gives a performance very similar to a standard GARCH model.
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Fig. 3 MCS composition. Notes The figure plots the composition of the Model Confidence Set
(MCS). For different loss functions, dark (QLIKE), medium-dark (MSE) and light (MAE) shades
of grey indicate that a given model is included in the MCS, at a significance level of @ = 0.1.
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Goodness-of-fit Test for the Baseline ®)
Hazard Rate S

A. Anfriani, C. Butucea, E. Gerardin, T. Jeantheau, and U. Lecleire

Abstract We provide a nonparametric test procedure for the baseline hazard func-
tion in the generalized Cox model in presence of fixed given covariates. The test
statistic is given by an optimal estimator of the quadratic functional of the same
function. Our test procedure attains the rate n=*¢/“*+D gver Besov classes of func-
tions B‘f"x’(L), a, L > 0, which is known to be minimax optimal in the context of
testing the intensity function of a Poisson processes.

Keywords Baseline hazard rate - Cox model + Goodness-of-fit test -+ Quadratic
functionals - Separation rates

1 Introduction

Let us consider the generalized Cox model defined, for a vector of covariates Z € R4,

M, Z) = h(t) - e8P, )
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where i : [0, T] — [0, +o0[ is called the baseline hazard rate functionand g : RY —
R. The particular case where g(Z) = B Z is a linear function which is known as
the Cox model.

A lot of attention was devoted to the estimation of both functions % and g.
We distinguish methods based on the partial log-likelihood— 1, 8] have obtained
nonasymptotic oracle inequalities for g, methods based on maximization of the penal-
ized total likelihood—([3, 9], and kernel methods for estimating hA—[4].

Less attention was given to the nonparametric testing of the generalized Cox
model. In the case of covariate-free Poisson processes, [6] gave minimax and sharp
constants for testing the goodness-of-fit Hy : A = A of the intensity function A on [0,
1]. In this setup, the intensity X is supposed to belong to a Sobolev class of functions
and the separation from the null hypothesis is measured in L, norm, ||[A — Ag]>.
Fromont et al. [2] proposed nonasymptotic adaptive tests of homogeneity, i.e., Hy :
A =1 [0,1]-

In this paper, we want to estimate a quadratic functional of the baseline hazard rate
function A and construct a goodness-of-fit test for 4 based on that functional. More
precisely, given h a square integrable function on [0, 7], thatis, ko in L, = 1[0, 7],
we want to test from our observations that

Hy: h=hy, against
Hy(hg, ®,): h € F such that f (h — ho)*()dt > C - D, 2)
0

with C, &, > 0 depending on the parameters of nonparametric class of Besov
smooth functions F to be defined. Let us denote the quadratic functional

D(h) = /hz(t)dt, for h € L,.
0

Thus, the separation from the null hypothesis Hy is measured by D(h — hp). An
estimator of this quadratic functional provides the test statistic for testing Hy : h = hy
against H; in (2). This is now a standard approach in nonparametric testing, as it
provides faster rates of testing than the plug-in of an estimator of 4, and than the
testing in pointwise or sup-norm semi-norms.

We assume that the function g is supposed to be known and proceeds conditionally
on the sample of covariates Zy, ..., Z,.

First, we describe an estimator of the quadratic functional for h?(t)dt and study
its behavior in Proposition 3. Next, we modify it in order to produce a test statistic
and a test whose probabilities of error are controlled in Theorem 1. We note that the
behavior of our procedures is of the same order asymptotically as in the covariate-free
case. We, therefore, deduce that our procedures are optimal in the minimax sense.
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In practice, we can estimate the quadratic functional on [0, max;<;<, X;]. We can
show that
P(t < max X)=1-10-P(T =1)-P(C=1))"
<i<n

tends to 1 as n — oo, for any fixed 7 > 0.

More challenging problems involve to consider unknown function g. However, in
the Cox model g(Z) = BT Z or the generalized Cox model, we can proceed numeri-
cally by estimating g using the partial likelihood in presence of an unknown baseline
hazard rate. It is interesting but beyond the scope of this paper to study the theoretical
impact of plugging the (parametric or nonparametric) estimators of g.

Notation We observe (X;, Z;,8;), i = 1, ..., n over the time interval 7 = [0, 1],
for n independent individuals. In our notation, X; is the censored survival time,
that is, X; = T; A C;, where T; is a continuously distributed random time when a
failure occurs and C; is a continuously distributed censoring time. We also observe
the failure indicator §; = I (T; < C;), which takes the value 1 if a failure occurred
and 0 when the censoring occurred. In our setup, the censored survival times are

modeled conditionally on the covariates Z; = (Zil, R Zfi ), ad-dimensional vector.
We assume that the failure times 7; are independent of the censoring times C;,
conditionally on the covariates Z;, i = 1, ..., n.

Our observations allow us to build a marked Poisson process N;(t) = I (X; <
t, §; = 1). On our probability space (€2, A, P) we define the filtration

Fr=0{Ni(s), Z;; 0<s=<ti=1,...,n} (3)
We assume that the counting process N; () satisfies
dN;(t) = A(t, Z))der + d&(1), O0<t<rt,i=1,...,n, @)
where &; is a martingale process on [0, 7], see [7]. Let us denote it by dA;(¢), the
random measure A(f, Z;)dt. We use generic random variables (X, Z, §) having the
same distribution as our sample, and processes N (¢), A(t), and &(¢) verifying (4).
Here, we consider that the hazard rate satisfies a generalized Cox model (1). Thus,

dA®t) = A1, Z)dt = h(1)ed Pds.

From now on, we shall consider that the design Z; is fixed and known.

2 Estimation

In this section, the aim is to describe the nonparametric estimation of the functional
D(h).Inorder to do this, it is now established in the literature that a plug-in of the best
estimator of / is not the best solution for our problem. Instead, we proceed by making
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an IL, projection on a proper orthogonal basis, express the quadratic functional in

terms of the coefficients of the projection and finally estimate it.
Coefficients model Let ¢ : [0, T] — R be square integrable and let us denote it by

N[¢] =/¢(t)dN(t), §[¢]=/¢(t)d§(t) and A[¢]=f¢(t)d1\(t)
0 0 0

, where N(¢) and &(¢) are the marked point process and the martingale process
verifying (4), and A(¢) is given in (1).

Proposition 1 Let ¢, ¥ be inlL,. The random variables N;[¢]fori = 1,...,n are
independent and have conditional moments (given Z;):

E(Ni[¢]) = / () EL({, Z)]1dt = 8% / ¢ (Hh(t)dt,
0 0

2

E[(N;[¢])*] = e8&) / > (Oh(t)dt + 8% f ¢ (Oh(t)dt
0 0

Var(N;[¢]) = es#) [ *(H)h(t)dt
0
. Moreover,

E(N;[¢]- Ni[y]) = e8%) f ¢ (DY (H)h(t)dt
0
+e?2820) / ¢ (Oh(t)dt / W (t)h(r)dt
0 0

Cov(N;[¢], Ni[y]) = Cov(£[¢], E[y]) = es# / ¢V (Hh(t)dt.
0

Moreover, it is obvious from the previous result that if ¢ and v have disjoint
supports then the random variables N;[¢] and N;[¢] are uncorrelated.

We introduce {¢ j}’;”: , a family of M orthonormal functions of L,[0, t], which
have disjoint supports and the corresponding coefficients of i for j = {1, ..., M}
are given by
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T
0; = / @;(t)h(t)dt
0

. We project the point process N;(f), 0 < ¢ < t on these functions to get the random
variables

Nilo;1 = Ailo;]1 +&lo;l, jefl,..., M}, &)

where A;[¢;] := e8%) [ ¢;(1)h(1)dt. We call (5) the sequence model associated to
0

(4). Random variables &;[¢;], for j € {1, ..., M} are centered, but correlated with

the same correlation structure as N;[¢;], j = {1, ..., M} as seen in Proposition 1.
The coefficients 6;, j € {1,..., M} are estimated by

O
0j =~ e PNilgl. 6)
i=1

Proposition 2 The estimator éj, jef{l,..., M} definedin (6), is such that

X TR I RN _
E[0;]1=0;, Var(9;) = ~—Ze 84 forall jell,...,M)
n n =
and
A ) ,h 1 n .
Cov(é’j,@z):M-—Ze_g(z/), forall j#Ce{l,..., M}
n n

i=1
Note that due to our choice of the functions ¢;, j from 1 to M,

Cov(;,0,) =0, forall j#¢€in{l,..., M}
Indeed, {¢;¢¢, h) is equal to zero if j # £ since ¢p; and ¢, have disjoint support.

Proof Since the N;[¢;] are independent and the e ~#(%" fixed, the Proposition 1 gives

. 1 <
E[6;1=—D (¢;,h) =0;.

i=1

Then for the variance
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. 1< i 1 « o
Var(¥;) = Var (Z Z;N,w,-] ‘e g<Zt>> == ; Var(Ni[¢;]) - e

n

RS 2 —8(Z;) <¢2’h> ! —8(Z;).
=n—2;(¢j,h>'€g =T';Z€g ;

i=1
and, if j # ¢, for the covariance :

n

o . 1 ez
Cov(d;.6) = — Y e 8 EE I Con(N; (1, Nelde))

ik
ik=1

n

= iz Ze—Zg(Zi>Cov(Ni[¢j], Nilge]) = M . l Ze—g@-).
n n 1

i=1 i=l

Construction of the estimator We approximate h by hy(t) = Zflz 109 (),

with ¢ € [0, T] and D(h) := f h? by Z 2 We propose to estimate the quadratic

j=1 J
functional D(h) by the U-StatlSth of order 2:

M
D, = Z n(n ) - Z N[ ¢ le™ 8(Zi) | k[¢j]e*g(lk)’ (7)

where M grows larger with n — oo.

Proposition 3 The estimator D, in (7) of the quadratical functional D(h) is such
that

M
E[D)] =) 67,

j=1
and has variance

M n
. 4
VB = e 2 Y s S ] Y
n—

i#k i=l1
i,k=1

Proof First, let us consider the expected value of the estimator

n

M
A 1
E[D,] = E m E E [Ni[qgj]e*g(zi) . Nk[(l,j]e*g(zk)]_
j=1

ik
i k=1

The random variables N;[¢;] and Ni[¢;] are independent, for i # k. Thus,
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n

M 1 M
= E [Ni[¢A]eig(Zi)] . E [Nk[d)‘A]g*g(Zk)] — 62.

For the variance, let us decompose the sum of indices in two parts starting with the
centered expression of D,

M n
D - E[Dn = Z n(n 1) Z(N [¢j —8(Zi) Nk[¢ ]e_g(zk) 92)
= s
M n
=> 0 : ZUV [pj1e8P) — 6,) (Nil;le ™ —6))
Jj=1 n(n llzékl

M n
2 _
+ § - § (Ni[p;1le ) —0,) -0, =: T} + T, say.
i=1

j=1

We note that 77 and 7, are uncorrelated. Indeed, for any i # k ori # £, we have
E[(Nil¢;]- €7 — 0,)(Nelg;] - e 54 — 0,) (Nelpjle ) — 6)] = 0,

since at least one term of these three centered terms is independent from the other
two. Hence, we can work on the variance of T} and T, separately. For T,

2
M

4 n
Var(Ty) = — STE| D ilgle s —0))0;

j=1
We use the Proposition 1 to get further on

4 n M M
- DD ElWilg1e™s %) — 0,)%071+ Y 0,6, “ Cov(Nil¢;1, Nilgel)

i=1 \ j=1 J#t

n M M
4
==Y | Do 07var(Nilg;De %)+ 0,0, e (i, )
" ‘ ‘

i=1 \ j=I j#e

l’l2 Ze_g(Z) 202 ¢]’h +29 9@ ¢]¢€7

J#t

__292 (@2, h) - Ze*g(“ (8)
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Now, let us bound from above the variance of 7. Let us denote it by U; = Nil¢;]-
¢=8Z) Then Var(T}) = U/(n*(n — 1)2), with

n M n M
v=£e|| X YWl -opwi-ep|| X Y wk-0,)wk -0

i1#k1 ji1=1 ir#ky jo=1
i1, ki=1 i2,k2=1

M n n ) ‘
1 i
Z Z Z E [(Uji _91'1)(Uj11 _0/1)(U.2 /2)(U 2)] )
Jis 2=l i1#k1  i2#ks
i1,k1=1i2,kr=1
The terms in the previous sum are null except when (i1, k) is equal to either (i, k;)
or to (k,, i»), thus

Var(T) = Z Sk (W =60, — 60| E [ - 650 W) — 6]
11 =1 i#k
i.k=1

and the previous expected value can be written as
e I Cov(Nil, 1, Nil.)) Cov(Nilds, 1. Nild D

Thus,

Var(T)) = m Z Z e 8(Z) p=8(Z1) <¢ h)

j=1 i#k
i,k=1

M
2
— (Zi) (Zy)
= 212 E e 814 g8k E ¢j,h (10)

i#k j=1
i,k=1

Finally, putting (10) and (8) together, we get the theorem.

3 Goodness-of-Fit Test

In this section, we focus on the nonparametric test. Recall the test problem
Hy : h = hg against the alternative in (2).

From now on, we assume that foralln andi = 1, ..., n there exist C, and El >0
such that C, < e7¢) < C|.

We consider that F = ff’w(L) a Besov ellipsoid with «, L > 0. Functions &
belonging to the Besov ellipsoid can be characterized by their coefficients on a
wavelet basis with some properties (smoothness, moments, etc.), see [S]. We use
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as orthonormal basis, a DB2N wavelet basis with resolution level J such that 27 ~
n?/@e+D For n large enough, these functions will have disjoint supports.

The separation between & under the null hypothesis Hy and / under H, is mea-
sured by D(h — ho) := [, (h — ho)*. Let us denote by 09 = fo ®jho, j =1, the
coefficients of the hazard rate function /o under Hy. The functional D(h — hg) is
approximated by

M
Dy (h = ho) := ) _(0; — ).

=1
The test statistic is the U-statistic of order 2 that is an estimator of Dy, (h — hg)

n

M

A 1

Dgzzn(n Y (Nilple 8% — 69) - (Nelpjle ) —00),  (11)
Jj=1

i#k
i,k=1

for some M = M,, of the same order as 2”. The test procedure is
A, = I(ﬁg >r,), forsomer, > 0.

The test statistic DY in (11) has the moments E(D) = Y"1, (6, — 69)2, and

M
Var[DY] = prrp— Z e BIITE I N 2 )
i#k j=1
i.k=1
4 M
—8(Zi)
+= 2 00N b Ze ¢

1

~.
Il

Indeed, this is an easy consequence of Proposition 3. Moreover, using the assumption
that C, < e 8% < C, forall i from 1 to n, we bound by

. 2 L 4 A _
Var[ D] smcf D@3+ = Y0 00 (@] ) - Ty

j=1 j=1

Since {¢;} ;"’: 1 is an orthonormal basis, we obtain the following bound of the projection
(2, h) < ||k« and we finally get

— —2
207 - Al Cy 20|h113,Cy - M
0 0y2 o1

Var[D;] < ; E 0;—0,)"+ ni—1) (12)

j=1

The following theorem gives upper bounds for the testing risk.
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Theorem 1 The testing procedure A, based on ﬁg in (11) with M = |c - nﬁj,
D, 4= nﬁ, Fp=r- nﬁ, Cy > 2(L + L) large enough and convenient choices
of r > 0 and c > 0 is such that there exists y € (0, 1) giving

Py(A, =1)+ sup Py(A, =0) < y.
heH, (hy,®n.q)

Proof For the type I error probability, we use the Chebyshev inequality

o Var(D%)
Po(A, =1) =Po(DY = 1) < ——>
rn

— n —2
4||h]|C 201h12.C; - M\ 1
1721l 0o 12(9j_9?)2+ 12115, C 1

— 2°
n = nn—1) rz

Then, using Hy we have that ; — 9;) =O0forall j=1,..., M, thus

=2 =2 o
21C; - M _ 20hIAC, - c - nw
—8a N

Py(A,=1) <
0( n ) —_ n(n _ 1)7"% —_ r- nm+2

For convenient choices of ¢ and r we get
2 =2 4
Po(An = 1) =2|[hlI5C, - c/r = 5
For the type II error probability, let us first note that

2(Ly+ L)

D(h—hy) = ExID)] = 3 (0, = 0)) < —

j=M+1
Then under the alternative hypothesis we use the Chebyshev’s inequality and (12):

Py(A, = 0) <P(Ep(DY) — D° > Cr®,.4 — 2(Lo + LYM ™% — 1)
Var(D?)
(Cr ®po —2(Lo+ LM~ —1,)>

<

—_ =2
If %DM (h — hg) < %M, then we bound from above

—2
4 hlloC M /n(n — 1)
(Co Dy —2(Lo + LYM2 — 1)’

Pr(Ap =0) =

<

[NSNIaN

, SSSSS



Goodness-of-fit Test for the Baseline Hazard Rate 45

for C; large enough. If MD (h — ho) > ATy M this implies that Dy, (h —

“n(n—1)
ho) > Let us recall that E;,(D%) = Dy (h — ho) and write

Z(n 1)

Ex(DY) — DY Duy(h — ho) —r,
>
Var(DY)  Var (DY)

Note that M/2n ~ ¢t >r,~r- nﬁ, so D(h — hy) = 2r, for n large
enough. This gives

Py(A, =0) =P,(D° < r,) = P,

Dy (h—ho) —ry _ Dy (h — hy)/2 _ YDuGi—ho)-n _ VM-
Svardy V2 4lhlxCoDy(h =kt T 2VC5 T 220G

and thus

vM-C,;
2/2C;

Ph(An 20) SPh Zn >

where we denoted it by Z,, the standardized random variable —ﬁg. Now let us apply
the Chebyshev inequality and that Dy, (h — h¢) is uniformly bounded to get

Var(Z,) 8C 8C
Py(A, =0) §M _3 < —3n T —> 0, as n tends to infinity.
M C C
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Permutation Tests for Multivariate )
Stratified Data: Synchronized or ST
Unsynchronized Permutations?

Rosa Arboretti, Eleonora Carrozzo, and Luigi Salmaso

Abstract In the present work, we adopt a method based on permutation tests aimed
at facing stratified experiments. The method consists in computing permutation tests
separately for each strata and then combining the results. We know that by perform-
ing simultaneously permutation tests (synchronized) in different strata, we maintain
the underlying dependence structure and we can properly adopt the nonparametric
combination of dependent tests procedure. But when strata have different sample
sizes, performing the same permutations is not allowed. On the other hand, if units
in different strata can be assumed independent we can think to perform permutation
tests independently (unsynchronized) for each strata, and then combining the result-
ing p-values. In this work, we show that when strata are independent we can adopt
equivalently both synchronized and unsynchronized permutations.

Keywords Permutation tests « Conditional inference + Multivariate testing -
Resampling methods

1 Introduction

The deal with stratified (pseudo-) experiments happens quite often in different fields
of research. The most typical application examples not only refer to clinical trials, but
also industrial problems, social sciences, or demographic studies present a variety
of situations in which stratified analysis is required. Literature on stratified experi-
ment is wide and covers different fields (see, e.g., [4-8]). Recently Arboretti et al.
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[1] presented a permutation stratified test in a univariate framework based on the
nonparametric combination (NPC) methodology [9]. The idea at the basis of this
NPC-based procedure is to perform separately although simultaneously different
permutation tests, one for each stratum and then suitably combine the results. It is
worth noting that a stratified problem may also be of multivariate nature. In this case,
in order to properly apply the NPC methodology, we should also take into account
the possible dependence among variables.

For the sake of clarity, let us consider a practical example. Suppose, to be interested
in evaluating which school among two high schools (say A and B) with different
scholarship programs, allows to have more chance to face the entrance exam of a
specific University. Suppose also that the entrance exam consists of both written and
oral tests. Furthermore, students who attend to entrance exam can choose between
two degree courses (say S; and S»).

Schools A and B randomly select a sample of, respectively, n4 and ng students
and simulate the entrance exam. Let us now consider the two following experiments:
(1) all students selected from each school perform the tests (written and oral) for
both degree courses. (2) half of the students selected from each school performs the
test (written and oral) for the degree course S; and the other half performs the test
(written and oral) for the degree course S,. Tables 1 and 2 show an example of data
structure for the two experiments.

Both experiments (1) and (2) are multivariate because for each student we record

the score obtained for written and oral test. The two experiments are stratified
because the different degree courses may influence the scores obtained. The dif-
ference between two experiments is that in (1) for each school the statistical units
in different strata are the same, whereas in (2) we have different units for different
strata in each school.
Formalizing X;j; = p + 8, + &;js, where X;j, are the multivariate responses, u is
the general mean, §, is the effect of the j-th treatment in the s-th stratum, and ¢; j;
are experimental errors, with zero mean from an unknown distribution Fj,, with
Jje{A, B}, s=1,...,S, where S is the number of strataand i =1, ..., n;,. We
are interested in the following system of hypotheses:

Table 1 Example of data structure for experiment (1)

School Id student Written (S1) | Oral (S1) Written (S2) | Oral (S2)
A 1 87 85 80 78

2 82 85 80 78

na 88 90 85 85
B 1 74 80 80 80

2 68 74 70 75

np 77 85 75 78
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Table 2 Example of data structure for experiment (2)

School 1d student Degree course Written Oral

A 1 S1 87 85
o S1 88 90
541 S 80 78
na \Y) 85 85

B 1 S1 74 80
oL S1 77 85
4 A\ 80 80
np AY) 75 78

HE : 845 = 8, forall s

(1

)
HP : 8,5 # 83, for at least one s.
(<)

In our example § ;; = (85.\;/"“6"), 8;?"11)), j €{A, B}, s € {5}, S,} denotes the multi-
variate treatment effect in group j and in stratum s.

If we are in case (1) and we want to solve the problem following the NPC-based
procedure, when we perform separately permutation tests we must take into consider-
ation that students in different strata are the same and that for each student correspond
two responses. In a permutation framework, this is easily obtainable by permuting
the entire rows of Table 1. Let us refer to this type of permutations with the term
synchronized permutations to emphasize that different tests are simultaneously per-
formed for each stratum and variable. In case (2), when the stratum size in each group
is the same it is possible to perform synchronized permutations too. But if different
strata in the same group have different sizes this is not allowed. In our example, this
may happen if the number of students from the same school who perform the exam
for S| and § differs. In this paper we wonder if performing independent permuta-
tion tests for each stratum, assuming independent strata, affect the results. In this
situation, the permutations are performed independently in each stratum but simulta-
neously for all variables that can be correlated. We refer to this type of permutations
with the term unsynchronized permutations. In the following sections, we introduce
the NPC-based procedure for stratified problems and through a simulation study we
investigate the differences between synchronized and unsynchronized permutations
in case of independent strata. Finally, we will show a real-application example.
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2 An Algorithm for NPC-based Stratified Tests

In this section, we introduce the NPC-based procedure for multivariate stratified test.
For an overview on NPC, its properties, and applications see [2, 3], [9, Chap. 4], [10].
The NPC procedure consists of breaking the problem (1) down into S sub-hypotheses,
one for each stratum, i.e,

Hyy 1 8a(s) = 0By

>) 2
Hi i 84y # B(s)

(<)

Let us denote the K -variate vector of 7 j; observations in group j, in stratum s with
Xjs = Xigs)s - -+ Xnj(is))s J € {A, Bl s =1,..., S,

Furthermore, let X; = Xy, |1 Xp; of size Ny = n4, + np;s denotes the overall
sample in stratum s. The steps to achieve the global result are the following:

1 fors=1,...,8

1.1 On X; compute a vector of suitable test statistics obtaining
T, =(T",..., %),

1.2 On X} obtained after a random rows permutation of X, compute the related
vector of permuted test statistics.

1.3 Independently repeat step 1.2 a number R of times, with R large enough
(i.e., generally R >> 1000). The result estimates the multivariate permutation
distribution of the test statistic Ty, denoted by

— (1) (K)
T, =@, ..., T;""),

where T*® = (T®  T*ROY =1,... K.
1.4 Estimate the vector of p-value statistic:

A=, a0,

where AP = YR 1(T#® > TO)/(R+1),k=1,..., K.
1.5 Compute the empirical significance level function:

A= ),

where 30 = (G0 3ERO) with A ® = YR (7O > 70,
(R+1,r=1,....Rk=1,... K.

2 Through a suitable combination function W(-), for each variable combine the p-
values statistic related to different strata, obtaining



Permutation Tests for Multivariate Stratified Data ... 51
T.=(T",....T)
where for a generic variable k is T® = W(Aik), ooy 28y and
T = (170, ... 75K

where for a generic variable k is T*® = \U(Xf(k), ey RO,
3 Compute the combined p-value statistic as

Ao =025,

where A® = Y% 1(7#® > T7®)/(R + 1) and the related empirical signifi-
cance level function.

A=W )y

where A*® = S [(T*® > 7#®) /(R 4+ 1).
4 Combine the p-value statistics related to all variables, obtaining

T =wvD, . .., 25
and the related simulated distribution:
T =wrm, )y,
5 Compute the global p-value as AG/%? = "% I(T* > T)/(R + 1) and reject the

null hypothesis (1) if 167> < a.

In order to complete the algorithm, let us cite some possible test statistics 7 and
combining function W. At step 1.1, generic test statistics 7" that can be used are the
difference of means

1 NAs 1 nps

ZXiAs - ZXin
i=1 i=1

NAs i nps i

Tpm) =

if X j; is continuous or the Anderson—Darling test statistics

v—1

Tanw) = Y MaasIMugesy(N — Myoy))]
h=1

if X is categorical with v categories, where Mjos = Myas + Myps, Mjyas, and
M}, are the cumulative frequencies of the category % in stratum s of group A and
B, respectively.

For what concern combining function in points 2 and 4, common choices are
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e the Fisher omnibus combining function defined as yp = —2 - Z;}(log Ai);
e the Liptak combining function defined as ¢, = >/ O = A);

o the Tippett combining function defined as ¥ = max;_; (1 — A;)

where v represents the number of partial aspects to be combined.

Note that if we cannot assume the independence of the strata, all test statistics
have to be computed on the same permutations (synchronized), that is, the random
permutations obtained at points 1.2—1.3 must be the same foreachs = 1, ..., Ssoas
to preserve the underlying unknown dependence structure. What we are interested to
assess in next section is if, in case of independent strata, performing unsynchronized
instead of synchronized permutations has an effect on the procedure.

3 Synchronized and Unsynchronized Permutations

In this section, we show the results of a simulation study in which NPC-based strat-
ified test is used adopting both synchronized and unsynchronized permutations. In
order to assess if the type of permutations affect the analysis it is sufficient a simple
case:

e Two treatments A and B;

e S = 2 strata;

e K = 3 variables correlated (012 = p13 = p3 = 0.4) and uncorrelated;
® Ngpa = Ngp = 20Vs = 1,2.

As generating data, we considered Normal distribution and Student’s t with 3 degrees
of freedom. Furthermore, we considered cases in which treatment had the same
effect on across all strata and cases with different treatment effect across strata that
mimics a situation with a stratum by treatment interaction. Figures 1 and 2 show some
examples of interaction plots of generated samples used in the simulation study. Plots
in Fig. 1 represent a situation with treatment effect constant across strata. The first
plot represents a situation under the null hypothesis (no treatment effect), whereas
the second plot is under the alternative. Figure 2 represents a situation with treatment
effect interacting with strata.

Results of the simulation study are in the following figures. Figures 3 and 4 show
the rejection rates on 1000 simulations of the NPC-based stratified test based on
1000 permutations, when treatment effect is constant across strata, with independent
and correlated variables with Normal and Student’s t with 3 degrees of freedom
distribution, respectively. In this case, the treatment effect § (on group B) is the same
in each stratum. Note that the two power curves of tests based on synchronized and
unsynchronized are perfectly overlapped, and under the null hypothesis (6 = 0) the
significance a-level is respected.
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Fig. 1 Interaction plots of some simulated samples with treatment effect constant across strata
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Figures 5 and 6 show the rejection rates on 1000 simulations of the NPC-based
stratified test based on 1000 permutations, when treatment effect varies across strata,
with variables independent and correlated for Normal and Student’s t distribution,
respectively. In this case, we show the treatment effect (on group B) in stratum 1 (8;)
and in stratum 2 (8,).

We already performed a simulation with unbalanced stratum size in each group
and results are consistent with the balanced case, so that we do not report the corre-
sponding results. From all these results we can conclude that, in case of independent
strata, we can use alternatively both synchronized and unsynchronized permutations
strategy. In particular, when we have balanced cases, i.e., strata in the same group
have equal size, for computational reasons synchronized permutations are preferable.
On the other hand, when we have the presence of unbalanced strata, e.g., because
of data missed completely at random, we can equivalently perform the NPC-based
stratified test using unsynchronized permutations.
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Fig. 3 Rejection rates of NPC-based stratified test when treatment effect is constant across strata,
with variables independent (left) and correlated (right), with Normal distributed data
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Fig. 4 Rejection rates of NPC-based stratified test when treatment effect is constant across strata,
with variables independent (left) and correlated (right), with Student’s t distributed data
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Fig. 5 Rejection rates of NPC-based stratified test when treatment effect varies across strata with
variables independent (left) and correlated (right), with Normal distributed data

4 An Example Application

The school of Engineering of the University of Padova (Italy) promoted the anal-
ysis of a huge database related to several information on the career of students.
The objective was multifold. One of these objectives was to understand if the type of
high school from which students come has an impact on the success in the University
entrance exam and on the number of university credits reached at the end of the first
academic year. In particular, it was of interest to compare schools with a scientific
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Fig. 6 Rejection rates of NPC-based stratified test when treatment effect varies across strata, with
variables independent (left) and correlated (right), with Student’s t distributed data

Table 3 Example of strata sizes of the example

School DC1 DCz DC3 e DC12
A 62 106 25 e 40
B 46 211 17 .. 107

Table 4 P-values of partial comparisons H :Slj‘s > SIE,S, k € (Score, CFU) and s €
(DCy, DCy, ..., DCyy)

DC; DC, DC3 - DCi»
Score 0.0002 < 0.0001 0.540 ... 0.0045
CFU 0.0001 < 0.0001 0.820 ... 0.0007

Table 5 Combined p-values of the comparisons Hj : 8]1‘4, > 5';;_, k € (Score, CFU)
Score < 0.0001
CFU < 0.0001

curriculum (A) with schools with a technical curriculum (B). For this reason, the
score at the entrance exam and the number of university credits at the end of the first
academic year have been recovered from the database (K = 2). Since the School
of Engineering has S = 12 different degree courses (DC), we considered them as a
stratification factor. Table 3 shows an example of the (unbalanced) strata sizes. The
NPC-based stratified test has been applied to these data considering a one-sided alter-
native hypotheses H; : 8’/‘” > (Sgs,k € (Score, CFU) and s € (DC,, DC,, ..., DC,)
obtaining a global p-value A%°® < 0.0001. Furthermore, with the NPC procedure,
we can investigate all partial aspects as shown in Tables 4 and 5.

What we can see from the analysis is that students with a scientific curriculum
look to have better possibilities to face the first year of Engineering at the University
of Padova with respect to students with a technical curriculum.
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An Extension of the DgLLARS Method to )
High-Dimensional Relative Risk i
Regression Models

Luigi Augugliaro, Ernst C. Wit, and Angelo M. Mineo

Abstract In recent years, clinical studies, where patients are routinely screened for
many genomic features, are becoming more common. The general aim of such studies
is to find genomic signatures useful for treatment decisions and the development of
new treatments. However, genomic data are typically noisy and high dimensional,
not rarely outstripping the number of patients included in the study. For this reason,
sparse estimators are usually used in the study of high-dimensional survival data. In
this paper, we propose an extension of the differential geometric least angle regression
method to high-dimensional relative risk regression models.

Keywords dgl.ARS - Gene expression data - High-dimensional data - Relative
risk regression models + Sparsity *+ Survival analysis

1 Introduction

In recent years, clinical studies, where patients are routinely screened for many
genomic features, are becoming more common. In principle, this holds the promise
of being able to find genomic signatures for a particular disease. In particular, cancer
survival is thought to be closely linked to the genomic constitution of the tumour.
Discovering such signatures will be useful in the diagnosis of the patient, may be
used for treatment decisions and, perhaps, even for the development of new treat-
ments. However, genomic data are typically noisy and high dimensional, not rarely
outstripping the number of patients included in the study. For this reason, sparse
estimators are usually used in the study of high-dimensional survival data.
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In the past two decades, sparse inference has been dominated by methods that
penalize the likelihood by functions of the parameters that happen to induce solutions
with many zero estimates. The Lasso [22], elastic net [24] and the SCAD [6] penalties
are only a few examples of such penalties that, depending on a tuning parameter,
conveniently shrink estimates to zeros. In [23], the Lasso penalty is applied to the
Cox proportional hazards model. Although the Lasso penalty induces sparsity, and
it is well known to suffer from a possible inconsistent selection of variables.

In this paper, we will approach sparsity directly from a likelihood point of view.
The angle between the covariates and the tangent residual vector within the likeli-
hood manifold provides a direct and scale-invariant way to assess the importance of
the individual covariates. The idea is similar to the least angle regression approach
proposed by [5]. However, rather than using it as a computational device for obtain-
ing Lasso solutions, we view the method in its own right as in [1]. Moreover, the
method extends directly the Cox proportional hazard model. In fact, we will focus
on general relative risk regression models.

2 Relative Risk Regression Models

Let T be the (absolutely) continuous random variable associated with the survival
time and let f(7) be the corresponding probability density function. The hazard
function specifies the instantaneous rate at which failures occur for subjects that are
surviving at time ¢ and it is formally defined as A(¢) = f(¢)/{l — fot f(s)ds}.

Asproposedin [21], we assume that a p-dimensional vector of predictors, possibly
time-dependent, say x(t) = (x((¢), ..., x, ()T, can influence the hazard function
by the following model:

A5 x) = Ao Y (x(1); B), (D

where B € B C R” is a p-dimensional vector of regression coefficients, Ao(¢) is the
base line hazard function at time ¢, which is left unspecified, and ¢ : R? x R? - R
is a differentiable function, called the relative risk function, such that ¥ (x (z); g) > 0,
foreach 8 € B. Model (1) extends the classical Cox regression model [4], and allows
us to work with applications in which the exponential form of the relative risk function
isnot the best choice [12]. Table 1 reports some of the most used relative risk functions
(see [10] for more details).

Table 1 Some used relative risk regression functions

Exponential Linear Logit Excess

Y (x(1); B) exp{B x (1)) 1+8"x(0) log[1 + i 11+
exp(B x| xm(®)Bm)
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Suppose that n observations are available and let ¢; be the ith observed failure time.
Furthermore, assume that we have k uncensored and untied failure times and let D be
the set of indices for which the corresponding failure time is observed; the remaining
failure times are right censored. Denote with R(#) the risk set, i.e. the set of indices
corresponding to the subjects who have not failed and are still under observation just
prior to time #, under the assumption of independent censoring, inference about the
B can be carried out by the partial likelihood function

Y(xi(t); B)
L g — .
B =] > ki V(1) B)

ieD

2

When the number of predictors exceeds the sample size, a direct maximization of
the partial likelihood (2) is not possible. In the next sections, we shall explain how
to use the differential geometrical structure of the relative risk regression model to
study its sparse structure.

3 DgLARS Method for Relative Risk Regression Models

3.1 Differential Geometrical Structure of a Relative Risk
Regression Model

In this section, we study the differential geometrical structure of the relative risk
regression model. To do this, we follow the approach proposed in [20], i.e. we relate
the partial likelihood (2) with the likelihood function of a logistic regression model
for matched case-control studies. The interested reader is also refereed to [16].

Consider anindex i € D and let Y; = (Y;5)ner(;) be @ multinomial random vari-
able with cell probabilities 7; = (7;;)ner(,) € I1;. Assuming that the random vec-
tors Y; are independent, the joint probability density function is an element of the
set § = {]_[l.eD ]_[heR(t’_) )" (w)ien € Qiep I"Ii}, called the ambient space. We
would like to underline that our differential geometric constructions are invariant to
the chosen parameterization, which means that S can be equivalently defined by the
canonical parameter vector and this will not change the results. In this paper, we
prefer to use the mean value parameter vector to specify our differential geometrical
description because this will make the relationship with the partial likelihood (2)
clearer. If we let

Y(xn(t); B)
ZjeR(z,) I/f(xj(l‘i); ﬂ) '

Eg(Yin) = min(B) =

and we assume that for each i € D, the observed y;, is equal to one if /4 is
equal to i and zero otherwise, it is easy to see that the partial likelihood (2) is
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formally equivalent to the likelihood function associated with the model space
M= {HieD nheR(ti){ﬂih(ﬂ)}Yir, B e B}.

From a geometric point of view, the set M can be seen as a differentiable manifold
embedded in S, which plays the role of ambient space. To complete the differential
geometric framework needed to extend the dglLARS method to the relative risk
regression models, we have to introduce the notion of tangent space and equip it
with a suitable inner product. This can be done using the approach proposed in [17].

Let £(B) =D icp ZheR(t’_) Yin log 7w; (B) be the log-likelihood function associ-
ated to the model space M and 0,,£(B) = 0¢(B)/9B,. The tangent space of M
at the model point [[;cp [Tjcrq)(in(B)}", denoted by TgM, is defined as the
linear vector space spanned by the p elements of the score vectors, formally,
TgM = span{d,£(B), ..., 0,£(B)}. In the same way, the tangent space of S at the
model point ]_[ieD ]_[heR(l.) {min(B)}", denoted by T3S, is defined as the linear vector
space spanned by the random variables 9;,¢(8) = 0£(B)/dm;,. Applying the chain
rule, we can see that any tangent vector vg = Y > _, v,3,,£(B) belonging to TgM
can be written as

p
v = vaamaﬂ) D3 {Z ma”l”(ﬁ)}amamzz S windint(),

ieD heR(i) ieD heR(i)

which shows that Tg M is a linear subvector space of 7gS.

Finally, to define the notion of angle between two given tangent vectors belonging
to TgM, say vg =Y " v,0,L(B) and wg = >"F_ w,9,£(B), we shall use the
information metric [17], in other words, the inner product between vg and wpg is
defined as

p
(vp: wp)p = Ep(vgwg) = 3 Egldnl(B)0uL(B)}vnw, =v I(B)w, (3)

m,n=1

where v = (vy,...,v,)", W= (wy,..., w,)" and I(B) is the Fisher information
matrix evaluated at 8. As observed in [11], the matrix I (8) is not exactly equal to
the Fisher information matrix of the relative risk regression model; however, it has
the same asymptotic properties for inference. Finally, to complete our differential
geometric framework, we need to introduce the notion of tangent residual vectorrg =
Y iep ZheR(i) rin(B)0;nL(B), where ri,(B) = yi, — mi,(B), which is an element of
T S and can be used to measure the difference between amodelin M and the observed
survival data.

As shown in [1], the inner product (3) and the residual vector rg can be used
to obtain a differential geometric characterization of the classical signed Rao score
test statistic for the mth regression coefficient. Formally, denoted by 7}, (8) the mth
signed Rao score test statistic, we can show that

r(B) = L, V*(B)3nut(B) = cos{pm(B)}lIrslls, @)
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where ||rg ||,2g = icn 2nieri) EsLint (Bl (B)}rin(B)rix(B) and I, (B) is the
mthdiagonal element of 7 (8). The quantity p,, (8) is a generalization of the Euclidean
notion of angle between the mth predictor and the tangent residual vector rg, and it is
anatural and invariant quantity by means of measuring the strength of the relationship
between the mth predictor and the observed data. As we shall show in the next section,
characterization (4) establishes the theoretical foundation of the proposed method.

3.2 The Extension of the DgLARS Method

As formalized in [3], dgLARS is a method for constructing a path of solutions,
indexed by a positive parameter y, where the nonzero estimates of each solution
can be defined as follows. For any dataset, there exists with probability one a finite
decreasing sequence of transition points, denoted by {y/’}, such that for any y €
(y¥); U=D) the subvector of nonzero estimates, denoted by B ,(y), is defined as
solution of the following nonlinear equations

mBay)) —siy =0, VheaA, (5)

where A = {h : ,3;1()/) # 0} is called active set and s, = sign(ry, (BA(y))). Further-
more, for any k ¢ A we have that |ry (ﬁ(y))| < y. At each transition point we have
a change in the active set.

Formally, ¥ is an inclusion transition point if exists a k ¢ A such that the
following condition is satisfied:

By =y 9. (6)

In this case, the active set is updated adding the index k, i.e. the kth predictor is
included in the current relative risk model. To gain more insight about the geometrical
foundation of the condition (6), let # be an index belonging to A. Then, using equa-
tion (5) at the inclusion transition point, we have the identity [r, (8 ,(y©))| = y©.
Combining this identity with the inclusion condition (6) we have that, at y©, there
isak ¢ A such that [re(B,(yY))| = |rn(BA(y))], for any h € A. Finally, using
characterization (4), we can conclude that condition (6) is equivalent to

cos{pr (B (y "))} = cos{on (B4 (¥ "))}, (7)

foreachh € Aand k ¢ A. Condition (7) is called generalized equiangularity condi-
tion [1] because it is a genuine generalization of the equiangularity condition pro-
posed in [5] to define the least angle regression method.

y) is an exclusion transition point if exists a 4 € A such that the following
condition is satisfied:

sign(rn (B (y))) # si. (8)
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In this case, the active set is updated removing the index % and the corresponding
predictor is removed from the relative risk regression model. The exclusion condi-
tion (8) is inherited from the exclusion condition of the lasso estimator. See Sect.5
in [5] for more details.

Given the previous definition, the path of solutions defined by the dglLARS method
can be constructed in the following way. Since we are working with a class of regres-
sion models without intercept term, the starting point of the dgLARS curve is the
zero vector this means that, at the starting point, the p predictors are ranked using the
signed Rao score test statistics evaluated at zero. Suppose that 4 = arg max,, |r,, (0)],
then A = {h}, y'") = |r/(0)| and the first part of the dgLARS curve is implicitly
defined by the nonlinear equation r; { ,éh ()} — spy = 0. The proposed method traces
the first part of the dgLLARS curve reducing y until we find the transition point y ®
corresponding to the inclusion of a new index in the active set, in other words, there
exists a predictor, say the kth, satisfying condition (6), then k is included in A and
the new part of the dglLARS curve is implicitly defined by the system with nonlinear
equations:

rBay) = sy =0,
i (Ba) — sy =0,

where ﬁA (y) = (Bh y), ,BAk (y)". The second partis computed reducing y and solv-
ing the previous system until we find the transition point y®. At this point, if con-
dition (6) occurs a new index is included in A otherwise condition (8) occurs and an
index is removed from A. In the first case, the previous system is updated adding a
new nonlinear equation while, in the second case, a nonlinear equation is removed.
The curve is traced as previously described until parameter y is equal to some fixed
value that can be zero, if the sample size is large enough, or some positive value,
if we are working in a high-dimensional setting. Table 2 reports the pseudocode of
the developed algorithm to compute the dglLARS curve for a relative risk regression
model.

Table 2 Pseudocode of the dgLLARS algorithm for a relative risk regression model

Step | Description

0. Let ;. (B) be the Rao score statistic associated with the partial likelihood.

1. Let y = max,, |r (0)| and initialize the active set A = arg max,, % (0)|
2. Repeat the following steps

3. Trace the segment of the dgLLARS curve reducing y and solving the system

BaY —sny =0, heA
Until y is equal to the next transition point

If condition (6) is met then include the new index in A

Else (condition (8) is met) remove the index from A

N0 s

Until y reaches some small positive value
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From a computational point of view, the entire dgLARS curve can be computed
using the predictor-corrector algorithm proposed in [1]; for more details about this
algorithm, the interested reader is referred to [2, 3, 14].

4 Simulation Studies: Comparison with Other Variable
Selection Methods

In this section, we compare the proposed method with three popular variable selection
methods: the coordinate descent method [19], named CoxNet; the predictor-corrector
method [13], named CoxPath; and the gradient ascent algorithm [9], named Cox-
Pen. These methods are implemented in the R packages glmnet, glmpath and
penalized, respectively. Since these methods have only been implemented for
Cox regression model, our comparison will focus on this kind of relative risk regres-
sion model. In the following of this section, dgLARS method applied to the Cox
regression model is referred to as the dgCox model.

The simulation study is based on the following setting. First, we simulated 100
datasets from a Cox regression model where the survival times ¢; (i = 1, ..., n) fol-
low exponential distributions with parameter A; = exp (,\cl.T B),and x; is sampled from
a p-variate normal distribution N(0, X); the entries of X are fixed to corr(X,,, X,,) =
o™= with p € {0.3, 0.6, 0.9}. The censorship is randomly assigned to the survival
times with probability w € {0.2, 0.4}. The number of predictors is equal to 100
and the sample size is equal to 50 and 150. The first value is used to evaluate the
behaviour of the methods in a high-dimensional setting. Finally, we set 8,, = 0.2 for
m=1,...,s,wheres € {5, 10}; the remaining parameters are equal to zero.

In order to study the global behaviour of each method, we use the following
approach. First, we fitted the models using a sequence of 50 values for the tuning
parameter; then, for each fitted model, we computed the false and true positive rate.
These quantities are used to compute the ROC curve. A method is declared globally
preferable, in the sense that it overcomes the other competitors for any value of the
tuning parameter, if its ROC curve is above the others. Table 3 reports some summary
measures: for each scenario, we compute the average area under the curve (AUC), the
average false positive rate (FPR) and the average true positive rate (TPR). In scenarios
where p = 0.3, CoxNet, CoxPath, and CoxPen exhibit a similar performance, having
overlapping curves for both levels of censoring, whereas dgCox method appears to
be consistently better with the largest AUC. A similar performance of the methods
has been also observed for the other combinations of p and 7 values. In scenarios
where the correlation among neighbouring predictors is high (o = 0.9), the dgCox
method is clearly the superior approach for all levels of censoring.
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Table 3 Comparison between the considered variable selection models. For each scenario, the
variable selection models are evaluated using the average area under the curve (AUC), the average
false positive rate (FPR) and the average true positive rate (TPR). First and second part of the table
are refereed to the simulation study with sample size equal to 50 and 150, respectively

s 5 10
P 0.3 0.6 0.9 0.3 0.6 0.9
02 |04 |02 |04 |02 |04 |02 |04 |02 |04 |02 |04
dgCOX AUC | 0.78 |0.70 {0.82 |0.76 |0.78 |0.74 |0.74 |0.71 |0.80 |0.75 |0.77 |0.77
FPR |0.19 |0.21 |0.16 |0.19 |0.11 |0.13 |0.18 |0.20 |0.14 |0.17 |0.09 |0.10
TPR |0.54 |0.48 |0.63 |0.57 |0.53 |0.51 [0.48 |0.48 |0.56 [0.52 |0.52 |0.49
CoxNet |AUC |0.72 |0.68 |0.79 |0.71 |0.73 |0.68 |0.71 |0.69 |0.75 |0.70 |0.75 |0.69
FPR |0.30 |0.27 |0.27 |0.25 |0.21 |0.21 |0.29 |0.26 |0.25 |0.23 |0.18 |0.18
TPR |0.57 |0.53 |0.63 |0.54 |0.50 |0.46 [0.45 |0.53 |0.56 |0.51 |0.47 |0.45
CoxPath | AUC |0.72 |0.68 |0.78 |0.71 |0.73 |0.68 |0.71 |0.69 |0.76 |0.70 | 0.74 |0.68
FPR |0.24 |0.22 |10.23 |0.21 |0.20 |0.19 |0.23 |0.21 |0.21 [0.20 |0.19 |0.18
TPR |0.57 |0.50 |0.65 [0.54 |0.52 |0.47 |0.54 [0.50 |0.58 |0.52 |0.49 |0.47
CoxPen | AUC |0.71 |0.69 |0.76 |0.70 |0.72 |0.66 |0.71 |0.68 |0.74 |0.69 |0.75 |0.69
FPR |0.12 |0.11 [0.09 |0.09 |0.04 |0.05 [0.10 |0.10 |0.08 |0.08 |0.04 |0.04
TPR |0.42 |0.36 [0.48 |0.41 |0.41 |0.36 |0.37 |0.34 |0.40 |0.35 [0.36 |0.32
dgCOX | AUC 090 [0.85 [0.90 [0.89 |0.83 |0.80 [0.90 [0.83 |0.90 |0.87 |0.85 |0.80
FPR |0.33 (022 |0.26 |0.27 |0.14 |0.14 |0.32 |0.22 |0.25 |0.27 |0.12 |0.13
TPR |0.79 |0.69 |0.77 [0.76 |0.65 |0.61 |0.76 |0.65 |0.75 |0.75 |0.64 |0.58
CoxNet | AUC |0.88 |0.83 |0.87 |0.84 |0.76 |0.72 |0.88 |0.81 |0.88 |0.84 |0.78 |0.71
FPR |0.32 (036 |0.34 0.31 |0.39 |0.32 |0.30 [0.36 |0.35 |0.31 |0.38 |0.30
TPR |0.88 [0.89 |0.85 [0.86 |0.81 |0.79 |0.85 |0.88 |0.81 |0.88 |0.79 |0.76
CoxPath | AUC |0.68 |0.83 |0.87 |0.85 |0.77 |0.73 |0.88 |0.81 |0.88 |0.84 |0.77 |0.72
FPR |0.30 |0.29 |0.28 |0.28 |0.26 |0.26 [0.28 |0.30 |0.27 |0.28 |0.25 |0.25
TPR |0.82 |0.75 |0.81 |0.77 |0.67 |0.62 |0.79 |0.73 |0.79 |0.77 |0.67 |0.59
CoxPen | AUC |0.87 |0.83 |0.86 |0.84 |0.76 |0.72 |0.88 |0.81 |0.88 |0.83 |0.78 |0.72
FPR |0.16 |0.17 |0.11 |0.12 [0.05 |0.05 |0.15 |0.17 |0.09 |0.12 |0.04 |0.04
TPR |0.82 |0.57 |0.62 [0.59 |0.50 |0.48 [0.56 [0.55 |0.56 [0.59 |0.47 |0.42

5 Finding Genetic Signatures in Cancer Survival

In this section, we test the predictive power of the proposed method in two recent
studies. In particular, we focus on the identification of genes involved in the regulation
of prostate cancer [18] and ovarian cancer [8]. The setup of the two studies was
similar. In the patient, cancer was detected and treated. When treatment was complete
a follow-up started. In all cases, the expression of several genes was measured in the
affected tissue together with the survival times of the patients, which may be censored
if the patients were alive when they left the study. Although other socio-economical
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Table 4 Description of the studied datasets and summary of the main results

Dataset Sample size n. uncensored | p n. selected p-value
genes

Prostate 61 24 162 24 0.033

Ovarian 103 57 306 43 0.004

variables, such as age, sex, and so on, are available, our analysis only focuses on the
impact of the gene expression levels on the patients’ survival.

Table 4 contains a brief description of the two datasets used in this section. In each
case, the number of predictors is larger than the number of patients. In genomics, it
is common to assume that just a moderate number of genes affect the phenotype of
interest. To identify such genes in this survival context, we estimate a Cox regression
model using the dgLLARS method. We randomly select a training sample that contains
the 60% of the patients and we save the remaining data to test the models. We
calculate the paths of solutions in the two cases and we select the optimal number
of components by means of the GIC criterion. For the prostate and ovarian studies,
we find gene profiles consisting of, respectively, 24 and 43 genes.

In order to illustrate the prediction performance of the dgLARS method, we
classify the test patients into a low-risk group and a high-risk group by splitting the test
sample into two subsets of equal size according to the estimated individual predicted
excess risk. To test the group separation, we use a non-parametric modification of
the Gehan—Wilcoxon test [15]. For the two studies, the difference between the low-
and high-risk groups is significant at the traditional 0.05 significance level.

6 Conclusions

In this paper, we have proposed an extension of the differential geometric least angle
regression method to relative risk regression models using the relationship existing
between the partial likelihood function and a specific generalized linear model. The
advantage of this approach is that the estimates are invariant to arbitrary changes
in the measurement scales of the predictors. Unlike SCAD or £; sparse regression
methods, no prior rescaling of the predictors is needed. The proposed method can be
used for a large class of survival models, the so-called relative risk models. We have
code for the Cox proportional hazards model and the excess relative risk model.
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A Kernel Goodness-of-fit Test for )
Maximum Likelihood Density Estimates st
of Normal Mixtures

Dimitrios Bagkavos and Prakash N. Patil

Abstract This article contributes a methodological advance so as to help practition-
ers decide in selecting between parametric and nonparametric estimates for mixtures
of normal distributions. In order to facilitate the decision, a goodness-of-fit test based
on the integrated square error difference between the classical kernel density and the
maximum likelihood estimates is introduced. Its asymptotic distribution under the
null is quantified analytically and a hypothesis test is then developed so as to help
practitioners choose between the two estimation options. The article concludes with
an example which exhibits the operational characteristics of the procedure.

Keywords Goodness-of-fit -+ Normal mixtures + Kernel smoothing

1 Introduction

The choice between parametric and nonparametric density estimates is a topic fre-
quently encountered by practitioners. The parametric (maximum likelihood, ML)
approach is a natural first choice under strong evidence about the underlying den-
sity. However, estimation of normal mixture densities with unknown number of
mixture components can become very complicated. Specifically, misidentification
of the number of components greatly impairs the performance of the ML estimate
and acts incrementally to the usual convergence issues of this technique, e.g., [11].
A robust nonparametric alternative, immune to the above problems is the classical
kernel density estimate (kde).

The purpose of this work is to investigate under which circumstances one would
prefer to employ the ML or the kde. A goodness-of-fit test is introduced based on the
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Integrated Squared Error (ISE) which measures the distance between the true curve
and the proposed parametric model. Section 2 introduces the necessary notation
and formulates the goodness-of-fit test. Its asymptotic distribution is discussed in
Sect. 3 together with the associated criteria for acceptance or rejection of the null.
An example is provided in Sect. 4. All proofs are deferred to the last Section.

2 Setup and Notation

Let ¢ denote the standard normal density and ¢, (x) = o~ '@ (xo ") its scaled ver-
sion. Let w = (uy, ..., ux) where for each u; € p, —00 < u; < +00 and ¢ =
(o1, ..., 01) where each 0; > 0. Let alsow = (wy, wa, ..., wy) be a vector of posi-
tive parameters summing to one. The finite positive integer k denotes the number of
mixing components. Then,

k
FO s 0y w) =Y withs, (x — ) (1)

=1

is a normal mixture density with location parameter p, scale parameter ¢, and mixing
parameter w. The number of mixing components k is estimated prior and separately
to estimation of (., o, w). Thus it is considered as a fixed constant in the process of
ML estimation. Popular estimation methods for k include clustering as in [14] or by
multimodality hypothesis testing as in [6] among many others. Regarding u, o, w,
these are considered to belong to the parameter space €2 defined by

k
Q=ip.o.w:> wi=1w>0,€R o0 >0fori=1..k

i=1

The analysis herein assumes that all estimates are based on a random sample
X1, Xs, ..., X, fromf (x; u, 0, w). The parametric MLE is denoted by

k
FG oy 6,0) = Vo, (x — ). @)

=1

where (ft, 6, w) denote the estimates of (¢, o, w) resulting by maximization of

n k
Ly o,w) =) log 1 > wido (Xi — ) (3)
i=1 j=1

subject to (i, o, w) € Q2. Direct estimation of the density parameters by maximum
likelihood is frequently problematic as (3) is not bounded on the parameter space,
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see [3]. In spite of this, statistical theory guarantees that one local maximizer of the
likelihood exists at least for small number of mixtures, e.g., [8] for k = 2. More-
over this maximizer is strongly consistent and asymptotically efficient. Several local
maximizers can exist for a given sample, and the other major maximum likelihood
difficulty is in determining when the correct one has been found. Obviously all these
issues, i.e., correct estimation of k, existence and identification of an optimal solution
for (3), result in the ML estimation process to perform frequently poorly in practice.
A natural alternative is the classical kernel estimate of the underlying density which
is given by

Fechy =@y K {(xe—Xph'}, )

i=1

where A called bandwidth controls the amount of smoothing applied to the estimate
and K, called kernel, is a real function integrating to 1. Attention here is restricted
to second-order kernels as from [10], and it is known that using higher order kernels
bears little improvement for moderate sample sizes. In estimating f (x; g, o, w) by
f(x; h),especially when K = ¢, the MISE of the estimate can be quantified explicitly.
The purpose of this research is to develop a goodness-of-fit test for

Ho:f(x) =f(x; my0,w) vs Hy : f(X) #f (x5 oy 0, ).

Its construction is based on the integrated square error of f (x; it, 6, w) given by
s~ A2
I = / (F &) — £ i &, )

where {u, o, w} = {jL, 6, w} under Hy. Estimation of f (x) by a kernel estimate and

f(x; Ly 0,w) by f (x; fLy 6, w) yields the estimate, 1, of I, defined by
. N L\
In=/(f(x; h) —f(x; M,G,W)) dx
z/fz(x; ﬁ,6,»%)dx—2ff(x; i & W)f (x; h)dx+ff2<x; hydx.  (5)

For K = ¢ by Corollary 5.2 in [1],

k

ff o iy 6, w)dx—ZZw;wras 24 1 (i = fir). (6)

2
I=1r=1 )2

n 2 n
/f2<x;h>dx=f[<nh>12¢<x—x,->} dxz(nh>*222¢ﬁ<xi—xj>. (7
i=1

i=1j=I

Similarly,
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n  k
/ Fa iy 6, mf (i hyde= @) Y0 06 K- ®)

i=1 I=1
Using (6), (7), and (8) back to (5) gives

k k

n k
b= 0% Wit o st G = o) =207 Y 0 6y (X — i)

=1 r=1 i=1 I=1

+ 7Y Y pXi— X)), (9)

i=1 j=I

which is an equivalent expression for 1, that does not require integration.

3 Distribution of i,, Under the Null

This section establishes the null distribution of the test statistic /,. First, the following
assumptions are introduced,

1. h — 0and nh> — 400 asn — +oo.
2. The density f (x; w, o, w) and its parametric estimate f (x; i, &, W) are bounded,
and their first two derivatives exist and are bounded and uniformly continuous

on the real line.
3. Lets be any of the estimated vectors g, o, w and let § denote its estimate. Then,
there exists a s* such that s — s* almost surely and

s—s"=n""AG") ) _Dlogf (X;:5*) + 0,(n""/?)

i=1

where D logf (X;; s*) is a vector of the first derivatives of logf (X;; s*) with
respect to s; and evaluated at 57 while
x:x*) ’

Theorem 1 Under assumptions 1-3 and under the null hypothesis,

3% logf (Xi; s*)
dsj0s;

A(s*) = E(

(0F —02):Z if nh® — oo
d(n) (in - c(n)) = {20z if nk®>—0 (10

1
[t —odni v 227302 7 i >
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with0 < A < 400,

11 & @ 4
c(n) = n_hm + ) {;;Wlwr%qqa}); (1 — pr) ¢ +o(h")
2
of = /.{f”(x)}zf(x) dx — {/f//(x)f(x) dx} = Var{f" (x)}

k k
1
2
0y = E E wiw,¢ (g — r)
NG I=1 r=1 "oitap)? "

03 = 0ty 0, W) = [/ D'fo(x, wy a, w)f" (x) dx} A, o, w)™!
X [/ Dfo(x, M, 0, w)f”(x) dx]

and
nh'/? ifnh® — 0
d(n) = yn'?h=? ifnh® — 400
n°/10 ifnh® — A #0.

Thus, in testing Hj against H; with significance level o we have
1,/y/ Var(l,) — N(0, 1),
where
012 — 0320 if nh’ — oo
Var(l,) = { 220,)? if nh®—0
A2(02 — o2)A5 + 247502 if nhd — A.
Consequently, the test suggests rejection of Hy when

A ~ 1712

I {Var(ln)} > Za)
where z,, is the standard normal quantile at level «. Of course rejection of Hy advises
for using a kernel estimate instead of (2) for estimation of the underlying density.
4 An Example

As an illustrative example, the Galaxies data of [14] are used. The data represent
velocities in km/sec of 82 galaxies from 6 well-separated conic sections of an unfilled
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survey of the Corona Borealis region. Multimodality in such surveys is evidence for
voids and superclusters in the far universe.

The hypothesis that k = 6 is also verified by the multimodality test of [6] and thus
it is adopted in the present example as well. Figure 1 contains the ML (solid line) and
kernel (dashed red line) estimates after scaling the data by 1000. The null hypothesis
of goodness-of-fit of the ML estimate was tested at 5% significance level, using as
variance the third component of the variance expression. The test procedure gives

N ~ 1-1/2
i {Var(ln)} —1.98 > 7005 = 1.64

and therefore suggests rejection of the null. This is also supported by Fig. 1 where itis
seen that two distinctive patterns around x = 18 and x = 24 (and one less distinctive at
around x = 28) are masked by the ML estimate. On the contrary, the fixed bandwidth
estimate f (x; k) implemented with the Sheather—Jones bandwidth can detect the
change in the pattern of the density. It is worth noting that the variable bandwidth
estimate f (x) has also been tested with the specific data set and found to perform
very similarly to f (x; h).

5 Proof of Theorem 1

Write

0.10 0.15

density

0.05
1

0.00
1

AN 7 N~
‘ i Il 1T N - ‘
20

0 10

velocity of galaxy (1000km/s)

Fig.1 Variable bandwidth and ML estimates for the Galaxies data



A Kernel Goodness-of-fit Test for Maximum Likelihood ... 73
o N « 2
1n=/{f(x; o) —F ) ds
N ~ 2
=/{f(x; wyo,w) —f(x; o, w) +f(x; wy o, w) —f(x; h)} dx
A 2
= [ ffosn s mom] o
—2f [Fem = f ooy oom o &%) = 05 0w | de

A 2
+/[f(xv ﬁ"a""\") _f(X; [L,U,W)} dx
=L —2L + Is. a1
Now, under Hy,
A A 2
13=/{f(x; myo,w) —f(x; /L,a,w)} dx
ko 2
=/{Z ’ [(x—m)z—(x—;l,-)z]<1+op(n—')>} dx = 0,(n” "), (12)
i=1

~ 207

since under the null the parameters of the normal converge to the true values. Also,

h= / [Fem = f o myoom {7 o &%) = £ 05 0y w) | de
= [ {Fesm s o] (B 6,8 - £ s oow | dxt o7
=1 +o,(nh). (13)
In (13), we used that under the null
Sup |f (s iy &, W) — B (x: i, &, )| = 0p(n 7).
Thus, using (12) and (13) back to (11) yields the asymptotically equivalent expression
for I,

=1 -2, +0,(n7"). (14)

Now,
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A N N 2
h= [ {esm - B m + B - o ow)

n n h4
= ()2 YY) HXi, X)) + i (KR

i=1 j=I

2 [ [fosh - B} (B —fos o] ar - 15)

after using the squared bias expression of f from [10], and
H(X;, X;) =
X — Xl‘ X — Xi X — )(J X — )(]
K —EK K —EK dx.
h h h h

Using the fact that K is a symmetric kernel and separating out the diagonal terms in
the double sum in (15) we can write

()Y N THXL X)) = () 2Y Y HX;, X)) + () ”'R(K).  (16)

i=1 j=1 I<i<j<n
By (15) and (16),
h* 1 oLy
I = Z BRI = —R(K) = Iy = () = () > ) ) H(X:, X)) (17)

i=1 j=1

—2/ {Fm —Bf s m | {B em —rom, o] ax ()
Combining (14) and (18) and rearranging yields

Li—cy=@m72Y Y HX.X)  (19)

i<j
w2 [ [{fam - B s} - [Fosine, i —somom]]x o
[Bf m —r@msom)ar @n

=2h) Y > H(X:. X)) + 2koh*n ! Z Z, (22)

i<j i=1

where Z; is a term (see [5]) such that

! Zz,» = 0,(*n~?).

i=1
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Moreover, under the null and when nh’ — oo, this term determines the limiting
distribution of the right-hand side of (22). Now, under the null, the fact that

ﬁh—z/ [f(x; h) — Ef (x; h)] {]Ef(x; h) —f @ », 0, W)] dx = k012

is a standard result. Taking into account that d(n) = n'/?4=2 and by applying the
Lyapunov Central Limit Theorem yields

n
n'/? ZZ,- — N0, 0 — 03

i=1

which proves the first leg of (10). For proving the second leg, we have that under the
null and for nk® — 0, d(n) = nv/h. In this case

Wn! Zz,- = 0,((nh)"?) = 0,(1).

i=1

Hence the limit distribution of d (n) (I, — c(n)) has the same distribution as the first
term on the right-hand side of (22). By a direct application of Theorem 1 of [7]
and taking into account also the proof of Theorem 3.2 in [5], it is straightforward to
deduce that

nVh ()Y > THX;. X)) { — V2002

1<i<j<n

, and thus establish the middle part on the right-hand side of (10). For the remaining
part of (10), note that when nh> — A, d(n) = n®/'° and hence no term on the right-
hand side of (22) dominates the other since both are of the same order. Therefore, in
this case, the limiting distribution of d (n) (I, — c(n)) is given by the sum of the limit
distribution of the two terms since, both terms are uncorrelated to each other.
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Robust Estimation of Sparse Signal with )
Unknown Sparsity Cluster Value T
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Abstract In the signal+noise model, we assume that the signal has a more gen-
eral sparsity structure in the sense that the majority of signal coordinates are equal
to some value which is assumed to be unknown, contrary to the classical sparsity
context where one knows the sparsity cluster value (typically, zero by default). We
apply an empirical Bayes approach (linked to the penalization method) for inference
on the signal, possibly sparse in this more general sense. The resulting method is
robust in that we do not need to know the sparsity cluster value; in fact, the method
extracts as much generalized sparsity as there is in the underlying signal. However,
as compared to the case of known sparsity cluster value, the proposed robust method
cannot be reduced to thresholding procedure anymore. We propose two new proce-
dures: the empirical Bayes model averaging (EBMA) and empirical Bayes model
selection (EBMS) procedures, respectively. The former is procedure realized by an
MCMC algorithm based on the partial (mixed) normal-normal conjugacy build in
our modeling stage, and the latter is based on a new optimization algorithm of O(n?)-
complexity. We perform simulations to demonstrate how the proposed procedures
work and accommodate possible systematic error in the sparsity cluster value.
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1 Introduction

The principle of parsimony, known as Occam’s razor, is arguably one of the most
fundamental ideas that pervade science, and sparsity has become a popular paradigm
in statistical analyses, as a particular manifestation of the parsimony principle in the
context of modern statistics. Much of this popularity has been driven by the success
of frequentist (and Bayesian) methods utilizing the underlying sparsity structure of
the unknown parameter of interest.

In general, a sparse signal is a high-dimensional parameter which allows a parsi-
monious representation. In signal processing, this is typically expressed by assuming
that it contains only a small number of non-zero elements compared to its dimension.
The value zero of the sparsity cluster has the interpretation of being “insignificant”
for the corresponding coordinates. Any other value of the sparsity cluster can be
handled as well in the analysis (in fact, we can always reduce to zero by subtracting
that value) as long as this value is known a priori to the observer.

In the signal+noise setting, the best-studied problem is that of signal estimation,
and a variety of estimation methods and results are available in the literature: [1, 3—
8]. Thresholding strategies are particularly appealing, mainly because thresholding
automatically generates sparsity. In addition, the corresponding procedures generally
exhibit fast convergence properties. Moreover, thresholding processes the signal in a
coordinate-wise fashion, resulting in low complexity algorithms (typically of order
n), which are easy to implement in practice.

Many methods have Bayesian connections. For example, even some seemingly
non-Bayesian estimators can be obtained as certain quantities (like posterior mode
for penalized estimators) of the posterior distributions resulting from imposing some
specific priors on the parameter; cf. [1, 2, 4, 6, 8, 11]. A common Bayesian way
to model sparsity structure is by the two-group priors. Such a prior puts positive
mass on vector # with some exact zero coordinates (zero group) and the remaining
coordinates (signal group) are drawn from a chosen distribution. As pointed out by [6]
(also by [8]), the prior distributions of non-zero coordinates should not have too light
tails; otherwise, one gets sub-optimal convergence rates (or even inconsistency). The
important Gaussian case is, for example, excluded, [6, 8] use therefore heavy-tailed
priors. On the other hand, in [4], it was shown that normal priors are still usable and
lead to strong local results (even for non-iid, non-normal models) if combined with
the empirical Bayes approach.

However, all these above-mentioned approaches are based on the essential
assumption that the sparsity cluster value is known to the observer (which is set
to zero by default). In this note, we relax these modeling assumptions by allowing
the sparsity cluster value to be an unknown constant, obtaining a robust formulation
of the estimation problem. This situation can occur when, for example, there is a
systematic error in the observations and sparsity coordinates get shifted by unknown
value (bias of systematic error), leading to what we call sparsity cluster with unknown
cluster value. 1t is clear that thresholding procedures are not going to be applicable
in this situation, so we need to deal with methodological and computational issues.
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We address the first aspect by applying an empirical Bayes approach, which delivers
two robust procedures: the empirical Bayes model averaging (EBMA) and empiri-
cal Bayes model selection (EBMS) procedures. As to the computational issue, the
former procedure is realized by an MCMC algorithm based on the partial (mixed)
normal-normal conjugacy in the model, and the latter is based on a new optimization
algorithm of O(n?)-complexity (cf. O(n)-complexity for typical thresholding proce-
dures). We perform simulations to demonstrate how the proposed procedures work
and accommodate possible systematic error in the sparsity cluster value.

2 Setting and Notation

Suppose we observe X = X ©n — Xy, ..., X,):
Xi=0;+0&, ie[nl={1,...,n}, (1)

where 0 = (04, ..., 6,) € R"is an unknown high-dimensional parameter of interest,
& = N (0, 1), 0 > 0 1is the known noise intensity. The goal is to make inference on
the parameter 6 based on the data X . We exploit the empirical Bayes approach and
make a connection with the penalization method.

Denote the probability measure of X from the model (1) by Py = P, and
by Ey the corresponding expectation. For notational simplicity, we often skip the
dependence on ¢ and n. Denote by 1z = 1{E} the indicator function of the event
E, and by |S| the cardinality of the set S. Let [n] = {1, ..., n} and [n]y = {0} U [n]
forne N={1,2,...}.ForI C[n],define I ={ie[n]:i¢l}.LetI=1,={I:
I C [n]} be the family of all subsets of [n] including the empty set. Through-
out, we assume the conventions that a; = ﬁ Yot i e @i =0, [licgai=1,

Zz a;i = Zasisb a, Y ai = Zie[n] a,y a1 =y ;. arforanya;, a;,a,b € Rand
0log(c/0) = 0 (hence (c/O)0 = 1) forany ¢ > 0. LetX[ZI] > 9[22] > > X[%Z] be the
ordered values of X 12 . ,an, introduce also X[%)] = 0.

Throughout, ¢(x, i, o2) will be the density of i + oZ ~ N (i, %) at point x,
where Z ~ N (0, 1). By convention, N (1, 0) = §,, denotes a Dirac measure at point

w. Finally, let ||x|| denote the usual norm of x € R”".

3 Empirical Bayes Approach

First, we introduce a family of normal priors (similar to priors from [4]). Next,
by applying the empirical Bayes approach to the normal likelihood, we derive an
empirical Bayes posterior for the case of unknown sparsity cluster value, and use
this posterior in further inference on 6.
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3.1 Multivariate Normal Prior

To model a possible sparsity cluster of unknown cluster value in the parameter 6,
the coordinates of 6 can be split into two distinct groups of coordinates of 8: for
some [ € I, 0y = (6;,i €I) and 6;c = (6;,i € [°), so that 6 = (6}, ;). The group
0;c = (6;,1 ¢ I) consists of coordinates that are all assumed to be (almost) equal to
some cluster value ., and 6y = (6;, i € I) is the group of coordinates significantly
different from .. To model sparsity with unknown sparsity cluster value, we propose
a prior on 6 given [ as follows:

71 = QN (wiD). 7 (D))

where (1) = wil{i € I} + . 1{i ¢ 1}, t2(1) = oK, () 1{i € I}, K,(I) = % —
1)1{I # &}. The indicators in the above prior ensure the sparsity of the group I¢.
The rather specific choice of K,(I) is made for the sake of concise expressions in
later calculations, many other choices are actually possible. By using the normal
likelihood £(6, X) = Qno?)~"/? exp{—|IIX — 9||2/202}, the corresponding poste-
rior distribution for 6 is readily obtained:

B 2 (DX; + o) ()0
m(91X) —®iN( 2() +o2 ri2(1)+52>' @

Next, introduce the prior A on I. For s > 0, draw a random set from I with
probabilities

= conexp | =l log(G)} = c.cn() ™, Te1,

where c,, , is the normalizing constant.

Remark 1 A logical choice for A; seems to be the uniform prior on I: )_q = ("I")_l.
However, this prior is not monotone with respect to the cardinality |/|, whereas we
would like to penalize large cardinalities. As (%)k < (Z) < (%)k fork € [n]y, we take
the above defined prior A; as monotone (in |/|) proxy for A;, with an extra parameter

» to control the amount of penalization; »c = 1 corresponds to the prior A;.

Combining the conditional prior 7r; with the prior A; gives the mixture prior on 6:
7 =Y ; M. This leads to the marginal distribution of X: Py = ), A;Px ;, with
Py =@, N(,ui(l), o? + riz(l)), and the posterior of 6 is

T@X) =Y m@X)wdX), 3)
1
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where 77 (¥ |X) is defined by (2) and the posterior 7 (/|X) for I is

MPxs M [lie(Xi, wiD), o + 77 (D)

S T SRV | R

“4)

3.2 Empirical Bayes Posterior

The parameters w;(I) are yet to be chosen in the prior. We choose wu;(I) by
using empirical Bayes approach. The marginal likelihood Px is readily maxi-
mized with respect to u1;(I): fi;(I) = X; for i € I and /1;(I) = X;- for i € I, where
X = ﬁ Y icre Xi. We substitute oo = (u(I), I € I) instead of u = (u(l),I € I)
in the expression (3) for 7 (¥|X), obtaining the empirical Bayes posterior (called
empirical Bayes model averaging (EBMA) posterior)

F@IX) =Y F@X)FIX),
1

where the empirical Bayes conditional posterior (recall that N (i, 0) = §,,)

m@1X) = [[N X 202) @ [] 8%
iel iel®
is obtained from (2) with w;(I) = ;(I) = X;1{i € I} +)_(1c]l{i € I}, and

MPxr o Mo, D), o+ A1)
ZJGIA'JPX,J Z]el)“] H,-w(Xi, [)“i(‘])a 02+T,'2(J))

#U1X) =

is the empirical Bayes posterior for/ € I,obtained from (4) with u;(I) = f;(I). Let E
and E; be the expectations with respect to the measures 77 (¢#|X ) and 77; (¢|X ) respec-
tively. Then E/(01X) = a() = X;1{i € I} + X, 1{i € I}, i € [n]). Introduce the
EBMA mean estimator

6% = 62, X) =B@1X) = ) _E@OX)AUIX) =) ADAUIX).  (5)

lel lel

Consider an alternative (“more Bayesian®) empirical Bayes posterior. First, derive

an empirical Bayes variable selector by maximizing 7 (/|X) over I € I (any max-
imizer will do) as follows:

n ¥ )2
I =argmax 7 (11X) = argmax {—Z (X’z% — W og(Kn (1) + 1) +logk1}

_a_rgmln{Z(X — X102 + @+ Do |I|10g(eT’i)} (6)
iel€
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Now plugging in 1 into 7;(9]X) yields another empirical Bayes posterior (called
empirical Bayes model selection (EBMS) posterior) and the corresponding EBMS
mean estimator for 0: with i;(I) = (X;1{i € I} + X;c1{i € I}, i € [n]),

#(@1X) = 1;(91X), % =EW®IX) = o) = (u),i € [n)), (7)

where E denotes the expectation with respect to the measure 7 (#]X).

4 Known Sparsity Cluster Value: Thresholding Procedures

In the traditional sparsity setting, the sparsity cluster value is assumed to be known
and set to be zero without loss of generality. This case is well studied, various esti-
mators are proposed and studied in the literature, see [1, 48], and further references
therein. Many estimation procedures originate as penalized estimators minimizing
the criterion crit(X , #) = ||X — 6||?> + P(), for some appropriately chosen penalties
P(6), or as (empirical) Bayes estimators according to appropriately chosen priors.
An extensive discussion on this can be found in [1].

Notice that whenever the penalty crit(X, 6) is of an £y-type, i.e., P(8) = p(||f1l0)
for some function p and |6 = >_, 1{6; # 0}, the resulting penalized estimator is
a thresholding estimator é,- = X;1 { |X;| > f}, where { = |X[1?]| and k is the minimizer
of Y01 X +pk), k € [n] (recall that oo = X5, > X7, > ... = X,)). Thresh-
olding strategies are particularly appealing because thresholding automatically gen-
erates sparsity. Besides, thresholding procedures generally exhibit fast convergence
properties and process the signal in a coordinate-wise way, which results in low com-
plexity algorithms. There is a vast literature on this topic, see, e.g., [10] and further
references therein.

Remark 2 The Bayesian approach can be connected to the penalized estimation by
relating the penalties to the corresponding priors on 8. Penalties of £y-type can be
linked to Bayesian procedures involving priors on the number of non-zero entries of
0, see [1].

Within the framework of the present paper, the case of the known sparsity cluster
value corresponds to taking u. = 0 in the prior 7r;. This leads to f1;(I) = 0 fori € I¢
in all the posterior quantities of Sect. 3.2, and the criterion (6) reduces to

I= argmin[ZXiz—l—Kolellog (%)}, K=2x+1,
iel®

lel

which is reminiscent of the penalization procedure from [5] (cf. also [1]), with the
penalty p(k) = Ko?k log(%'). Indeed, it can be easily seen that
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v

I = {i enl:|X|>1f= |X[k]|} k= argkrg[g]l { Z Xm +p(k)}, ®)
i=k+1

and the EBMS procedure yields the corresponding thresholding estimator GHT —
01T (K, X) = (61, i € [n]), with

o = X;1{i € I} = X;1{|Xi| > X[}, i€ [n]. ©)

The penalty p(k) corresponds to the complete variable selection case in [5]. Recall
our rather specific choice of parameter K, (1) in the prior mr; resulting in this penalty.
As we mentioned, other choices of K,,(I) are also possible, which would lead to
other penalties. But the main term o2k log(%') would always be present because of
the choice of prior A;. The optimality of this kind of penalties (and priors) is discussed
in [1, 4, 5]. In [1] it is concluded that essentially only such penalties lead to adaptive
penalized estimators over certain sparsity scales.

5 EBMA and EBMS Procedures for the Case of Unknown
Sparsity Cluster Value

Clearly, the thresholding approach relies very much on the fact that we know the
sparsity cluster value, zero by default. Assume now that there is a large (sparsity)
cluster of (almost) equal coordinates of 6, but its value is not known. Alternatively,
one can think of the so-called robust inference in the sense that there may be a
systematic error in the “known” sparsity cluster value zero and the true sparsity
cluster value may actually deviate from zero. Using a thresholding procedure in such
a situation would lead to a big cumulative error, because the sparsity cluster contains
most of the coordinates of the high-dimensional signal 6.

Recalling the empirical Bayes approach described in Sect. 3.2 for the case of
unknown sparsity cluster value, we immediately see that, unlike (8), the EBMS cri-
terion (6) cannot be reduced to a thresholding procedure. However, the corresponding
optimization problem is still feasible from a computational point of view. Indeed,
the criterion (6) reduces to

1= argmm{Z(X — X)) + Ko? |I|10g(91—”)} {lE [n] : X; 7éX[1+z]’ te [12]},

ielc

where K = 2sc 41, X1 > Xppj > ... > X)) are the ordered X, ..., X,
Jj+k k+j
Gp= ammin |3 0 - %0 + Ko - Rloe () |, K= 3 Xin

kyjelnlo, k+j=n * i1y ,H_J
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In this case, the EBMS method yields the robust (the sparsity cluster value is
unknown) version of EBMS estimator §°8 = 0¥8(K, X) = (6F%, i € [n]) with

OFF = X, 1(X; # X 1 € D + X 1{X = X, 5, 1 € [k}, i€nl.  (10)
It is not so difficult to see that this procedure has the computational complexity of
order n?, which is of course worse than the procedure (8)—(9), but still computation-
ally feasible. This is demonstrated in the next section.

An alternative is to use the EBMA method. All posterior quantities involved in
the construction of the EBMA estimator 6% given by (5) are explicit, and the major
issue is that the number of terms in (5) is exponential in the dimension so that direct
computation is not practically feasible for high dimensions. Therefore, in this case,
we have to resort to an MCMC procedure.

In the MCMC procedure, each element / in the support of 7 (/|X) is encoded
(one-to-one) by a binary state vector s = (sy, ..., s,) € {0, 1}". The correspondence
is that s; = 1 if, and only if, i € I and s; = 0 if, and only if, i ¢ I. The proposal s’
flips simply one bit chosen uniformly at random from the current state s. This means
that we first select j uniformly at random on {1, ..., n}, and then set s; = 1 — s; and
s, = s;, i # j. The chain moves from s to s’ with probability « = min {1, 7({i €
[n] :s; = 1}1X) /7 ({i € [n] : s; = 1}]X)}. The EBMA estimator 6% from (5) is the
expectation of (i(I) with respect to the posterior 7 (I|X). If Iy, ..., Iy is a sample
drawn from 7 (/|X), or indeed a sample produced by the MCMC procedure from
above, then we approximate the EBMA estimator as

M
- - 1
OFB = 9FB (5, X) ~ — adl). 11
(e, X) M;:lu() (1D

6 Comparative Simulation Study

In this section, we present a comparative simulation study for the cases of known
and unknown (or shifted) sparsity cluster value.

We generate observations according to the model (1) with &; Y N@O,1),0 =1,
n = 500, where we use signals 6 = (01, ..., 6,) of theform6 = (A, ..., A,, 9, ...,
8). The first p coordinates of 0 are “significant,” the remaining n — p entries form the
sparsity cluster. We consider different “sparsity levels” p € {25, 50, 100} and “signal

strengths™: A; x U0, 2] (signal is undetectable, i.e., comparable to the noise); A; x
U[2, 4] (signal is barely distinct from the noise); A; = U[4, 6] (signal is well distinct
from the noise). Next, we consider two situation: a) known sparsity cluster value
8 = 0; b) unknown sparsity cluster value which we set § = —0.5 in the simulations.

The following estimators are considered: the projection oracle (PO) estima-
tor 70 = X;1{0; # 8} + 81{6; = 8}, i € [n]; the empirical Bayes mean (EBMean)
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GEBMean ¢onsidered in [8] with a standard Laplace prior and realized in the R-package
EbayesThresh (see [9]); the classical universal hard-thresholding (UHT) (see
[71) 61T = X,1{|X;| > /2Togn}, i € [n]; the HT estimator 677 defined by (9), the
EBMA estimator 6% given by (5), and, finally, the EBMS estimator 628 defined by
(10). Clearly, the PO procedure is not really an estimator as it uses oracle knowledge
of the active set 1,(0) = {i € [n] : 6; # 8} and the sparsity cluster value §. Clearly,
the pseudo-estimator PO cannot be outperformed by any practical estimation proce-
dure. The performance of the pseudo-estimator PO is provided only for reference as
a benchmark of the ideal situation.

The estimators EBMean, UHT, and HT are all geared towards the known (zero)
sparsity cluster value, whereas our EBMA and EBMS estimators 628 and §£2 can also
accommodate any unknown sparsity cluster value. To create more competition for our
procedures 68 and 78 in the case of unknown sparsity cluster value, we also provide
adjusted versmns aEBMean aUHT and aHT of the estimators § = 6 (X), constructed
as follows: 9 X) = 9(X X1,) + X1,, where 1, is an n-dimensional vector of
ones, X_1 Z X; is the empirical mean of the sample X, and 6 is the corresponding

i=1
estimator (respectively, EBMean, UHT, and HT). In the case of unknown non-zero

sparsity cluster value, the adjusted versions are clearly biased and only competitive
for relatively small p and A;’s. The adjusted versions of the estimators are expected
to perform worse (and they do so, as Table 2 shows) for larger values of p and A;’s.

Each of our estimators 677 (K, X), 68(K, X) and 68 (5, X) depends on one
tuning parameter, K or s. It is possible to choose the parameters K and 3¢ from
the data via a cross-validation procedure, but this significantly increases the running
time for computing %8 (K, X ), and especially 68 (5¢, X ). However, in the simulation
results for several various cases, the optimal K did not vary much and appeared to lie
mostly in the range [1.8, 3.2]. Moreover, the results were good for many choices of
K, the performance deteriorates significantly only when K gets close to 1 or becomes
too big. This actually agrees with the conclusions (about the penalty constants) from
[5]. In the simulations for the EBMS estimators 657 (K, X ) and 8B (K , X ), the choice
K = 2.5 appeared to be fairly good for all considered cases. When computing the
EBMA estimator %8 (32, X), we took sc = 1 which is a natural choice in the light of
Remark 1. The EBMA procedure seemed to be even less sensitive to the choice of
parameter sz, again many choices are possible as long as s is not too small (should
be larger than 0.7) and not too big. We let the chain burn in for 10000 iterations
and then collected 25000 states from the posterior. The final sample of states used to
approximate the EBMA estimator was obtained by keeping every 25-th state resulting
in M = 1000 in (11). This thinning was done to reduce the correlation between the
samples from the MCMC procedure.

Tables 1 and 2 contain estimates of the mean square errors MSE (é ,0) = Ey ||é —
6> for the above-mentioned estimators 6 and choices of the signal 6. Tables 1
and 2 concern the cases of the known (§ = 0) and unknown (6 = —0.5) sparsity
cluster value, respectively. The MSE (0, 6) is evaluated by the average squared error
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Table 1 Estimated MSE’s for the case (a) of the known sparsity cluster value § = 0

p 25 50 100

A; U[0,2] |U[2,4] |U[46] |U[0,2] |U[2,4] |U[4,6] |U[0,2] |U[24] |U[4,6]
PO 25 25 25 50 50 50 99 99 99
EBMean | 34 96 91 64 164 172 111 273 319
UHT 39 157 68 75 316 137 141 626 270
HT 37 127 62 72 194 123 138 300 233
EBMA |36 103 79 66 178 162 114 291 254
EBMS |42 132 64 73 204 124 121 313 233

Table 2 Estimated MSE’s for the case (b) of an unknown sparsity cluster value § = —0.5

p 25 50 100

A; U[0,2] |U[2/4] |U[4,6] |U[0,2] |U[2,4] |U[4,6] |U[0,2] |U[2,4] |U[4.,6]
PO 25 25 25 50 50 50 99 99 99
EBMean 136 178 176 154 229 240 182 312 348
aEBMean | 57 108 118 100 201 254 162 332 441
UHT 162 280 191 191 432 254 245 730 374
aUHT 69 174 96 129 380 285 224 811 916
HT 157 256 206 186 327 268 240 414 360
aHT 68 128 104 127 253 300 222 516 571
EBMA 66 97 79 122 176 161 201 281 251
EBMS 69 107 59 128 170 120 224 275 231

m(é, 0) = % Zi:l ||ék — 0] of I estimates o', ...,0! computed from [ = 100
data vectors simulated independently from the model (1).

It is not surprising that the shrinkage estimators EBMean and EBMA perform
well for weak signals (cases A; ~ U[0, 2] and A; ~ UJ[2, 4]) in situation a) of known
(zero) sparsity cluster value, as one can see from Table 1. Table 2 is for situation b)
and is more interesting, it shows a clear advantage of the EBMA and EBMS methods
which take into account the unknown sparsity cluster value. Only for the cases with
undetectable signal (case A; ~ U[O0, 2]), the adjusted shrinkage estimator aEBMean
is still competitive, as this case is very favorable for any shrinkage procedure and a
relatively small absolute shift value |§].
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Test for Sign Effect in Intertemporal )
Choice Experiments: A Nonparametric e
Solution

Stefano Bonnini and Isabel Maria Parra Oller

Abstract In order to prove the hypothesis of sign effect in intertemporal choice
experiments, the empirical studies described in the specialized literature apply uni-
variate tests (in most cases parametric 7 or F' tests) even when multivariate inferential
procedures are more suitable according to the experimental data, the study design
and the goal of the analysis. Furthermore, the used tests do not take into account the
possible presence of confounding effects, very common in such kind of experimental
studies. In this paper, a multivariate nonparametric method to test for sign effect in
intertemporal choice is proposed. This method overcomes the mentioned limits of the
tests usually applied in previous studies. A case study related to a survey performed
at the University of Almeria (Spain) is presented. The methodological solution based
on the nonparametric test is described and the results of its application to the data
collected in the sample survey performed in Almeria are shown.

Keywords Intertemporal choice + Permutation test - Nonparametric
combination - Multivariate test -+ Confounding factors - Multistrata test

1 Introduction

Intertemporal choice problems concern the study of decision-making processes.
Specifically, these problems refer to the case of choices over time. When one won-
ders whether it is better to save money now in order to consume more in the future or
to consume today by giving up a greater future consumption, we are in the presence
of an intertemporal choice. The decision about how many years to be devoted to the
study, i.e., how much time of our life can be focused on (and how much money can
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be invested in) education, is also an intertemporal choice: is it better to have a salary
(or free time) today or invest money (time) in education and postpone the job market
entry, in order to have greater earnings in the future? Another typical example of
intertemporal choice is related to dietary habits: is it better to eat a good cake or a
dish of fried food now or to follow a healthier diet in order to have a better health
(and a longer life) in the future?

These problems are typical in Financial Economics, but quite common even in
other disciplines such as Neuroscience, Medicine, Marketing, Sport, Economic and
Industrial Policy, Fiscal Policy, Monetary Policy, Social and Welfare Policy, and
others. There is an extensive scientific literature on intertemporal choices in the
fields of Psychology and Behavioral Economics. In fact, the decision-making process
of individuals, when they make intertemporal choices, is almost always the same,
regardless of the specific context.

In this paper, from here on out, we consider the problem according to an economic
perspective. In this framework, people tend to prefer immediate gains or rewards and
to postpone losses or penalties.

For example, let us assume that the winner of 100€ at the lottery has the possibility
of cashing in immediately the gain or postponing it for 1 year. If the winner accepts
to postpone the gain only if the amount received after 1 year is greater than 110€,
then the discount rate is 10% or equivalently 0.10. The gain will be not postponed if
the future amount is less than 110€ and, in the case of future amount exactly equal
to 110€, the choice is indifferent. We can also say that 100<€ is the discounted value
(the current worth) of the future gain of 110€. Definitely, the discount rate is the
proportion (percentage) of the increase in value needed to compensate for 1-year
delay.

As aconsequence, the winner accepts to postpone the gain fort = 2 years provided
that the amount received will be at least 110 x (1 +0.1) = 100 x (1 +0.1)> =
121€. In general, he/she accepts to postpone the gain for ¢ years if he/she will
receive at least (1 + 0.1)" x 100. Hence, the discounted value of a future gain x is
given by (1 + 0.1)""x. The winner accepts the reduction of the amount up to the
discounted value in order to anticipate the gain today.

A similar reasoning applies to the case of losses (penalties, payment of fines,
etc.) because the choice is between a lower amount today or a greater amount in the
future. For example, with a discount rate equal to 0.10, the individual prefers to pay
the immediate amount 100 (or less), rather than the delayed amount 110 1 year later
or (1 +0.1)" x 100 after ¢ years. If the amount to be paid today is greater than 100,
then it is not worth anticipating the payment.

For an individual, the discount rate of gains could be not equal to the discount
rate of losses. Given the future amount x, in the case of awards, the discounted value
could be lower than in the case of fines. For example, the winner of a lottery could
consider the award of 110€ after 1 year equivalent to 100€ today (discount rate
equal to 0.10) but he/she could consider the payment of a 110 euro fine after 1 year
equivalent to the payment of 105€ today (discount rate equal to 0.05). Therefore,
for a given time horizon, the reduction of the amount for which the anticipation of a
payment is accettable, is therefore lower than the reduction of the award for which it
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is preferable to cash in a gain today. This is what the specialized literature calls the
sign effect in intertemporal choice.

In order to prove the hypothesis of sign effect, the empirical studies reported in
the literature apply univariate tests (in most cases parametric ¢ or F tests) even when
multivariate inferential procedures are more suitable according to the experimental
data, the study design and the goal of the analysis. Furthermore, the used tests do not
take into account the possible presence of confounding effects, very common in such
kind of experimental studies. In this paper, we propose a multivariate nonparametric
method to test for sign effect in intertemporal choice that overcomes the mentioned
limits of the most common tests. In Sect.2 the theory of intertemporal choice and
the sign effect are formally presented. In order to describe the problem in a clearer
and more precise way, in Sect.3, a case study related to a survey performed at the
University of Almeria (Spain) is presented. In Sect. 4, the statistical testing problem
is defined. Section5 is dedicated to the description of the methodological solution
based on the nonparametric test. Section5 includes the results of the application
of the nonparametric test to the empirical problem described in Sect. 3. Section 6
concerns the conclusions.

2 Intertemporal Choice and Sign Effect

The basic elements of the intertemporal choice are the following:

e It is a problem of allocation between two or more time points.
e There is a tradeoff between earlier pleasure and satisfaction and later wellbeing.
e Some subjective elements can affect the decision.

The first important scientific contribution to explain intertemporal choices is the
Discounting Utility model (DU model) proposed by Samuelson [1]. Let us imagine
the classic “consumption or savings” problem. Consider the case of a subject and
her/his decision about how to allocate her/his consumption over time, starting from

today (¢ = 0) and considering 7 different time points in the future (t = 1,2, ..., T).
In other words, we are interested in the person’s comsumption profile over time
(co, C1, - - -, CcT), Where ¢, is the consumption value at time 7, witht =0, 1, ..., T.
According to the DU model, the utility of a given consumption profile (cy, ¢y, . . ., c7)

is a linear combination of the utilities of the partial consumptions at different time
points and the weights are exponential with respect to time ¢. Hence, the greater
the time horizon represented by ¢, the lower the weight of the utility of ¢,, namely
the partial contribution of ¢,, to the global utility. Formally, the utility function of a
temporal consumption profile is

T
Uco,c1,.-rer) = Y Yu(cy) e

t=0
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where u(c;) is the partial utility that derives from consuming ¢, at time ¢ and i is the
weight of u(c,) in the overall utility, witht = 0, 1, ..., T. The weight i, is called
discount factor. According to the exponential discounting approach, the discount
factor is given by

v =6 2)

which § € [0, 1]. Thus, the weight of the utility of consuming ¢, at time ¢ decreases
exponentially as ¢ increases.

Let us use the identity function as utility function, i.e., u(c;) = ¢;. If, for example,
¢, represents the amount of gain (remuneration, reward,...) or loss (penalty, fine,...)
attime ¢ and the discount rate is 0.10, the intertemporal choice consists in the decision
whether it is better the discounted value (1 4+ 0.10) "¢, now or ¢, ¢ years later. For a
generic discount rate y, the choice is between (1 4+ y) ~'¢, now or ¢; at time ¢. Hence,
one way to represent the discount factor, in the exponential discounting framework
of the Samuelson’s DU model, is the following:

1
= 3
V= Ty 3)
where y is the discount rate and § = ﬁ is the discount factor corresponding to

1-year delay (r = 1).

According to the classic DU model, y is assumed to be constant with respect to
the delay ¢, to the magnitude of the amount and to the sign (gain or loss). Some recent
studies have reported empirical evidence against these properties of y. In the current
debate emerging from the specialized literature, some new theories that deviate from
the hypothesis of constant discount rate are proposed (see [2—13]). These new theories
take the name of intertemporal choice anomalies. In particular, one of the anomalies,
usually called sign effect or gain—loss asymmetry is that losses are discounted less
than gains.

In order to estimate the discount rate and prove the sign effect and other anomalies
in intertemporal choice, behavioral experiments are performed. In these studies, a
sample of people is asked to make a series of choices concerning amounts of rewards
and/or penalties that can be received/paid at different time points. For example,
Green et al. [14] performed an experiment where 36 people from three different age
groups were asked to choose between a fixed reward, obtainable at time 7, and an
immediate reward, reduced according to the individual discount rate. The experiment
was repeated for two different amounts of the fixed reward (magnitudes) and 8
different time horizons ¢ (delays). To compare the discount rates related to the two
magnitudes, several univariate ¢-paired tests were performed within each age group
and for each time horizon. To test for the delay effect, ¢ tests and F tests were
performed within each age group and for each amount. To test for the age effect,
an ANOVA for each magnitude and time horizon was performed. This statistical
approach is not suitable for the following reasons:
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e the application of several univariate tests on the effect of age doesn’t take into
account the multivariate nature of the problem and the dependence of the discount
rates of different magnitudes and time horizons

e the application of several univariate tests on the effect of magnitude doesn’t take
into account the multivariate nature of the problem with respect to time horizon
and the confounding effect of age

e the application of several univariate tests on the delay effect doesn’t take into
account the multivariate nature of the problem with respect to the amount and the
confounding role of age

e given the small sample sizes, the use of parametric tests that assume normality is
inappropriate.

A similar approach, based on the application of several univariate t-tests, to study
magnitude effect and sign effect, ignoring the multivariate nature of the problem
and the confounding effects of demographic characteristics such as age, gender and
income, is followed by McKerchar et al. [8].

Thus, a suitable method for testing intertemporal choice anomalies, in experiments
like those described, should be multivariate and multistrata. Furthermore, to ensure
robustness with respect to the family of distributions underlying the data, especially
for small samples, a nonparametric approach is preferable.

3 A Sample Survey

In 2016, some intertemporal choice experiments were conducted at the University
of Almeria. In one of these experiments, a sample of 36 students of the Faculty of
Economics was interviewed. These students were asked to take “delay decisions.”
An example of delay decision is:
“today you won 100€ in the lottery and you can receive this award now or a different
amount in three months. What is the minimum amount to delay the receving of the
award?”.
In another experiment, a different sample of 18 students was asked to take expedite
decisions. An example of expedite decision is:
“today you won 100€in the lottery and you can receive this award in three months
or a different amount today. What is the minimum amount to expedite the receiving
of the award?”.
Hence, the set of 54 students involved in these experiments can be classified into
two categories according to the factor decision type: delay decision and expedite
decision.

Each subject filled two 6 x 4 tables, one for each scenario (1. Lottery payout;
2. Payment of a fine). Each table was used in order to communicate the wished
delayed/expedited value for six different time horizons ¢ and four different award/fine
amounts. The six different time horizons are 3months, 1year, 3years, 5years,
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10years, and 20years. The four different amounts are 100€, 2,000€, 25,000€,
and 100,000€.

In order to test for the sign effect, two dependent samples defined according to
the scenario must be compared. Since each subject, for each scenario, provided 24
values (one for each time—amount combination), the problem is multivariate. In order
to take into account the dependence between the 24 different variables, a suitable
multivariate testing procedure should be applied. The complexity of the problem
is even greater if we consider that the data derive from two different experiments
characterized by different decision types. Thus, each decision type identifies a stratum
of homogeneous students and a suitable multistrata test should be considered for the
problem. The formal definition of the testing problem is presented in the following
section.

4 Multivariate Multistrata Test for Sign Effect

As mentioned above, each subject involved in a complex intertemporal choice exper-
iment like the one described in the previous section, filled 48 cells, e.g., two 6 x 4
tables. Indeed, for each subject, two scenarios, four amounts (in euros) and six time
horizons (in years) were considered. Let us denote the subject’s answer (in euros)
regarding a given decision type and a specific “scenario—amount—time horizon” com-
bination with x) (m, t), where

s € {A, F} denotes the scenario (A : award; F : fine)

m € {100, 2 000, 25 000, 100 000} denotes the amount in euros of the award or of
the fine

t € {0.25, 1, 3, 5, 10, 20} denotes the time horizon in years

d € {D, E} denotes the decision type (D : delay; E : expedite), i.e., the type of
experiment, that takes the role of stratification factor.

Consistently with the previous notations, let us denote the subject’s discount
rate regarding a given decision type and a specific “scenario—amount—time horizon”
combination with yﬁd) (m, t). According to (2), in the presence of delay decisions
(postponing payments, d = D), the discount rate is

(D) l/t
y P m, 1) = [—xf (m’t)} —1 )
m

while, the discount rate in case of expedite decisions (anticipating payments,d = E),
can be computed as follows:

1/
Em, 1) = | —— | —1. 5
ys (mvt) |:_xY(E)(m7[)i| ( )
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According to the classic theory based on the Samuelson’s DU model, ys@ (m,t)
is a constant with respect to d, s, m, and t. In the case of sign effect, the discount rate
of awards is not equal to the discount rate of fines, ceteris paribus. Hence, a test for
sign effect is a two-sample test, where the discount rate of awards is compared to the
discount rate of fines. The problem is multivariate with respect to amount and time
horizon and multistrata with respect to the decision type. Thus, it is a multivariate
and multistrata test for repeated measures (or dependent samples). The problem’s
factor is the scenario and the alternative hypothesis is one sided. In the specialized
literature, the supporters of the sign effect believe that the direction of the effect
depends on the type of decision: in delay decisions, the discount rate of awards is
greater than the discount rate of fines; in expedite decisions, the opposite inequality
holds. The testing problem is therefore quite complex and can be broken down into
a set of sub-problems. Each sub-problem corresponds to a partial test.

Let yifll) (m, 1), ys(dz) (m,t),..., ys(fQ (m, t) be the computed individual discount
rates and assume that the observed value ys(i.) (m, t), regarding the subject i, is a deter-
mination of the random variable Ys(d) (m,t),withi = 1,2, ..., n. The null hypothesis
of the test for sign effect is

Hy : ﬂmm [Y/(xd)(ms 1 =Y (m, t)] ) (©6)
m t d

In the null hypothesis, the discount rate of awards and the discount rate of fines follow
the same distribution, and this is true for all the amounts, for all the time horizons
and for both the decision types.

Under the alternative hypothesis, for at least one combination “amount-time
horizon-decision type”, there is a sign effect. The sign effect, if present, is oppo-
site for delay and expedite decisions. Formally,

g U [P o0 =4 v oo JU [ oo < viP o]} @)

where >? and <? denote the classic situations of stochastic dominance (see [15-24]).
In short, the problem consists in a multivariate and multistrata stochastic dominance
for repeated measures.

5 Nonparametric Solution

According to the specialized literature, the statistical tests usually applied in intertem-
poral choice problems present some limits. First of all, they are univariate and do
not take into account the multivariate nature of the responses. Given that each inter-
viewee must answer several questions, the response variable is obviously multivari-
ate. The main difficulty of multivariate testing problems is to take into account the
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dependence structure of the marginal responses. Unless the independence between
variables, infrequent and not very plausible, is true, the multivariate density function
is not equal to the product of the marginal densities. The assumption of normality
simplifies the representation of the multivariate distribution, and it implies a linear
relationship between variables. But even in this case, pairwise correlation indices
must be estimated. When there are not conditions to assume independence or linear
dependence and normality, a parametric approach is very difficult if not impossible.

Furthermore, the inferential solutions proposed in the empirical literature on
intertemporal choices are not suitable for complex hypotheses such as stochastic
dominance and stochastic ordering. Moreover, they do not consider the possible
presence of confounding factors like decision type. Finally, these tests are not robust
with respect to the violation of the assumption about the underlying family of distri-
butions, especially for small sample sizes.

A suitable solution can be found within the family of combined permutation tests
[20]. This methodology follows a nonparametric approach because it is based on
the nonparametric combination of dependent permutation tests. Let us consider the
partial null hypothesis of (6)

H®Y Y@ m, 1) =YY m, 1) 8)

0,m,t

and the partial alternative hypotheses of (7)

H v P ) >y m, 1) ©)
and
HE v P om0 <4 ¥ m, 1), (10)

Let T,,(fl,) be the test statistic for testing Héﬁ,, versus H, l(ﬂf,),t Without loss of
generality, we can define the partial test statistics in such a way that the null hypothesis
is rejected in favor of the alternative when the test statistics take large values. Hence,

for delay decisions, a suitable partial test statistic is
D) _ (D ~(D
Tt =50 (m 1) = 517 (m, 1) (1

while, for expedite decisions, given that the direction of the alternative hypothesis is
the opposite, a suitable partial test statistic is

E) _ =(E —(E

T =5 . 0) = 350 (m, 1) (12)

where &i‘D) (m, 1), y}D) (m, 1), y,@ (m,t) and yff) (m,t) are the observed sample
means of the subgroup discount rates.

For each partial problem, a permutation test for dependent samples is performed.

In order to take into account the dependence between the partial test statistics, the
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permutations applied for the computation of the null distribution should be the same
for all the partial tests. A suitable combining function is then necessary to compute
a univariate test statistic for the global multivariate problem and obtain a unique
p-value. Let T,,(,‘f,) (0) be the observed value of the partial test statistic, B the number
of permutations and T,,gd,) (b) the value of the partial test statistic corresponding to the
bth permutation. The significance level function of T\ (b) is

m,t
d d d d
by s PTY = T @IH, . (13)
withb =0, 1,2, ..., B and it is the proportion of values of the partial test statistic

greater than or equal to T,f,‘f,) (b) according to the null permutation distribution.

The combined test statistic for the global problem is obtained through the applica-
tion of a suitable function v (-). The combining function ¥ (-) must be non-increasing
with respect to each argument )L,(f,),. In the case of Tippett combining rule, the com-
bined test statistic is

Tcomh = maXpd [1 - )\;(qf)z:l ) (14)

and the global p-value is the proportion of values greater than or equal to T, (0)
in the set {Tcomp(0), Teomp (1), ..., Teomp(B)}. Instead of considering all the possible
permutations of the exact test, for computational convenience, a random sample of
B permutations (CMC resampling) can be used to estimate the null distribution of
the test statistics.

In the case of significance of the global test, in order to attribute this result to
some partial tests, an adjustment of the partial p-values must be done for controlling
the Familywise Error Rate.

6 Case Study

The combined permutation test, with Tippett combination, was applied to the data
collected in the experiments done at the University of Almeria in 2016. A two-step
combination was performed. At the first step, the partial tests were combined with
respect to time horizon and amount. At the second step, the two resulting combined
tests were combined again to obtain the p-value of the overall test. B = 1000 CMC
resamplings were considered (Table 1).

The p-value of the global test on sign effect is equal to 0.0001, thus at « = 0.01
the null hypothesis that the scenario does not affect the discount rate is rejected in
favor of the alternative hypothesis of sign effect (strong significance). For controlling
the Familywise Error Rate and avoiding the type first error rate inflation due to the
multiplicity of the test, the Bonferroni—-Holm method was applied. According to the
adjusted p-values of the partial tests, we have a strong significance of the sign effect
in the case of delay decisions (adjusted p = 0.0002). For expedite decisions, the sign
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Table 1 Combined permutation test on sign effect

Hypothesis ‘ p ‘Adjusted P
Delay decision

Discount rate of awards greater than discount rate of fines ‘ 0.0001 ‘ 0.0002
Expedite decision

Discount rate of awards less than discount rate of fines ‘ 0.0726 ‘ 0.0726
Global

Sign effect 10.0001 \

effect presents weak significance because the adjusted p = 0.0726 is greater than
0.01 but less than the significance level if @ = 0.10.

7 Conclusions

The test for sign effect in intertemporal choice experiments needs the application of
suitable multivariate testing techniques. In such experiments, a multistrata and mul-
tivariate test must be applied. The very frequent practice in the literature of applying
univariate (very often parametric) tests is therefore wrong and makes untrustwor-
thy inferential conclusions. In this paper, the application of multiple tests based on
the permutation approach and the combination of Tippett is proposed. This solution
is suitable for the problem and overcomes the limits of the mentioned inadequate
parametric univariate tests.

The proposed multivariate permutation test is suitable for complex hypotheses,
takes into account the multivariate nature of the problem and the possible confounding
effects due to the presence of stratification factors (e.g., decision type) and does not
require the assumption that the underlying distribution is normal or belongs to a
known family of probability distributions. Furthermore, this test is consistent, exact
and unbiased. It is suitable even in the presence of small sample sizes and when the
number of marginal response variables is very large.

The application of this method to the data collected in the survey performed at the
University of Almeria in 2016, provides empirical evidence in favor of the hypothesis
of sign effect in intertemporal choice: the discount rate of gains seems to be greater
than the discount rate of losses for delay decisions, while the discount rate of gains
appears less than the discount rate of losses for expedite decisions. The latter property
is less evident than the former.
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Nonparametric First-Order Analysis )
of Spatial and Spatio-Temporal Point st
Processes

M. 1. Borrajo, I. Fuentes-Santos, and W. Gonzalez-Manteiga

Abstract First-order characteristics are essential functions in point processes rep-
resenting the distribution of events in the corresponding domain. For decades, the
inconsistency of the first-order kernel intensity estimator has been an obstacle to
perform inference in the point process context. In this work, we develop different
procedures to obtain consistent estimators of the first-order intensity function, and
we also propose bootstrap procedures to define effective bandwidth selectors. More-
over, these innovations are used in three testing problems: the goodness-of-fit of
an appealing model in the literature of point processes with covariates, the non-
parametric comparison of first-order intensity functions and a separability test for
spatio-temporal point process. We illustrate the above-mentioned procedures with
two wildfire data sets in Galicia (NW Spain) and in Canada.

1 Introduction

The main aim of point processes is to study the geometrical structure of patterns
formed by events that are distributed randomly in number and space. Particu-
larly, spatial point processes focus on events located in a planar bounded region
W C R?, and spatio-temporal point processes determine the spatial location and
time of occurrence of events in a volume, W x T C R? x R*, defined by a planar
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region and a temporal interval. If each event has associated any extra information in
the form of a measure, the process is named as marked, but if this extra information
exists over the whole observation region, then we are dealing with point processes
with covariates.

The analysis of any observed point pattern involves characterizing the spatial dis-
tribution of events (first-order characteristics) and interaction between them (second-
and higher order characteristics). In this paper, we are focused on the former which
has been addressed through parametric models, see Moller and Waagepetersen [19],
Bayesian methods, see Illian et al. [18], and nonparametric approaches, see Diggle
[11] and Baddeley et al. [2].

Diggle [10] proposed the first kernel intensity estimator, based on the structure
of the common kernel density estimator. The main drawback of Diggle’s proposal is
its lack of consistency, which has almost limited its use to exploratory analysis. Two
ideas have been introduced so far to overcome this problem: Cucala [9] introduced
the density of event locations and proved the consistency of his estimator, and Guan
[17], Baddeley et al. [1] introduced kernel estimators of the first-order intensity based
on covariates.

Considering all these approaches, this work addresses important developments in
first-order intensity inference: two consistent nonparametric estimators of the first-
order intensity, new bandwidth selectors, and different nonparametric tests based on
these estimators. This work is organized as follows: in Sect. 2, we use the two strate-
gies referred before to define consistent estimators of the first-order intensity func-
tion and we propose bootstrap bandwidth selectors for the two proposals. Section 3
introduces nonparametric tests developed to check for the effect of covariates on
the spatial distribution of an observed pattern, compare the intensity of two spatial
point processes, and test whether a spatio-temporal point process is separable, and
finally in Sect. 4, we illustrate the utility of the techniques introduced above through
application to the analysis of wildfire patterns in Galicia (NW Spain) and Canada.

2 First-Order Intensity Estimation

Let X be a spatial point process defined in aboundedregion W  R%.Let X, ..., Xy
be a realization of the process with N the random variable counting the number
of events. The first-order intensity, from now on referred as intensity, is defined

following Diggle [11] as

.. EIN(dx)]
A(x)_\dl;go ldx|

where |dx| denotes the area of an infinitesimal region containing the point x € R.
Diggle [10] proposed a kernel intensity estimator for one-dimensional point pro-
cesses, which has been extended to the plane as
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YN Ky (x— X))

, xeWCR.
pu(x)

D) =

Here, H is a matrix of bandwidth parameters, Ky (x) = |H|!/?K (H~'/%x), where
K is a two-dimensional kernel function, and py = f,, |H|™'?K(H™'2(x — y))dy
is an edge correction term.

This kernel estimator has been widely used during decades and mostly limited
to exploratory analysis due to its lack of consistency. This means that its mean
integrated squared error (MISE) does not tend to zero as the expected number of
events increases. To better understand this point, let us assume an infill structure
or increasing intensity asymptotic framework (see Diggle and Marron [12]), which
states that the expected number of events in the observation region W, tends to
infinity, and it is equivalent to the asymptotic framework in the classical kernel
density estimator. The kernel estimator uses local information around each point
to estimate the intensity. If the true intensity is continuous, local smoothing will
provide an asymptotically unbiased estimator. However, as the number of events in
an infinitesimal region increases, the variance of the estimate does not tend to zero
(See details in Fuentes-Santos et al. [14]), then the MISE does not tend to zero either,
leading to an inconsistent estimator.

Trying to overcome this lack of consistency, Cucala [9] introduced the concept of
“density of events locations” for one-dimensional point processes. He defined such
density as Ao(x) = A(x)/m, wherem = f w A(x)dx is the expected number of events
lying on W. And, he proposed the following kernel estimator for Aq:

N
A 1
Mon(x) =& D Ku(x — Xi) vz, x €R,

i=1

where K, (-) = h~'K (-/h), with K being a one-dimensional kernel function and &
a scalar bandwidth parameter. Here 1, denotes the indicator function. Cucala [9]
proved the consistency of its kernel estimator for Poisson point processes under an
infill asymptotic framework. In a similar way, we need the Poisson assumption to
derive the asymptotic theory for the proposed estimators that will follow.

Following the philosophy of bivariate kernel density estimation, we define a kernel
estimator of the density of event locations in two dimensions with a bandwidth matrix:

Ap(x)
N

N
Livzoy = (pu(x)N)™! |H|_I/ZZK(H_1/2 (x — X)) Lin 2oy,

i=1
)]

ho.m(x) =

where the bandwidth matrix, H, is symmetric and positive-definite and | H | denotes
the determinant of H. Fuentes-Santos et al. [14] developed a smooth bootstrap pro-
cedure to obtain a consistent estimator of the MISE, which is the basis for the plug-in
bandwidth selector proposed in the same work.



104 M. L. Borrajo et al.

Moving on to the framework of point processes with covariates, let Z : W C
R? — R be a spatial continuous covariate that is exactly known in every point of
the region of interest W, and Zi, ..., Zy the realization of the transformed process,
i.e, Z; = Z(X;). In practice, following the indications of Baddeley et al. [1], this
covariate will commonly be known in enough amount of points spread over the
region, so the values for the rest of the points can be interpolated and it can be
assumed that these values are indeed the real ones.

Following Baddeley et al. [1], let’s assume that the intensity can be described
from the known covariate through the model:

Au) = p(Zw)), u e W C R?, 2)

where p is an unknown function. As Z is known, the only target for intensity
estimation is the function p. To this purpose, it is considered the transformed
one-dimensional point process, Z(X), and established the theoretical relationship
between it and the original two-dimensional process X. It has been proved that if
X is a Poisson point process in W C R? with intensity function (2), then Z(X) is a
Poisson point process in R with intensity pg* and with the same expected number
of events, where g* is the non-normalized version of the derivative of the spatial
cumulative distribution function, see Borrajo et al. [3] for details on this and the
extension to multidimensional covariates.

Previously, Guan [17] proposed a closely related kernel estimator that allowed for
a multidimensional covariate, Z = (Zy, ..., Z,): W C R? — R?. This estimator
involves measuring the distance between two points by the euclidean distance through
their covariates values:

YN KW (1Zw) — Z(X)|)
qn(u)

A (u) =

’

with g, (u) = fW Ky (I|Z(u) — Z(s)||)ds is the edge correction term. Considering
the increasing domain asymptotic framework and adding also some suitable assump-
tions, Guan [17] proved the consistency of the estimator. He also addressed the band-
width selection problem by a simple, but computationally intense, cross-validation
method.

We need to introduce some definitions and additional notation. The spatial cumu-
lative distribution function of Z is defined as

1
G(Z)=—/12u< du,
W Jw {(Z(w)=<z}

where |W| denotes the area of the region W C R?. Let assume that G has a first
derivative g, for which we need Z to be differentiable with non-zero gradient, and
let denote by g*(-) = |W|g(-) and G*(-) = |W|G(-) the unnormalized versions. The
results detailed in Borrajo et al. [3] show that Z(X) is indeed a point process with
intensity pg*.
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To derive our consistent kernel estimator, we follow Cucala [9] and use the rela-
tionship between the intensity and the density function. We define the density function
for this problem as the relative density of the transformed point process Z(X):

flo) = LRER, 3)
m

Our idea is to construct a kernel estimate of f and then plug in it in the expression
(3), jointly with an appropriate estimate of m, and to derive an estimator of p. This
gives the estimator of the intensity A through Eq. (2).

Following the pre-established notation, we define the following estimator of the
relative density f:

N

. L1
=g @5

i=1

K,(z—2Z)1 . 4
2D n(z ) 1inv0y 4)

Now we use (3) to define the final intensity estimator. To this goal, we need to
estimate m that recall is the expected number of events. For simplicity, we suggest
the sample size N as an estimator and hence derive our kernel intensity estimator
from ﬁ, as:

M) = pp(Z(u)) =

Njy(Z o
fh( (u)) Z Kh(Z(u) Z). )

¢ (Zw)

Remark that, for the particular estimates of the relative density and m, we propose
our final intensity estimator shares the same expression as Baddeley et al. [1]’s
estimator detailed in the previous section. However, our proposal benefits for being
conveniently constructed to guarantee the consistency, to facilitate the theoretical
developments and to allow consistent bootstrap methods. This construction also
allows intuitive multivariate extensions, including the time dimension, as is discussed
in Borrajo et al. [3].

In Borrajo et al. [3], a complete theoretical framework with all the details in terms
of mean squared error (MSE) and mean integrated squared error (MISE) is developed,
and the expression of an asymptotically optimal bandwidth parameter is also derived.

Bootstrap methodology for bandwidth selection

Nonparametric bootstrap procedures have been widely used in different contexts to
perform inference and calibrate the distribution of statistics in tests. The smooth
bootstrap procedure for point processes with and without covariates we propose is
based on the following works: Cao [7] for kernel density estimation and Cowling et
al. [8] for the intensity estimation of a Poisson point process.

Recall Xy, ..., X, is a realization of the spatial point process X, Zi, ..., Z,
the associated realization of the transformed univariate process; let ﬁ, be the den-
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sity estimator in (4) and p, the estimator derived from (3) and (4), where b
is a pilot bandwidth. Now, conditional on Zi, ..., Z,, let N* ~ Poiss (ﬁ1) with
m = fR 0b(2)g*(z)dz, generate n* a realization of this random variable N* and
then draw Z7, ..., Z. by sampling randomly with replacement n* times from the
distribution with density proportional to g*fy, i.e., f, = %.

Using this bootstrap, we have developed a data-driven bandwidth selection pro-
cedure for (4); moreover, in Borrajo et al. [3], a specifically designed rule-of-thumb
is defined and both selectors are compared with the existing competitors, which to
the extent of our knowledge is only the classical Silverman’s rule-of-thumb used in

Baddeley et al. [1].

3 Testing Problems

Testing first-order intensity model in inhomogeneous Poisson point processes with
covariates

In this section, we want to test a null hypothesis Hy : L(x) = p(Z(x)) x € W, versus
a general alternative in which the intensity function is not explained completely
through the covariate, for Poisson processes. The idea is to define a test statistic
based on a L?-distance between the classical kernel intensity estimator using only
location information and the appealing one using covariate information. To avoid the
problem of the lack of consistency, we are using the density of event location and
the null hypothesis can be equivalently rewritten as Hy : Ag(x) = p(Z(x))/m.

The procedure to construct the statistic isthat we first estimate the relative density
with the two-dimensional kernel estimator (1), and then we estimate it using (4).
We apply the L2-distance to obtain a statistic that measures the discrepancy between
them:

R N 2
Ti= [ (ot = fus(zen) " dx, (©)
w

where 0 5(Z(x)) = ‘3”1\(,1) Linso; with pp(z) = fo(2)m/g*(z), with b = b(m) a real
bandwidth parameter, see Borrajo et al. [3].

The asymptotic distribution of the statistic (6) under a suitable framework is
derived. However, in practice, this asymptotic distribution may not be the best way
to calibrate our test since the convergence rate is too slow. Our proposal is to use a
bootstrap procedure to perform the calibration, see Borrajo et al. [4] for details.

A complete simulation study including several scenarios and different sample
sizes has been carried out in Borrajo et al. [4], showing good values in terms of level
and power for this test, that to the extent of our knowledge has yet no competitors.

Nonparametric comparison of first-order intensity functions for Poisson processes

A common question in the analysis of spatial point processes is whether two types
of events have the same spatial structure.
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Let X; and X, be spatial patterns of type 1 and type 2 events in a spatial point
process X observed in W C R%. We denote, respectively, by A;(x) and A,(x) the
first-order intensities, and by Xg; (x), Agz(x) their densities of event locations. We
can extend the proposal of Duong et al. [13] for multivariate data to the spatial point
process framework and use a L>-distance to test the null hypothesis Hy : Ag; (x) =
Aoz (x) = Ao(x):

B= [ (o0 =) dx = dn+dn = (fatim) O

where @ij and 1% are kernel estimators oft);; = fw Aoi (x) Ao (x)dx fori, j =1,2
and ¥; = [, Ao (x)* dx.

Fuentes-Santos et al. [15] proved the asymptotic normality of the null distribution
of this statistic under some regularity conditions. Again, given that the convergence
to the asymptotic distribution is slow, we propose a bootstrap calibration, which good
performance was proved through a simulation study in that paper.

This same problem has been extended to the context of point processes with
covariates, see Borrajo et al. [5] for details.

Spatio-temporal separability test

LetS = {(Xy, 1), ..., (Xn, ty)} be a realization of a spatio-temporal point process
observed on a bounded domain W x T C R? x R™, the spatio-temporal intensity
function (STIF) is a natural extension of the first-order intensity function of a spatial
point process:

A, 1) = lim
|dx xdt|—0

{ E [N(dx, dt)] } ®)

|dx x dt|

where N (dx, dt) represents the number of events in the volume dx x dt, dx is an
infinitesimal disc containing the location x, and dt is an infinitesimal interval around
time ¢.

One of the first steps in the analysis of any observed pattern is testing whether the
STIF is separable, i.e., whether it can be expressed as the product of its spatial and
temporal components: A(x, ) = A;(x)A2(¢). Under separability the ratio between
the spatio-temporal and spatial intensities, r(x, r) = log (A(x, t)/11(x)), does not
depend on the spatial locations, x, forany ¢ € T. Considering this property, Fuentes-
Santos et al. [16] propose using a no-effect test that checks whether the log-ratio
function r(x, t) = A(x, t)/A(x) depends on the spatial locations.

To implement the test we first need an estimator of r(x, ). We propose using the
log-ratio of the kernel spatio-temporal and spatial intensities with diagonal bandwidth
matrices selected by least-squares cross-validation.

Once the log-ratio function has been estimated we have a regression prob-
lem where the log-ratio function evaluated at each event, Y = {Y; = p(X;, t;),i =
1, ..., n},is aresponse variable that may depend on the spatial covariate X = {X; =
(Xi1, Xi2),i =1, ..., n} comprising the event locations, and we test for the effect
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of X on Y. Following Bowman and Azzalini [6], we shall discriminate between two
models:

Ho: E[Yi|Xil=pn and  H;: E[Yi[X;] = m(X;).

We first estimate w by the empirical mean, § =n~' " | ¥;, and the unknown
smooth function, m(-), by kernel regression; then we compute the residual sum
of squares for the null, RSSy, and alternative, RSS;, models and we define the
generalized test:

_ (RSSy — RSSy) / (dfi — dfo)
B RSS:/dfi ’

T3 €))

where d fy, df| denote the degrees of freedom for these residuals. Finally, we propose
using a permutation test as calibration procedure, see details in Fuentes-Santos et al.
[16].

4 Real Data Analysis

Wildfire is the most ubiquitous natural disturbance in the world and represents a
problem of considerable social and environmental importance. In this section, we
apply the methodology previously presented to two data sets: one consisting of
wildfires in Galicia (NW Spain) and the other in Canada. Both regions have a very
different background on wildfires. On one hand, Galicia is known to have a low risk
of wildfires due to meteorological conditions (it is a very green, rainy region with
low to moderate temperatures the whole year), but it has been suffering an extremely
high incidence due to arson fires, which have become a major environmental and
social problem in the region. On the other hand, Canadian wildfires are known to be
studied over decades from different perspectives and meteorological conditions are
supposed to be one of the key factors in the incidence.

Galician wildfire data

The first data set comprises the spatial locations and time of occurrence of arson and
natural wildfires registered in Galicia during 2006, see Fig. 1. Wildfire data can be
obtained through a request to the Wildfire Statistics Department at the Spanish Min-
istry of Agriculture, Fisheries and Food (https://www.mapa.gob.es/es/desarrollo-
rural/estadisticas/Incendios_default.aspx). We have applied kernel intensity estima-
tion and the tests introduced above to characterize the spatial distribution of fires,
check whether arson and natural fires have similar behavior and test whether the risk
of fire in a given location varies over time.

The kernel intensity estimators in Fig.2 show that during 2006 the west coast
of Galicia registered high incidence of arson fires, where natural fires were more
frequent in the east and center of this region. The nonparametric comparison of
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Fig. 1 Spatial pattern of arson (left) and natural (center) wildfires, and temporal pattern (right) of
arson (red) and natural (blue) wildfires registered in Galicia during 2006

Fig. 2 Kernel intensity arson natural
estimator of arson (/eft) and
natural (right) wildfires
registered in Galicia during
2006 (different scale)
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intensities confirmed that arson and natural wildfires had different intensities. The
F-test detected departure from separability in both wildfire patterns. Therefore the
spatial distribution of arson and natural wildfires varied over time and support the
need for nonseparable models to estimate their spatio-temporal intensity.

Canada wildfire data

Fire activity in Canada mostly relies on meteorological elements such as long periods
without rain and high temperatures. We want to study the influence of some of these
covariates in the distribution of the process generating the wildfires, particularly on
its first-order intensity.

The wildfire data set and also complete meteorological information from the
last decades is available at the Canadian Wildland Fire Information System website
(http://cwfis.cfs.nrcan.gc.ca/home). We analyze later the influence of meteorological
covariates on wildfires during June 2015 (a total number of 1841), see Fig. 3, focusing
in this paper our attention on the temperature. It is important to note that for inferential
purposes we have removed two regions (Northwest Territories and Nunavut, mostly
covered by ice layers) from the whole observation window (Canada) because there
are no fires registered on those iced regions.

In Fig.4, we see the estimations resulting from using the classical kernel inten-
sity estimator, which does not use covariate information, by Diggle [10] and (4).
As expected the covariate information seems to be useful in this context because
the resulting estimate represents better the pattern. So this might indicate that the
temperature has an influence in the distribution of Canadian wildfires.
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Fig. 3 Wildfires in Canada during June 2015 (left) and third quartile of the temperature (in Celsius
degrees) registered in June 2015 in Canada, after a Gaussian smoothing with o = 2 (right)
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Fig. 4 Estimation without covariate information (left), and estimations using temperature as the
covariate (right)
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When we perform the goodness-of-fit test in (6) with this data set, we reject the
null hypothesis, so it seems that the temperature is not enough to explain the wildfire
distribution, which does not mean that it has o influence. An improvement in this
situation is defining indicators using several covariates or applying to those covariates
the multidimensional version of the test that is detailed in Borrajo et al. [4].
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Bayesian Nonparametric Prediction with )
Multi-sample Data i

Federico Camerlenghi, Antonio Lijoi, and Igor Priinster

Abstract In the present paper, we address the problem of prediction within the
setting of species sampling models. We consider d populations composed of dif-
ferent species with unknown proportions. Our goal is to predict specific features of
additional and unobserved samples from the d populations by adopting a Bayesian
nonparametric model. We focus on a broad class of hierarchical priors. These were
introduced and investigated in [ 1], where also an algorithm for drawing predictions is
devised, however, without any specific numerical illustration. The aim of this paper
is twofold: on the one hand, we provide an illustration with an actual implementation
of the algorithm of [1] and, on the other hand, we discuss its relevance with respect
to complex prediction problems with species sampling data.

Keywords Bayesian nonparametric + Hierarchical process * Pitman—Yor process -
Prediction -+ Random measure * Species sampling

1 Introduction

A typical problem in statistics relies on forecasting future outcomes of a random
experiment, given a set of analogous observations from the past. This is known as the
problem of prediction and its importance has been emphasized in several contexts (see
for example, [6]). In the present paper, we will face this problem within the framework
of species sampling models. We will deal with a multiple-populations scenario,
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more precisely, we consider d populations of animals composed by different species
with unknown proportions and we suppose that the species are shared across the d
different populations. Assuming to be provided with a sample for each population,
one typically wants to predict the number of new species that will be discovered in
future sampling from the populations, the number of new species specific to each
population and not shared with the others, the number of shared species across
populations, etc.

In order to provide a clear mathematical formulation of the problem, we con-
sider a Polish space X equipped with its Borel o-algebra, denoted as 2", and a
common probability space (§2, <7, IP), where the data are defined. The jth obser-
vation from population i, denoted here as X; ;, is an X-valued random element
defined on the probability space (§2, 7, IP). The space X contains all the possible
labels of the species in the d populations, besides the variable X; ; can be inter-
preted as the species’ label of the jth animal from population i, fori = 1,...,d.In
the sequel, we will suppose to be provided with a sample X, := (X1, ..., Xin,)
of size n; for any i = 1, ..., d. The whole sequence of observations is indicated
as X = (X,,, ..., X,,). We further assume that the X; ;s are independent and dis-
tributed as p; := Zkzl Pix0xr, Where p;, denotes the proportion of species k in
population i and x; is the corresponding species’ label. Since the composition of
any population is completely unknown, adopting a Bayesian viewpoint, we need
to define a nonparametric prior distribution for the p;s. A good nonparametric prior
should take into account the fact that the species’ labels are shared across the different
populations, but the proportions are not the same. Hence, we are looking for a vector
of dependent random probability measures (py, ..., pgy) sharing the same atoms.
Among the different Bayesian nonparametric models have been suggested in the
literature, one of the most used and known is undoubtedly the hierarchical Dirichlet
Process (HDP) defined in [13]. A first generalization of the HDP has been proposed
is the hierarchical Pitman—Yor Process (HPY), which allows for much more flexibil-
ity in terms of clustering. See [11] for the definition of Pitman—Yor process and [8,
14, 15] for the hierarchical framework. The distribution theory of these processes
have been recently studied in [1] within the more general framework of hierarchical
transformations of completely random measures (see Sect. 2). Summing up, we con-
sider an ideally infinite sequence of observations {(X; ;)j=1: i =1, ...,d}, which
are defined on some probability space (§2, 7, IP) and taking values in the space of
species’ labels X equipped with its Borel o-field :Z". We further assume that the
d sequences of observations are partially exchangeable [5], i.e., by the de Finetti
representation theorem they satisfy:

~ ~ iid . ~ . .
(qujl""’dejzl)'(pl"-~7pd)l’l\‘plx Xpd (.]l"-~’]d)€]Nd (1)
(P1--» Pa) ~ Qa.
where (py, ..., pg) is a vector of dependent random probability measures and Q4

is termed the de Finetti measure of the sequence. The specification of Q, or equiv-
alently of the dependence structure across py, ..., pg, is a crucial problem in the
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Bayesian nonparametric literature. As mentioned before, here we employ hierar-
chies of priors to define the vector (py, ..., pg): such a construction will be better
specified in the next section.

The rest of the paper is structured as follows. In Sect.2, we briefly recall the
definition of Completely Random Measures (CRMs) which are employed to define a
general class of hierarchical processes (p1, . .., py) that can be used in (1). Section 3
is devoted to the problem of prediction, some numerical illustrations are presented in
Sect. 3.1 to show the applicability of our results and their performance in simulated
scenarios. We conclude the paper with a brief discussion.

2 Hierarchical Processes Based on Completely Random
Measures

This section is devoted to the construction of vectors of dependent random probability
measures (P, - . ., pg), which can be used to model the prior opinion in (1). We define
a broad class of these vectors, relying on transformations of Completely Random
Measures (CRMs). We first recall some basics on CRMs, refer to [4] for a complete
account on the subject.

Let Mx be the space of boundedly finite measures on (X, 2), i.e., m(A) < 400
for any m € Mx and for any bounded set A € 2, equipped with the corresponding
Borel o-algebra .#x. A CRM is a random element i defined on some probability
space (£2, .o/, IP) and taking values in (Mx, .#x), such that the random variables
(Ay), ... fi(Ay) are independent for any choice of disjoint Borel sets Ay, ..., Ay €
Z and for any k > 1. A nice representation theorem for CRMs has been provided
by Kingman [9], who proved that i can be written as the sum of three components:
(1) a fixed diffuse measure; (ii) an infinite sum of random jumps at fixed locations;
(ii1) an infinite sum of random jumps at random locations. As most of the current
literature, we focus our attention on CRMs of type (iii), therefore represented as
i = ;- Ji 8. For the sake of simplicity, we further assume that (J;);>; and (¥;);>1
are independent sequences of random elements, leading us to consider the class of
homogeneous CRMs. Then, the law of such a fi may be uniquely characterized
through the Laplace functional, which amounts to be

E[e™ Jx /(i@ :exp{—c/ / (1 —e_sf(x))p(s)dsP(dx)},
X JO

where P is a probability on (X, Z"), called base measure, c is a positive constant and
p :RT — R* is a measurable function. In other words, the CRM fi is a functional
of a Poisson process {(J;, ¥;)};>1 on R* x X with non-bounded intensity function
given by p(s)dscP(dx). Noteworthy examples of CRMs are the gamma process,
obtained when p(s) = e¢~¥/s, and the o-stable process, which corresponds to the
choice p(s) = o577 /I'(1 — ) for some o € (0, 1).



116 F. Camerlenghi et al.

Transformations of CRMs can be used to define broad classes of random proba-
bility measures, in the sequel, we will focus on two possible transformations leading
us to define Normalized Random Measures with Independent Increments and the
Pitman—Yor process. Besides, we will further define the corresponding hierarchical
structures.

2.1 Hierarchical Normalized CRMs

Letus first focus on random probability measures which are obtained as normalization
ofaCRM i = ;.| Jidy,:

. 7 Ji
PEam =Ly @
where J := Y -1 Ji = (X). In the sequel, we will write p ~ NRMI(c, p; P) to
denote the distribution of the so-called Normalized Random Measure with Indepen-
dent Increments (NRMI) p, as first introduced in [12]. Note that p in (2) is well
defined if P(0 < i (X) < o0) = 1 is in force, see [12] for a discussion on such an
assumption and its relation with the Lévy intensity.

Being provided with d different random probability measures py, ..., pg, one
may enable dependence across them in the following hierarchical fashion:

. iid . )
pilpo ~ NRMI(c;, p;; po) i=1,...,d
Po ~ NRMI(co, po; Po),

3)

where Py is a diffuse measure on (X, Z"). In (3), the base measure referring to
each p;, for i = 1,...,d, is taken to be random and equals another NRMI p:
such a construction allows for sharing of atoms across pj, ..., pg. This vector of
hierarchical NRMIs may be used in (1) to define the de Finetti measure Q.

2.2 Hierarchical Pitman-Yor Processes

A second relevant construction arises when p is a random probability measure having
distribution obtained by a suitable transformation of the distribution of a CRM. In
particular, let IP, be the probability distribution on (Mx, .#x) of a o-stable CRM,
with o € (0, 1). For 6 > 0 define P, 4 on (Mx, .#%) as absolutely continuous w.r.t.
P, and such that its Radon—Nikodym derivative is

APy TE/0)

= m~?(X).
dP, o I'(9)
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The resulting random measure /i, ¢ with distribution IP, ¢ is not completely random,

but via normalization .
o0

— - ~ PY(0,0; P)
MG,G(X)

p=
we obtain the well-known Pitman—Yor (PY) process [11]. Correspondingly, we may
define a vector of hierarchical PY processes as in (3):

~ ~ d ~
Pl po = PY(o,0; po)

o C))
po = PY (00, bb; Po)
with Py being a non-atomic probability measure on (X, 2"). The theoretical analysis
beyond this structure and the previous one (3) has been carried out in [1], see also
[2] for some applications and [3] for a discussion of the case d = 1 (exchangeable
hierarchical processes).

3 Prediction in Species Models

In the present section, we assume to be provided with a sample X, = (X1,
...y Xipn) of size n; foreach i =1,...,d, satisfying (1). The vector of random
probability measures (py, ..., py) in (4) are assumed to have a hierarchical struc-
ture, in particular we have considered hierarchies of PY processes to carry out the
numerical experiments of Sect.3.1.
Our interest here consists in predicting specific features of additional and unob-
served samples from the d populations, which will be denoted by X ,(,’ji") = (Xin+1,
.y Xin+m;),asi =1, ..., d.For the sake of illustration, we consider an additional
sample of the same size m for each population, namely m =m; = ... =my. In
the following numerical experiments, we concentrate our attention on two statistics
which depend on the additional unobserved samples. The first one is the number
of hitherto unobserved species that will be discovered in further sampling, more
precisely we intend to forecast

ki,m
KMIX =) Aixpe(XF,), )
r=I1
where X;fl, X ;" x,, are the k; ,, distinct values out of the ith additional sample

X and 1 denotes the indicator function. Another statistic that one could be inter-

ested to predict is the following

kim

Su X = Toxge XD T T 00, X e (X5 (6)
r=1 j#i
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S, i ) counts the number of new and distinct observations in a future sample of size m
for the ith population, which are not shared with the other d — 1 additional samples
of size m.

The posterior distributions of K and S( l.) are not available in closed form,
hence, one needs to resort to a 51mu1at10n algorlthm in order to estimate all these
quantities. To solve this issue, we apply the MCMC procedure developed in [1] (see
also [2]) to generate trajectories of additional samples and then estimate K" and

Sf,z "i) on the basis of the MCMC runs.

3.1 Numerical Experiments

We consider four populations (d = 4), each one containing K; = 3,000 different
species chosen at random from a pool of K = 4.000 total species. For each popu-
lation, we have chosen at random the labels of the species from the total pool of K
labels, and then we have assigned to them the Zipf distribution with parameter s;.
More specifically, if jj, ..., jk, are the K; species of population i, then we assign
to the kth label of population i (denoted as ji) a frequency proportional to 1/k%,
fork=1,...,K;andi =1, ..., 4. For the sake of illustration, we have chosen the
Zipf’s parameters as follows (s, ..., s4) = (1.1, 1.1, 1.2, 1.2) and we have gener-
ated a sample of size n = 200 for each population. We have run an MCMC sampler
for a total of 35,000 iterations and a burn-in period of 15,000 iterations to predict
the number of new species that will be observed in an additional sample of size m,
where m varies from 20 to 200. The red curve in Fig. 1 depicts the estimated number
of new species that will be observed in further sampling for the different populations,
obtained applying the MCMC procedure of [1, Sect. 6.1]. The black curve represents
the number of new species estimated with an oracle strategy, i.e., sampling from the
true distribution generating the data. We observe that the two curves are close in all
the four populations, leading us to conclude that our strategy is able to truly predict
the number of new species observed in additional sampling. Figure 2 compares the
prediction of S, (a ) obtained through the hierarchical PY (red curve) and through the
oracle strategy (black curve), each panel corresponds to a population. We observe an
accurate prediction of this statistic. It is remarkable to underline that the prediction
of S,;"’ "[) is achievable in a dependent framework only.

4 Discussion

We addressed the problem of prediction in the context of species models with
multiple-samples information. We remark that similar problems were first faced
in [10] under the exchangeability assumption, i.e., in the presence of only one pop-
ulation. In [7, 10], the authors derived tractable analytical expressions for many
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Fig. 1 Prediction of the number of new species observed in each population for different values of
the additional sample size. The oracle prediction is shown in black, the estimated value is in red.
Shaded bands correspond to 95% estimated credible intervals

quantities of interest when the nonparametric prior is a Pitman—Yor process. The
partially exchangeable framework we have investigated here is much more involved
and the posterior distributions of the two statistics (5) and (6) are not available in
closed form. Therefore, we have used an MCMC sampler to estimate these quan-
tities, implementing the prediction algorithm suggested in [1] and showing its role
in the context of species sampling. It is possible to use such a procedure to predict
the outcome of many other statistics depending on an additional sample of arbitrary
size, e.g., the number of shared species across two or more populations. Work on
this and related applications is ongoing.
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Fig.2 Prediction of the number of new species specific of each population (i.e., not shared with the
others) for different values of the additional sample size. The oracle prediction is shown in black,
the estimated value is in red. Shaded bands correspond to 95% estimated credible intervals
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Algorithm for Automatic Description of )
Historical Series of Forecast Error in Gediay
Electrical Power Grid
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Abstract The EU-FP7 iTesla project developed a toolbox that assesses dynamic
security of large electric power systems in the presence of forecast uncertainties.
In particular, one module extracts plausible realizations of the stochastic variables
(power injections of RES Renewable Energy Sources, load power absorptions). It is
built upon historical data series of hourly forecasts and realizations of the stochastic
variables at HV (High-Voltage) nodes in the French transmission grid. Data reveal
a large diversity of forecast error distributions: characterizing them allows to adapt
the module to the data, improving the results. The algorithm here presented is aimed
to automatically classify all the forecast error variables and to cluster them into
smoother variables. The main steps of the algorithm are filtering of the variables
with too many missing data or too low variance, outliers detection by two meth-
ods (Chebyshev inequality, quantile method), separation of unimodal variables from
multimodal ones by exploiting a peak counting algorithm, Gaussian mixtures, com-
parison with asymmetrical distributions, multimodality index, clustering of the mul-
timodal variables whose sum is unimodal, comparing two alternative algorithms (the
former based on hierarchical clusterization, accounting for correlation and geograph-
ical closeness, and the latter on the identification of the same initial characters in the
identification codes).
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1 Introduction

The iTesla project [1, 2], led by the French transmission system operator RTE and
co-funded by the European Commission FP7, develops an approach to perform
the dynamic security assessment of large power systems in an online environment,
accounting for dynamic problems and for the forecast uncertainties due to renewable
sources and load, associated to a variable time horizon spanning from online opera-
tion to several hours ahead of operation. The outcome of the project is a free toolbox
described in [3] and available on GitHub [4]. After the end of the iTesla project,
further developments of the platform have been carried out in two directions [5-7]:
the choice of the suitable historical dataset to train the offline uncertainty model of
the platform, and a deeper analysis of the large amounts of available historical series
of forecasts and snapshots. The forecast error time series has very different profiles:
some are continuous and others take discrete values, some reflect a kind of periodic-
ity and others have sudden variations; also, the relevant distributions differ a lot. The
iTesla tool can take into account this variety, thanks to a deep analysis of the forecast
errors described in this paper: a classification into unimodal and multimodal vari-
ables allows to better tune the sampling module, while the clustering phase combines
some subsets of multimodal variables transforming them into unimodal, obtaining a
reduction of the problem dimensionality.

The novelty shown in this paper is the automatic processing of some thousands of
historical series [8]. This paper starts with the algorithm description in Sect. 2, which
explains the phases of raw data pre-processing, the overall descriptive statistics and,
finally, the comparison of two clustering methods. Section 3 shows one application
of the overall algorithm in a real dataset. Section4 concludes.

2 Algorithm

The input is composed by a set of thousands of historical series of renewable energy
sources power injections and load absorptions of the French electrical high trans-
mission grid and one set of their forecasts done the day before; the timestamps are
hourly, the time domain is at least 1 month. The variables under study are the forecast
errors of active and reactive powers, computed as in Eq. 1.

errorpournode = snapshothournode — forecaSthour,node

Yhour € [hout,ip, hout ;] (1)
The algorithm for automatic description of historical series of forecast errors has
three main steps:

1. Preprocessing: removal of not significant variables, detection and elimination of
outliers;
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2. Descriptive statistics: calculation of the first four moments, calculation of linear
correlations, multimodality analysis, classification of variables;

3. Clustering: algorithm based on hierarchical clustering, clustering of variables
lying in the same substation.

2.1 Preprocessing

The raw input data contain many time series that are not significant from a statistical
point of view; the input series where more than 30% of timestamps are missing
values, or more than 70% of timestamps are constant values, usually 0, and the
series with a variance lower than 1 MW?(Mvar?) are filtered out. The preprocessing
regards both forecast and snapshot series, and then it runs also on their differences.
The subsequent steps run only on the forecast error time series.

The retained variables must still be managed in order to remove the observations
that have an abnormal distance from the other values in the random sample, the
outliers. This definition leaves to the analyst the decision of which distances will be
considered abnormal, and several methods can help him [9], but none of them works
correctly on all of the thousands of forecast error time series. The sequel describes
the process of outliers’ detection and deletion that runs better on all the variety of
the input series.

The tool implements the outliers detection method based on Chebyshev’s Inequal-
ity: for each integrable random variable X, with finite mean p and variance o, it holds
valid the expression:

1
P (X —pu| >no) < el 2)

The most used parameter in literature is n = 3, and a lot of tests based on trials-
and-errors confirm the goodness of this value; the extreme values stay in the com-
plementary set of [u — 30, 1 + 301].

The second outliers detection method is the Quartile Method, based on the com-
putation of first Q1 and third Q3 quartiles; the extreme values are contained in the
complementary set of [Q1 —n (Q3 — 01), Q3+ n (Q3 — Q1)]. From literature,
the most frequently used parameter is n = 1.5, but for the analysed forecast error
time series this value detects too many extreme values, and several tests based on
trials-and-errors select the parameter n = 3. After that, the MAD test runs on the
detected extreme values: be X the series and X; its elements, the outliers are those
X; that satisfy the condition

|X; — median(X)|
>
median (|1 X; — )

3)

Only the operator’s expertise can decide if an extreme value is an outlier or not;
but it is not possible to make the resolve for some thousands of variables. In order
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to automate the decision, the output of both methods are compared: their resulting
sets are of different size, where the smallest is a subset of the biggest, and only the
last one is selected for the subsequent steps. The final check is about the cardinality
of the selected set: if it is lower than 7% of the number of variable’s records, their
elements are classified as outliers and so removed, otherwise, they are considered as
extreme values. This limit is due to the discrete variables, where the record related
to an extreme value might be misinterpreted as outliers.

2.2 Descriptive Statistics

This subsection summarizes the phases of the overall statistical description.

The initial descriptive information comes from the computation of the first four
moments: average, variance, skewness and kurtosis; their quantiles allow an initial
classification of the variables.

The linear correlation between each pair of time series is computed through the
Pearson index, in view of the future clustering phase. The analysis of the output
matrix helps detect also the variables that are replicated in two different nodes due
to the state estimation system.

The Multimodality Algorithm carries out the time series classification into vari-
ables with multimodal or unimodal distribution. It is composed of four consecutive
steps where the first two work on the whole set of variables, and the last two run only
on the variables detected as multimodal in the previous steps. Four different methods
for multimodality detection are combined because none of them can guarantee the
best result if applied individually on all the variables, which are characterized by
large differences in the relevant distributions; each step of the algorithm improves
the result of its predecessor. The workflow, shown in Fig. 1, runs once for each time
series.

The first step finds the number of peaks working as follows: it generates the
histogram of the variable samples with 50 equally spaced bins, each one containing
at least 10 elements, both numbers decided by the rule of thumb. It considers the
height of each bin and compares it with the previous one and next one: if the height of
the analysed bin is higher than its neighbours, it is considered a local maximum. The
peaks are the local maxima that stay between two lower local maxima. The result is
a big set of values, most of which are not significant: it is necessary to better define
the number of modes of each variable in the next step.

A Gaussian Mixture tries to fit the distribution. Two nested loops are composed:
the outer runs changing every time the number of the mixture components, choos-
ing from the number of peaks identified in the previous step down to 1. For each
number of components, the inner loop runs three times the iterative Expectation—
Maximization Algorithm [10], to find the better parameters (averages, covariance
matrices, component proportions) of the mixture. The best fitting of the inner loop
has the lowest Akaike Information Criterion (AIC) [11], while the best fitting of the
outer loop has the lowest Bayesian Information Criterion (BIC) [12] ; both indices
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Fig. 1 Multimodality algorithm

BIC = —2In(L) +k - In(n); AIC = —2In(L) + 2k. 4)

A skewed and platykurtic histogram usually is approximated by a multimodal
mixture, but a unimodal distribution could fit the histogram even better. Six unimodal
distributions (Weibull, Logistic, Gamma, Log-Normal, Generalized extreme value,
T-location scale) try to fit the variable, and the one with lowest BIC is selected and
compared also with the Gaussian Mixture. If the unimodal distribution has the lowest
BIC, the algorithm stops here and restarts analysing the next variable.
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The variables described by a multimodal Gaussian Mixture are subjected to a
final step, the computation of Ashman’s D index [13], that measures the distance
between the pairs of mixture components. This index is applied to the mixtures of
distributions with unequal variances: let 1) and p, the component’s averages, o} and
o, their standard deviations; a two-component mixture is unimodal if and only if

D:ﬁlﬂl_ﬂﬂ <2. (5)

[ 2 2
o + 05

If a mixture contains three or more modes, the Ashman’s D index is computed for
each pair of components, and the variable is included among the multimodal if at
least one D index is higher than 2.

At this point, all the variables are classified, taking into account their averages,
variances and number of peaks. All the averages are collected, and their percentiles
are computed: the “low” averages stay within the percentiles [25th, 75th), while
the “high” averages stay in the complementary interval. Also, the variances are
classified based on their percentiles: they are “low” if they are lower than the 80th
percentile, “high” if higher. The third step of classification is the number of peaks of
the distribution, that can be “one” or “more than one”.

2.3 Clustering Algorithms

Clustering the multimodal variables and combine them into fewer unimodal series is
important for two reasons: the sampling module of the iTesla platform can provide
a more accurate result when dealing with unimodal variables. Moreover, the dimen-
sionality of the problem is reduced. Two algorithms, which are based on different
clustering criteria, are run. The clusters are composed of two or three variables of
the same type, all active or all reactive power.

The first algorithm is based on Hierarchical Clustering, shown in the left part of
Fig. 2. The power absorptions or injections at two electrical nodes that are linearly cor-
related could be influenced by the same local phenomenon; this correlation is signif-
icant and durable if the nodes are geographically closed and subject to the same phe-
nomena for a long time, otherwise, it could be only a random correlation. The algo-
rithm collects six consecutive steps; at first, it computes the distances between nodes
based on Pearson’s index previously computed: dist(X,Y) =1 — |corr(X, Y)|;
after that it implements the hierarchical clustering, grouping the more correlated
variables in pairs. Then, each cluster is subjected to three checks. The first looks for
the equal variables: X and Y are equal if they differ for at most 1 MW (Mvar) for
at least the 97% of their elements. N is the number of elements of the time series,
maxi = 3% of N:
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Fig. 2 Left: Algorithm based on hierarchical clustering. Right: Algorithm CVBSS

given I ={1,2,...,N}, J ={ji, jos - Jmaxi} C 1
ifIXi—Y|<1Viel\J=>X=Y (6)

I MW (Mvar) is negligible in the forecast and snapshot time series, considering
also some rounding or measurement errors and their propagation. If two variables
are equal, they are put within the replicated variables and their cluster is eliminated.
The second check is about the geographical distance, computed by considering the
latitude and longitude of the nodes. Given the clustered variables X and Y, the cluster
is retained only if Y belongs to the 50 nodes closest to X, selected by the nearest
neighbour algorithm, where 50 is a suitable trade-off for both the very concentrated
urban nodes and the distant nodes in the countryside. If a cluster is retained until
here, the historical series of the involved variables are summed together: the sum
is preserved only if the multimodality algorithm of Fig. 1 identifies it as unimodal.
This new unimodal variable is used in the iTesla tool instead of the two or three
multimodal clustered variables.

The second algorithm is Clustering Variables Belonging to the Same Substation
(CVBSS), on the right side of Fig.2. In the electrical grid, many substations contain
one bus-bar that works like one electrical node if the bus coupler is closed, and it
is splitted into two or three electrical nodes if the bus coupler is open. The variable
associated with each node contains the measured values when the bus coupler is open,
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while the total substation measure is divided into two or three fictitious measures
when the bus coupler is closed. The grid topology information (bus coupler status)
is not available in advance, thus the forecast works well at the substation level, but
it cannot predict correctly the power at the individual node level. Consequently, the
forecast errors of each individual node could be large, with an irregular distribution
and many peaks, but the sum of the series at the substation level usually becomes
Gaussian, so the adopted strategy is to sum the variables referring to the nodes lying
in the same substation, in order to obtain one variable with the smoother distribution.

The algorithm CVBSS groups the variables which refer to the same substation and
which have a multimodal distribution of the forecast error. As shown in Fig. 2 left, it
selects only multimodal variables, working separately on active and reactive power.
It selects the pairs or triplets of variables that stay in the same electrical substation,
then it identifies the equal variables like in Eq. 6 and it separates them from the others.
The clustered time series are summed together: if the sum is multimodal the cluster
is eliminated, otherwise, it is retained.

3 Case Study

This section shows one application of the algorithm on 7808 stochastic variables
of the electrical French transmission grid, only active power from 1 January 2016,
00:30 to 31 January 2016, 23:30; considering that there is a subset of instants with
missing values, in total, there are 737 hourly timestamps in each time series. The
preprocessing phase selects the significant variables in both snapshots and forecasts,
removing those with too many missing or constant values, or with a variance lower
than 1MW, this phase retains 5194 variables, 67% of the input, from which the
forecast error series derive as in Eq. 1. The distribution of the time series averages is
Gaussian, half of the values are concentrated within the interval [—0.27, 0.06] and the
25% stay out of the interval [—1.27, 1.06]. One variable has an average very far from
the rest of the series, equal to —47.6 MW. The 80% of variables have the variance
lower than 9.07MW?2, while, in the 2% of cases, it is greater than 135 MW?; two
variables have the variance higher than 36,000 MW? (one has also the highest average,
the other lies in the same substation). A total of 3093 nodes are combined in different
manners, with some repetitions, to generate 2006 pairs of variables correlated more
than 0.99; 209 variables are equal in pairs or triplets; 201 series are combined, with
some repetition, in 127 pairs with a correlation higher than 0.9 in absolute value.
Figure 3a shows the results of the application of the multimodality algorithm to the
case study: each step reduces the number of multimodal variables. In the end, the
algorithm finds 614 multimodal variables and 4580 unimodal ones. The variable
classification, shown in Fig. 3b, is based on the values of their first two moments and
on the number of their peaks. “Low averages” fall within the interval around 0, “low
variances” are lower than 9.07 MW?2, the “high” levels stay in the complementary
intervals, different colours refer to the number of peaks in the distributions, the height
of each bin is the cardinality of each class. The major group is composed by variables
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with low average, low variance and one peak (the desirable group); the smaller group
have low average, high variance and many peaks; considering each bin of the bar
diagram, the most numerous part is the one composed by unimodal variables; the
groups with high variance are smaller than those with low variance. The clustering
based on hierarchical method finds 16 clusters, while CVBSS generates 18 groups
with 2 variables and 4 groups with three variables: the latter is preferable in this
example. A cluster image is in Fig. 3c: the histograms of three variables in the same
substation are reported in blue, their unimodal sum in magenta.

4 Conclusion

This paper has presented an algorithm for the automatic analysis of historical series
of the forecast errors in power systems. Initially, the algorithm proposes an overall
statistical description of all the series. Then, it allows to divide the unimodal variables
from the multimodal ones; the latter are grouped in clusters, and then aggregated into
unimodal variables with smoother distributions, because they are more suitable to be
processed in the subsequent stages of the iTesla platform. The results of the algorithm
applied to a case study related to the French system show that multimodal variables
are a small percentage (about 12%) of the total number of variables under test. More-
over, the clustering process detects few tens of clusters which combine multimodal
variables into smoother unimodal ones. The algorithm is a valuable contribution to
increase the accuracy of the sampling module of the platform developed during the
iTesla project to assess the security of large power systems in the presence of forecast
uncertainties.
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Linear Wavelet Estimation in Regression )
with Additive and Multiplicative Noise e

Christophe Chesneau, Junke Kou, and Fabien Navarro

Abstract In this paper, we deal with the estimation of an unknown function from
a nonparametric regression model with both additive and multiplicative noises. The
case of the uniform multiplicative noise is considered. We develop a projection esti-
mator based on wavelets for this problem. We prove that it attains a fast rate of
convergence under the mean integrated square error over Besov spaces. A practi-
cal extension to automatically select the truncation parameter of this estimator is
discussed. A numerical study illustrates the usefulness of this extension.

Keywords Nonparametric regression + Multiplicative noise * Rates of
convergence + Wavelets

1 Introduction

We consider the following unidimensional nonparametric regression model
Yi=Uf(X)+V, iefl,....,n}, (D

where f : [0, 1] — R is an unknown regression function, X, ..., X,, are n identi-
cally distributed random variables with supporton [0, 1], Uy, ..., U, are n identically
distributed random variables having the uniform distribution on a symmetric interval
around 0 and Vi, ..., V, are n identically distributed random variables. Moreover, it
is supposed that X; and U; are independent, and U; and V; are independent for any
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i €{l,...,n}. Additional technical assumptions on the model will be formulated
later. We aim to estimate the unknown function r := f2 from (X4, Y1), ..., (X,, Y,);
the random vectors (Uy, V1), ..., (U,, V,) form the multiplicative-additive noise.
The model (1) can be viewed as a natural extension of the standard nonparametric
regression model; the main novelty is the presence of a multiplicative uniform noise
that perturbed the unknown function f. Such multiplicative regression model as (1)
is very popular in various application areas, particularly in signal processing (e.g.,
for Global Positioning System (GPS) signal detection in which not only additive
noise but also multiplicative noise is encountered [1]), or in econometrics (e.g., for
volatility estimation where the source of noise is multiplicative [2], also for deter-
ministic and stochastic frontier estimation where the noise is multiplicative and both
multiplicative and additive, respectively [3]). On the other hand, let us mention that
some connexions exist with the so-called heteroscedastic nonparametric regression
model. See, for instance, [4—6]. In particular, [4] consider the estimation of r in the
heteroscedastic nonparametric regression model defined as (1) with X determin-
istic, V| deterministic but unknown (it is an unknown function of X;) and general
assumptions on Uj. The form of the model is the same but the intrinsic definition is
different. In this paper, we propose to estimate r with wavelet methods. Such methods
have the advantage to capture the possible complexity of this unknown function. A
natural linear wavelet estimator is then developed. With a suitable choice of a tuning
parameter inherent of this estimator, we prove that it attains a fast rate of convergence
under the mean integrated square error over Besov spaces. One drawback of this esti-
mator is that the theoretical choice for the tuning parameter depends on a supposed
unknown smoothness of r. We then provide a practical solution to this problem to
choose the truncation level of our linear wavelet estimator using an adapted version of
the twofold Cross-Validation (2FCV) method introduced by Nason [7]. A numerical
study is performed to show the applicability of this extension.

The rest of this paper is organized as follows. In Sect. 2, we briefly present basics
on wavelets and Besov balls. Additional assumptions on the model (1), the considered
wavelet estimator and the main result are given in Sect. 3. Section4 is devoted to the
simulation study. The technical details for the proof of our main result are postponed
in Sect. 6.

2 Basics on Wavelets and Besov Balls

For the purpose of this paper, we use the compactly supported wavelets of the
Daubechies family. We present the essential below, all the details can be found in,
e.g.,[8,9]. Forany j > 0, weset A; = {0, . ..,2/ —1}and, fork e Aj,

Gix(x) =272 x —k),  Yju(x) =222/ x — k).

Following the methodology of [10], there exists an integer t such that, for any integer
Jo = 1, the collection of functions
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y = {¢j0,k7 k € A]Ua I»/f],k’ .] € N_ {07 ey jO - 1}7 k € A]}

forms an orthonormal basis of L2([0, 1]). Therefore, for any integer jo > t and
h € L2([0, 1]), we have the following wavelet expansion:

h(x) =" judiok@) + Y Y Biatrju(x), x (0,1,

keAj, Jj=jokeA;

where .

1
ok =f0 h(x)¢jox(x)dx, Bjk =/0 h(xX) ¥ (x)dx,

Also, let us mention that fol ¢;x(x)dx = 277/?, which will be a crucial technical
point in the proof. Let P; be the orthogonal projection operator from L?([0, 1]) onto
the space V; with the orthonormal basis {¢; x(-) = 2//2¢(2/ - —k), k € A;}. Then,
for any & € L?([0, 1]), we have

Pih(x) = Y ajupjx(x). x €0, 1].

keA;

Besov spaces have the feature to capture a wide variety of smoothness properties
in a function including spatially inhomogeneous behavior, see [11-13] for further
details. Definitions of those spaces are given below. Suppose that ¢ is m regular
(i.e.,¢ € C" and |[D*p(x)| < c(1 + |x|2)_’ foreach! € Z, witha = 0,1, ..., m).
Leth € LP([0, 1]), p,q € [1,00] and 0 < s < m. Then the following assertions are
equivalent:

(1) h € BS (10, 11); () {27°11Pjs1h — Pihll,) € 1ys (3) (2797772118, 11,) €
l4. The Besov norm of & can be defined by

. ‘A_L+l
llss, = et )p + 127724215 M) e lgr Where 1B, 110 =" |B;l”.

keA;

3 Assumptions, Estimators, and Main Result

Technical assumptions on the model (1) are formulated below.

A.1 We suppose that f : [0, 1] — R is bounded from above.

A.2 We suppose that X; ~ % ([0, 1]).

A.3 We suppose that Uy ~ % ([0, 6]) with 8 > 0 a fixed real number.
A.4 We suppose that V| has a moment of order 4.

A.5 We suppose that X; and V; are independent for any i € {1, ..., n}.
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Let us observe that A.2 specifies that we consider a uniform design and that A.3
specifies that the uniform multiplicative noise is considered over a symmetric interval
around 0. The assumption A.5 implies that V; is not a function of X; a fortiori.

We construct our linear wavelet estimators for r as follows:

fjoq”(x) = Z &jo.kd)jo,k(-x)s X € [07 1]7 (2)
keAj,
where
) 3 1 n .
&k = o3 (; D Y7hi(Xi) —E(V))2 ,/2> : 3)
i=1

The definition of &;  rests on technical consideration which will be presented later.
In spite of the simplicity of its construction, its performances strongly depend on
the choice of level jy. Further details on the linear wavelet estimator in a standard
nonparametric regression setting can be found in [11]. Recent developments can be
found in [14].

The following result determines the rates of convergence attained by 7, ,, via the
MISE over Besov spaces.

Proposition 1 Consider the problem defined by (1) under the assumptions A.1-A.5,
letr € B;qq([O, 1)) with p, q € [1,00), s > 1/p. Then the linear wavelet estimator

Fiom With 20 ~ n=51 and s' = s — (1/p — 1/2) satisfies

1 ,
E |:/ (fjoy,,(x) — r(x))2 dx] < N,
0

The level jj as defined in Proposition 1 is chosen to minimize as possible the MISE of
A . . .
7j,.n over Besov spaces. The rate of convergence n™ >+1 is not a surprise; it generally

corresponds to the one obtained in the standard nonparametric regression estimation.
See [6, 11, 15]. The proof of Proposition 1 is based on a suitable decomposition of
the MISE and some intermediary results on the probabilistic properties of the wavelet
coefficient estimator (3) (see Lemmas 1 and 2 in Sect. 6). The rest of this section is
devoted to the practical aspect of the estimator (2), with alternatives on the choice
of the level jy. In particular, we propose a candidate by adapting version of the
2FCV method originally developed by Nason for choosing the threshold parameter
in wavelet shrinkage [7].

4 Simulation Study

In order to illustrate the empirical performance of the proposed estimator, a numerical
illustration was produced. In order to set in a realistic context, we proposed to use
an automatic selection method of the estimator truncation parameter (not depending
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Fig. 1 a-—c: The three test (squared) functions to be estimated

on the regularity of the function to be estimated). Simulations were performed using
R and in particular the rwavelet package [16], available from https://github.com/
fabnavarro/rwavelet.

The simulated data were generated according to (1), where n = 4096, X;’s are
uniformly distributed on [0, 1], U;’s are % ([—1, 1]) (so 8 = 1) and V; are A4 (0, '2)
variables and independent of X;’s with o> = 0.01. Daubechies’ compactly-supported
wavelet with eight vanishing moments were used. We consider three standard test
functions for f, commonly used in the wavelet literature (HeaviSine, Ramp and
Bumps, see [17]). Recall that we wish to estimate r = f2. The squared version of
those functions are plotted in Fig. 1.

In the case of fixed design, the calculation of wavelet-based estimators is simple
and fast, thanks to Mallat’s pyramidal algorithm [9]. In the case of uniform random
design, the implementation requires some changes and several strategies have been
developed in the literature (see e.g., [18, 19]). For uniform design regression, [20]
proposed to use and studied an approach in which the wavelet coefficients are com-
puted by a simple application of Mallat’s algorithm using the ordered Y;’s as input
variables. We have followed this approach because it preserves the simplicity of cal-
culation and the efficiency of the equispaced algorithm. In the context of wavelet
regression in random design with heteroscedastic noise, [21, 22] also adopted this
approach. Nason adjusted the usual 2FCV method to choose the threshold parame-
ter in wavelet shrinkage (see [7]). His strategy was used for the selection of linear
wavelet estimators by [22]. We have chosen to use this approach to select the trun-
cation parameter jy of the linear estimator 7, ,. More precisely, we built a collection
of linear estimators 7 o> Jo =0,1,...,log2(n) — 1 (by successively adding whole
resolution levels of wavelet coefficients), and select the best among this collection
by minimizing a 2FCV criterion denoted by 2FCV (jy). The resulting estimator of
the truncation level is denoted by fo and the corresponding estimator of r by 7 o
(see [22, 23] for more details).

For a single experiment, and for each of the three test functions, with a sample
size n = 4096, we display the observations and the unknown function r in Fig. 2a. A
sample of three estimators from the collection is also shown in the Fig. reffig:singleb.
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Graphs of the curves associated with the selection criterion (i.e. 2FCV (jj)) are also
displayed in Fig. 2c. In order to be able to evaluate the performance of this criterion,
the Mean Square Error curves (i.e., MSE(Fj, », r) = % (X)) = Fign (X))
are also shown (in blue). We denote by j, the parameter selected by minimizing
this quantity. It can be observed that 2FCV (jy) gives very reliable estimate for the
MSE(#},.n, 1), and in turn, also a high-quality estimate of the optimal model. Indeed,
in this case, the method allows to find the oracle of the collection (i.e., that obtained by
assuming the regularity of the function to be estimated known) for the three signals.

5 Conclusion

In this paper, we develop a simple wavelet methodology for the problem of estimating
an unknown function subject to additive and multiplicative noises. Focusing on a
uniform multiplicative noise, we construct a linear wavelet estimator that attains a
fast rate of convergence. Then some extensions of the estimator are presented, with
a numerical study showing the usefulness of the method.

A possible extension of this work would be to consider a more general assumption
on the distribution of the multiplicative noise. Another possible extension would
be to construct another wavelet estimation procedure involving thresholding of the
wavelet coefficient estimators and also dependence on the observations, as in [24]
for the additive noise only. These aspects need further investigations that we leave
for future work.

6 Proofs

To prove Proposition 1, we use the following two lemmas.
Lemmal Letj>r1,ke A &j,k be (3). Then, under A.1-A.5, we have
E[&,k] = k-

Proof of Lemma 1. Using the independence assumptions on the random variables,
A.1-A.5 with E[U,] = 0, observe that

E[UiVi f(XD¢;x(XD)] = EIUEVIIE [ f (X 1) (X1)] =0

and

1
E[Vi¢;x(X)] = EIVIIE [¢;«(X1)] = E[V/] / ¢jr(x)dx = E[VZ]27//2,
0
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Therefore, using similar mathematical arguments with E [U}] = 93—2, we have

. 3 11 »
Eléjxl = 7B L > YPejk(Xi) —EIVi12 1/2}
i=1

3 .
- (B[rPojucxn] ~ BIVPR7)
3
-y (E [Ulzr(X1)¢j,k(X1)] + 2R [U VL f (XD (X)] + E [V12¢j’k(xl)]

~E [V12¢j,k(X1)])
3 2 !
= SE[UR] Bl 00e00] = [ rwyatds = oy

Lemma 1 is proved. U

Lemma 2 Let j > t such that 2l <n ke Aj, &j,k be (3). Then, under (A.A.1)—
(A.5),

1
E[@x — ;0] S P

Proof of Lemma 2. Owing to Lemma 1, we have E[&; x] = &} «. Therefore

9 1 & )
Bl(@; — o)1 = Var [&;,] = Var [; D YRia(Xi) — E[vlzlz—f/z]

i=1
9 1 <
= 9—4‘/611’ |:; ; le(;bj,k(Xl):|
91
g var [Yig;x(XD] S
1
S S [E[UFF (X005 XD ]+ E [V (X0)]]

1
— [E[UE[fAXDe2 XD] +E[Vie2, (XD]]. @

E[Y{¢7(XD]

S| =

S

By A.1 and E [qu%k(xl)] = J1 ¢, (x)dx = 1, we have E [f“(xl)quk(xl)] <1
On the other hand, by A.4 and A.5, we have

E [Vf¢jz,k(X1)] =E [V14] E [¢12',k(X1)] =E [V14] Sl

Thus, all the terms in the brackets of (4) are bounded from above. This ends the proof
of Lemma 2. O
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Proof of Proposition 1 from Lemmas 1 and 2. The main lines of the proof use
standard arguments (see, for instance, [11]). The key result remains Lemma 2 above
and a suitable choice for j, which balance the bias and the rest term of term. More
precisely, by the definition of projector, we have

1
. U i) = r(x)yzdx} =E[[#jun — Pir
0

RN X G

The orthonormality of the wavelet basis gives

2
A 2 A A 2

E I:”r.io»ﬂ — Pir ‘2] =E || Y @x—aj 00k | =D Bl@x— ;0
keA;, 2 keAj,

According to Lemma 2, |A}, | ~ 2/ and 2% ~ n¥7+T,
n 2 2Jo _ 2

E[[|7jn = Prrl3] S = S n75. (©)

: n

When p > 2, s = 5. By Holder inequality and r € B;’q([(), 1),
IPjyr —rll3 S I1Pjyr — 7l S 2720 S =
Whenl <p <2ands > 1/p, Bf,.q([O, 1) € B;:oo([o’ i)
I1Pjyr —rll3 < i 27208 < p=2n’ <
j=io

Therefore, in both cases,
25"
I1Pjor = rll3 S n” 2. o

By (5), (6) and (7), we obtain

1 /
]E|:/ |f]~0,,,(x) —r(x)|2dxi| Sn—zfﬁ
0

Proposition 1 is proved. O
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Francesca Romana Crucinio and Roberto Fontana

Abstract Algebraic sampling methods are a powerful tool to perform hypothesis
tests on conditional spaces. We analyse the link of the sampling method introduced
in [6] with permutation tests and we exploit this link to build a two-step sampling
procedure to perform two-sample comparisons for non-negative discrete exponen-
tial families. We thus establish a link between standard permutation and algebraic-
statistics-based sampling. The proposed method reduces the dimension of the space
on which the MCMC sampling is performed by introducing a second step in which
a standard Monte Carlo sampling is performed. The advantages of this dimension
reduction are verified through a simulation study, showing that the proposed approach
grants convergence in the least time and has the lowest mean squared error.

Keywords Conditional tests - Discrete exponential families - Markov basis -
Markov chain monte carlo

1 Introduction

Consider two samples Y| and Y, of size n| and n,, respectively, coming from some
non-negative discrete exponential family with natural parameter v (-), base measure
H () and normalising constant G (-)

fOlw)=Gu)H(y)exply - ¥(un)} i=1,2.

We are interested in conditional tests that exploit the joint sample Y = (Y, Y>)
of size N = ny + nj to test
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Hy:p=p =u against  Hj:p; 2 Up. (D)

Specifically, there exists a uniformly most powerful unbiased (UMPU) procedure
performed conditionally on the sum of the entries of the pooled sample 7' = ZIN: Y
[10]. Moreover, T is a sufficient statistic for the nuisance parameter of the test, the
population constant Sy, if we assume the standard one-way ANOVA model for the
means ¥ (u;) = Bo + B, i =1,2[11].

The test statistic adopted in UMPU tests is U = Y 'L, ¥; and its conditional
distribution given 7" under Hy in (1) is

ny ni+n
> [THOD- X I1 HOD
VIEF p u i=1 Y2€F ny 1u i=n1+1
folu | T =) =— o
> > [lHO)- X [T HO)
u=0y eF, » i=1 Y2€F py 1—u i=n1+1

where H is the base measure of the non-negative discrete exponential family f. We
denote by %, , the set of non-negative integer vectors of length n with sum of entries
equal to x.

In order to perform the test (1), we can either find the critical values for any
given risk of type I error or, alternatively, compute the p-value corresponding to the
observed value u,,; of U. Unfortunately, the distribution (2) can rarely be computed
in closed form. In most cases, it is necessary to approximate (2) through Markov
Chain Monte Carlo (MCMC).

MCMC sampling methods suffer two major drawbacks in the discrete setting: the
construction of the Markov basis needed to build the chain is computationally expen-
sive and the chain may mix slowly [8]. The idea of speeding-up the MCMC sampling
is therefore not new in the Algebraic Statistics literature. In [7], the first drawback is
addressed in the case of bounded contingency tables, instead of computing the entire
Markov basis in an initial step, sets of local moves that connect each table in the
reference set with a set of neighbouring tables are studied. A similar approach for
bounded two-way contingency tables under the independence model with positive
bounds is presented in [13]. A hybrid scheme using MCMC and sequential impor-
tance sampling able to address both drawbacks has been proposed in [8]. We propose
a strategy that exploits the structure of the sample space for UMPU tests and does
not require sequential importance sampling but only standard independent Monte
Carlo sampling.

2 Markov Chain Monte Carlo Samplings

As a consequence of the conditioning on T = Z:’:{"z Y;, the sample space to be

inspected under H), is the fibre of non-negative integer vectors of size N = n; + n,
and with entries which add up to ¢
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N
Fne={N,... Yy eNV Y ¥ =10Y =1}, (3)
i=1

where 1y = (1, ..., 1) is the vector of length N with all entries equal to 1.
The distribution we are interested in is the cumulative distribution function of the
test statistic U = ) 1, Y; given T’ = ZlN=1 Y; = t under H, as specified in (1)

Fy | Fy)=PUW <ulyeIn)= Y lumpz®Mfyln., @
YEF N

where U(y) =Y 7', yi and Ly<u(y) is 1 if U(y) <u and O otherwise and
fiylw = ]_[lN=1 f(y; | w) with a slight abuse of notation.

In the following, we describe two MCMC algorithms to sample from .#y ;. The
first one samples vectors y € Fy ,, while the second one samples orbits of permu-
tations w C Fy ;. Both MCMC algorithms make use of a Markov basis, a set of
moves allowing to build a connected Markov chain over %y ; using only simple
additions/subtractions [6]. Specifically, a Markov basis for a matrix A is a finite set
of moves {my, ..., mg} such that

1. m; belongs to the integer kernel of A, 1 <i < K
2. every pair of elements X, y in .%y , is connected by a path formed by a sequence
(m, &) of moves m and signs ¢ = %1, and this path is contained in Fy ;.

Markov bases can be found analytically [5, 6] or using the algebraic software 4t 12

[1].

2.1 MCMC—Vector-Based

The first MCMC we consider is an adaptation of the algorithm used in [2, 3, 6] for
the fibre Fy ;.

An example of the Markov chain over %y ; is shown in Fig. la for N = 3 and
t = 6.Each vertex of the graph represents a vectory € .%y ; and each edge represents
an applicable move in the Markov basis. The number of states (i.e. vectors) and the
number of edges is given by

|V|=(t_]'_\,]\i;1>
-1\ t—1 N—1\ (2N -2
|E|=2(N—1)<N_1)+;(N_Z)<N—1—z><z—1>< 2 >

respectively [5].
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(a) Graph on the fiber .73 6. (b) Graph on the orbits of .73 6.

Fig. 1 Vector-based and orbit-based parametrisation of the fibre .#y ;

The target distribution of the Markov chain is the probability of samplingy € .Zy ;
under Hy as specified in (1)

N N N
f@lw=]]roilw=6w"exply @t [[HO) o< [THG.
i=1

= i=1 i=1

The estimator used to approximate (4) is the indicator function Iy y)<u) (y), Where
the ys are the sampled vectors.

2.2 MCMC—Orbit-Based

The second algorithm is built by exploiting the link of %y, with orbits of per-
mutations 7. Clearly, if y € %y ,, every permutation of y is an element of .Fy ,
too. Moreover, different orbits do not intersect. Therefore the orbits of permutations
7w C Fy, form a partition of Fy ;.

This partition is particularly interesting, as the elements which belong to the same
orbit have the same probability of being sampled from .Zy ,, [12].

Therefore, it is possible to devise a two-step sampling procedure:

Step 1:  Sample one orbit v from the set of orbits 7 C Fy ;.
Step 2:  Sample uniformly from 7.
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The first step can be performed through a MCMC algorithm similar to the one
described in Sect. 2.1 with target distribution the probability of sampling y in orbit

PN ANDE

yen

while the second one corresponds to a standard Monte Carlo sampling from 7.

The number of orbits of permutation 7 contained in the fibre is given by part(z, N)
[5], with part defined in [9, 14]. The values of the partition function can be computed
using the recurrence

|O| = part(t, N) = part(t, N — 1) 4+ part(t — N, N)

and depend on both the sample size N and the sum of entries ¢.

To perform Step 1, we parametrise the fibre % , in such a way that all the vectors
in the same permutation orbit are mapped to the same element. To do so, we consider
a frequency-based representation. In this representation the orbit 7 2.4y C P36 is
mapped into £, = (1,0, 1, 0, 1, 0, 0). In this notation, vectors (0, 4, 2) and (2, 0, 4),
which belong to the same orbit, correspond to the same frequency vector.

The target distribution in the frequency-based parametrisation is

t

N! !
Zf(Y|M)=#7T'Cl_[H(j)fj Ole_[H(j)f’,
=0

yer j=0

with #7 being the number of distinct elements in the orbit 7.
Because Step 2 corresponds to a standard permutation sampling, we consider the
distribution of U given T over one orbit 7, i.e. the usual permutation cdf,

1
Fy|m) =PWUM <ulyemn) = —3 Tum=o®). )

yen

3 Comparison of Vector-Based and Orbit-Based MCMC

Dividing the sampling procedure into the two steps described in Sect. 2.2 has a clear
computational advantage: Step 2 corresponds to a standard Monte Carlo sampling
from the orbit 7, which is faster than performing an MCMC sampling. On the other
hand, Step 1 performs an MCMC sampling over the set of orbits & contained in
Z .+, whose cardinality is smaller than that of the set of vectors in Fy ,:

t+N -1
V| = N1 > part(t, N) =|0| fort, N > 1.
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Table 1 Ratio between the number of orbits |O| and the number of vectors |V | in .#y , for several
values of N and ¢

N\t 5 10 15 20 30 50 100

5 0.056 0.030 0.022 0.018 0.015 0.012 0.010
10 0.004 45.107*1.3-107*|53-107° [1.7-107° [5.0-107° | 1.5-107°

15 6.0-107%2.1-107°(2.3-107° |4.4-1077 |44-107% |2.9-107° |1.4-

10710

20 1.6-1074{2.1-107% |9.5.107% |19.1-107? |29 3.9. 2.0-

10710 10712 10714

50 22-107° |6.7- 1.1- 5.4 - 1.0- 4.0- 2.8-

10—10 10—12 10—15 10—18 10—24 10—32

Table 1 shows the ratios between the cardinality of w € .#y , and the cardinality
of y € Fy, for values of N and ¢ between 5 and 100. Even for moderately sized
samples, the number of orbits contained in .Fy , is about two orders of magnitude
smaller than the number of vectors (e.g. for N = 5andt = 5|0|/|V| = 5.6 - 1072).

Hence, if we keep the number of iterations fixed and compare the number of
vectors inspected by the two algorithms, the orbit-based algorithm gives the highest
value, namely the number of iterations x the number of distinct vectors in the orbit
sampled at iteration i.

We show how the reduction in the dimension of the space explored by the MCMC
algorithm improves convergence and accuracy with respect to the truth (4) through
the simulation study in the next section.

4 Simulation Study

Assume that the two samples Y and Y, are Poisson distributed with mean p; and
W2, respectively. In this case, the exact distribution (4) under Hy is the binomial
distribution

Fy(u | Zy.) = P(Binomial(t, o) < u) = ) (2)9{;(1 —0)'",©)
k=0

with 9() = nl/(nl + n2) [10, 11]

We compare the exact conditional cdf above with the approximated cdfs given by
the vector-based algorithm, the orbit-based algorithm and the standard permutation
cdf over the orbit of the observed pooled vector (this is the limit case of the orbit-
based algorithm when only the observed orbit is sampled). A preliminary simulation
study is presented in [4].

We consider 9 scenarios built taking three sample sizes (n, ny) and, for each
sample size, three different couples of population means (1, 2)-
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The comparisons performed are two: first, we check the convergence behaviour
on a fixed runtime (15 s) for both algorithms; then we compare their accuracy through
the mean squared error (MSE).

4.1 Convergence Comparison

To compare how fast the two MCMC procedures converge to the true distribution (4),
we draw one random sample y,,,; for each scenario above and we run both algorithms
for 15 s. Figure 2 shows four examples of the behaviour of the two MCMC procedures
which are representative of the nine scenarios.

1.0 PERM
— — L e
08 08
06 06
= =
[T w
PERM
0.4 EXACT
0.2
0.0 ORBIT -e-ce- FIBER uu
-2 -1 0 1 -2 -1 0
LOG10{time+0.01) LOG10(time+0.01)
(a)n1 :6,}12 :4,,[11 = 1,/12 =15 (b)n1 = 10,n2 = 15,/11 = l,ﬂgil
P e Fien 1.0 —— PERM
e P EXACT
08 08 “EJr
06 06
2 =
e '
04
02
PERM (..
Emc.' O FmiR
00 e
-2 1 0 1

LOG10{time+0.01)
©n =10,np=15 11 =1, 42 =1.5

LOG10(time+0.01)
(@) n; =30,n=20,u; =1, =1

Fig. 2 Comparison of the convergence to the exact value (solid horizontal line) in 15s for the
vector-based algorithm (dashed line) and the orbit-based algorithm (solid line). The Monte Carlo
permutation estimate of Fyy (u | %) (dashed horizontal line) is reported too. The number of Monte
Carlo permutations per orbit is 5, 000. The plots show the estimates achieved as functions of the
log-time
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The orbit-based algorithm is very fast and achieves good convergence in ~ 0.1
seconds. On the contrary, the vector-based algorithm is much less efficient, in fact, its
convergence to the exact value is not always satisfactory even after 15s (Fig.2a, b).

Remark 1 It would be possible to further reduce the computational time required by
the orbit-based algorithm by exploiting one of the key features of this new approach,
namely the possibility of sampling from each orbit independently. The Monte Carlo
samplings in Step 2 could be made in parallel: once the chain reaches an orbit 7z the
Monte Carlo sampling over  can be performed while the chain keeps on moving
on the set of orbits.

4.2 Accuracy Comparison

For each scenario, we randomly generate 1,000 samples through which we compute
the MSE of the distribution estimated by the three procedures under study

1000 / u; 2
1 t; A
MSE = —— <§ (’)05(1—90)0—" — Fy(u; | f/“N,,f)> )
1000 = \ = \k

Both MCMC algorithms are run for 15s with no burn-in steps. The resulting MSE
for the nine scenarios is shown in Table2. As a further comparison, we report the
MSE given by the standard Monte Carlo permutation sampling over the observed
orbit.

The orbit-based algorithm always give the smallest MSE apart from scenario
ny =20, np =30, u; =1, up = 1, where the standard Monte Carlo permutation
sampling has the smallest MSE. Table 3 shows the ratio between the MSE of the

Table 2 Mean Squared Error (MSE) for the vector-based, the orbit-based and the Monte Carlo
permutation sampling. Both MCMC algorithms were run for 15s with no burn-in steps

ni ny w1 %) Orbit-based | Vector- Permutation
based
6 4 1 1 0.00012 0.0016 0.00284
6 4 1 1.5 0.00012 0.00083 0.00212
6 1 2 0.00016 0.00043 0.00221
10 15 1 1 0.00034 0.00131 0.00077
10 15 1 1.5 0.00009 0.00046 0.00074
10 15 1 2 0.00007 0.00017 0.00057
20 30 1 0.00069 0.00132 0.00036
20 30 1 1.5 0.00006 0.00053 0.00027
20 30 1 2 0.00001 0.00011 0.00009
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Table 3 Ratio between the MSE of the vector-based and the MSE of the orbit-based algorithm
(column 5) and ratio between the MSE of the standard Monte Carlo permutation sampling and the
MSE of the orbit-based algorithm (column 6).

ni ny 1531 1753 MSE MSE
vector/MSE | perm/MSE
orbit orbit
6 4 1 1 12.82 22.7
6 4 1 1.5 6.98 17.79
6 4 1 2 2.67 13.82
10 15 1 3.9 2.31
10 15 1 1.5 4.96 8
10 15 1 2 2.45 8.27
20 30 1 1.9 0.52
20 30 1 1.5 9.03 4.58
20 30 1 2 15.9 12.77

Table 4 Number of iterations for 15s

Scenario N. iterations Ratio
ni ny w1 i) Orbit Vector Vector/Orbit
6 4 1 1 23,977 53,842 2.25
6 4 1 1.5 24,169 53,210 2.20
6 4 1 2 24,560 57,382 2.34
10 15 1 11,950 52,504 4.39
10 15 1 1.5 11,564 54,836 4.74
10 15 1 2 7326 53,492 7.30
20 30 1 4675 45,576 9.75
20 30 1 1.5 3174 44,817 14.12
20 30 1 2 2572 48,003 18.66

vector-based algorithm and the MSE of the orbit-based algorithm (column 5) and
the ratio between the MSE of the standard Monte Carlo permutation sampling and
the MSE of the orbit-based algorithm (column 6). The MSE of the vector-based
algorithm is at least 1.9 times bigger than that of the orbit-based algorithm, while the
MSE of the standard Monte Carlo permutation sampling can be 22.7 times bigger
than that of the orbit-based algorithm (scenario 1).

The number of iterations made by the vector-based and the orbit-based algorithms
in the allocated 15 s are reported in Table 4. The orbit-based algorithm performs better
than the vector-based one even if the number of iterations made is lower: in 15, the
ratio between the numbers of iterations increases from twice to almost 19 times.
Despite this difference in the number of iterations, the orbit-based algorithm always
achieves lower MSE than the vector-based algorithm.
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5 Conclusions

The orbit-based algorithm grants a faster convergence to the exact distribution if
compared to the standard MCMC algorithm proposed in [6]. At the same time, it gives
more reliable estimates by decreasing the MSE. This simulation-based observation
can be proved by comparing the variance of the estimators used by the two algorithms
(the indicator function in (4) and the permutation cdf (5) respectively) [5].

When permutation-invariant statistics are used, the orbit-based algorithm is dra-
matically simplified. In this case, it is only necessary to walk among orbits of per-
mutations without performing the second-step sampling and thus the reduction in
computational time is significant.

Finally, it is worth noting that the MCMC sampling procedure based on orbits
of permutations establishes a link between standard permutation and algebraic-
statistics-based sampling that, to the best of our knowledge, has not been previously
noted.

A preliminary version of this work has been presented at the 4th ISNPS conference
in June 2018 in Salerno, Italy. Extensions of the present work include hypothesis
testing for K > 2 groups and data fitting [5].
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Donatella Danielli, Arshak Petrosyan, and Camelia A. Pop

Abstract In this note, we give a brief overview of obstacle problems for nonlo-
cal operators, focusing on the applications to financial mathematics. The class of
nonlocal operators that we consider can be viewed as infinitesimal generators of
non-Gaussian asset price models, such as Variance Gamma Processes and Regular
Lévy Processes of Exponential type. In this context, we analyze the existence, unique-
ness, and regularity of viscosity solutions to obstacle problems which correspond to
prices of perpetual and finite expiry American options.

Keywords Obstacle problem - Nonlocal operators + Lévy processes + American
options - Viscosity solutions * Existence and uniqueness

2010 Mathematics Subject Classification. Primary 35R35 - Secondary 60G51 -
91G80

1 Introduction

The purpose of this note is to give a brief overview of obstacle problems for nonlocal
operators, focusing on the applications to financial mathematics. Natural classes of
nonlocal operators are infinitesimal generators of Lévy processes. We recall that a
Lévy process { X (#)},>0 defined on a filtered probability space (€2, F, {F;};>0, P)isa
random process that is stochastically continuous and has stationary and independent
increments. More precisely, {X (¢)},;>0 is a Lévy process if:
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1. X(0) = 0 with probability 1;

2. Forall0 <t <th <---<t,,X(t1), X(t) — X(1),..., X(,) — X(t,_1) are
independent;

3. Forall0 < s <t < o0, the probability distribution of X (#) — X (s) is the same
as the one of X (t — s);

4. For all ¢ > 0, we have that

ltlﬁ)l]P’(|X(t)| >¢)=0.

We begin the introduction with Sect. 1.1 where we give representations of Lévy
processes using the Lévy—Khintchine formula and the Lévy-It6 decomposition. We
continue in Sect. 1.2 to describe the connection to nonlocal (integro-differential)
operators and we present in Sect. 1.3 more general stochastic equations, which give
rise to a wider class of nonlocal operators. In Sect. 1.4, we give a brief introduction
to obstacle problems and we summarize in Sect. 1.5 previous results obtained in the
literature.

1.1 Representations of Lévy Processes

Our starting point is the Lévy—Khintchine formula [1, Corollary 2.4.20], which shows
that, for all # > 0 and & € R", we have

E [eiS-X(t)] =V ®, (1.1)

where the characteristic exponent ¥ (§) is given by

1 .
V() = —Eé -A§ +ib-§ —l—/ (€57 =1 —i&-yxy<1) vidy). (1.2)

R™M\{0}

Here, A is a n x n-dimensional, symmetric, positive-semidefinite matrix, b € R”
and v is a Lévy measure on R" \ {0}, i.e., it satisfies

f min(1, [y2} v(dy) < oo.
R\ {0}

When A =0 and v = 0, thatis E [eif'x(’)] = ¢/""¢ | the process X (t) = tb is deter-
ministic motion on a straight line, with velocity of motion, or drift, b. If instead
A = 0, but v # 0 has finite variation, that is it satisfies

/ min{l, |y|} v(dy) < oo, (1.3)
"\{0}
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then we can rewrite the characteristic exponent (1.2) as

Y (€) :ib/-§+/ (%7 — 1) v(dy).
"\{0}

The simplest possible case is when v = A§;,, where A > 0 and §;, is the Dirac mass
concentrated ath € R” \ {0}. If welet X (1) = b't + N(¢), then the process {N (1) };>0
is such that

E [eig'N(’)] = exp [M (e"g'h — l)]

and therefore, { N (t)},>0 is a Poisson process of intensity A taking values in {mh, m €
N}. The physical interpretation is that { X () },>0 follows the path of a straight line with
drift b" and has jump discontinuities of size |i|. The time between two consecutive
jumps are independent random variables exponentially distributed with parameter A.

The nextstepis to take v = ZTZI Ajdp,,withm e N,A; >0, hj e R"\ {0}, 1 <
Jj < m. In this instance, we can write {X (¢)};>¢ as

X(0)=bt+Y N;@.

Jj=1

where the {N;(#)};,>0, 1 < j < m, are independent Poisson processes with intensity
Aj taking values in {mh;, m € N}. The path is still deterministic with drift 5’ and
has jumps of size in {|A], ..., |h,|} occurring at exponentially distributed random
times. When we let m tend to oo in a suitable sense, or more generally, when the
Lévy measure v is of finite variation, that is, condition (1.3) holds, we can write

X(@)=bt+ Y AX(s),

O<s<t

where AX (s) = X (s) — X (s—) is the jump at time s. Instead of dealing with jumps
directly, it is more convenient to count the number of jumps that belong to a set A up
to time ¢. To this end, for a Borel set A € R” \ {0} and # > 0, we define the random
Poisson measure with intensity v

N, A)=#0<s<t|AX(s) € A},

which allows us to write

> AX () :/ xN(t,dx).
Rn

0<s<t \{0}

However, in the most general case, the Lévy measure ; may not satisfy the finite
variation condition (1.3) and to deal with the accumulation of small jumps, we make
use of the compensated Poisson measure:
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N(dt,dx) = N(dt, dx) — dt v(dx).

Finally, in case of a general Lévy measure v and of a diffusion matrix A, one has the
Lévy—Ito decomposition [1, Theorem 2.4.16]:

X(t) = DW(t) + bt +/

O<|x|<1

xﬁ(t,dx)+/ xN(t,dx), (1.4)

[x[=1

where D is a n x n-dimensional matrix such that DDT = A, and {W(t)},>¢ is a
n-dimensional Brownian motion.

1.2 Connections to Integro-Differential Operators

At this point, we want to explore the connection between stochastic processes and
integro-differential operators. Using the fact that any Lévy process is a Markov
process, by defining

Tifx)=E[f(x+X®)], VxeR"

we obtain that {7;};>¢ defines a one-parameter semigroup of linear operators on
the Banach space of bounded continuous functions, C (R"). One can think of the
semigroup {7;};>¢ as a tool to give a deterministic, macroscopic description of the
Lévy process as an average of microscopic random dynamics. The infinitesimal
generator corresponding to the semigroup semigroup {7}, is defined formally by

o L) — f(x)
Lf(x)= ltlg)l f’
and takes the form

1
Lf(x) = EU”(ADZf) +b-Vfx)+ /R"\{O} [fx+) = f&) =y V@xy<1(0] vdy).

Under suitable regularity assumptions that allow us to apply It&’s rule [1, Theorem
4.4.7] to solutions to the parabolic differential equation u, = Lu on (0, co) x R",
with initial condition u(0, -) = f on R", we obtain that u(¢, x) = T; f (x), for all
t>0andx € R”, and so T, = ¢'L.

We can also establish a connection between the infinitesimal generator L of
the process {X (¢)};>0 and the characteristic exponent ¥ (§) appearing in the Lévy—
Khintchine formula (1.1). Viewed as a pseudo-differential operator [6, 27], the sym-
bol of the infinitesimal generator L is the characteristic exponent (1.2) appearing
in identity (1.1). In our survey, we will be concerned with generalizations of sym-
bols that contain only a drift and a nonlocal term (the second-order diffusion term is



Obstacle Problems for Nonlocal Operators: A Brief Overview 161

removed). This gives rise to mathematical challenges in the study of the regularity
of solutions when the drift term dominates the nonlocal component—the so-called
supercritical regime. This property is often encountered in financial models for stock
prices, such as Variance Gamma and Regular Lévy Processes of Exponential Type
described in greater detail in Sect. 2.

1.3 Stochastic Integro-Differential Equations

More generally than the infinitesimal generators of Lévy processes, in this survey we
are specifically concerned with nonlocal operators that are infinitesimal generators
of strong Markov processes, which can be written as solutions to stochastic integro-
differential equations of the form:

dX(t)=b(X(t—))dt+/ F(X(t—), y)N(dt,dy), t> 0. (1.5)
Rm\{0}

Here, N (dt,d y) is a compensated Poisson random measure with intensity measure
dv, as defined in Sect. 1.1, and b and F satisfy suitable conditions, which we describe
in detail in Sect. 3. Our conditions ensure, by [1, Theorem 6.2.9], that for any initial
condition X*(0) = x € R”, there exists a unique strong solution {X* (¢)};>o to equa-
tion (1.5) with cadlag paths a.s. The process {X*(¢)},>0 satisfies the strong Markov
property, and therefore, it is uniquely determined by its infinitesimal generator

Lu(x) =b - Vu(x) +/ w(x+ F(x,y) —u(x) — F(x,y) - Vu(x)) v(dy)
"\{0}
(1.6)

for all u € C*(R") (this denotes all functions with bounded and continuous deriva-
tives up to and including order 2 in R"). The term nonlocal refers to the fact that the
value of Lu(x) depends on the whole solution # and not only on its behavior nearby
the point x. A typical example of a nonlocal integro-differential operator is the frac-
tional Laplacian (—A)*, with s € (0, 1), which is defined on the Fourier transform
side by the formula

(—A)u®) = €17,
or, equivalently, by the pointwise representation

2u(x) —ulx +y) —ulx —y) d
|x|n+2.r y

’

(=A)'u(x) =y(n,s) P-v-/

n
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y being a normalization constant depending only on n and s. The fractional Laplacian
(—A)?® is the infinitesimal generator of the symmetric 2s-stable Lévy process with
characteristic exponent in the Lévy—Khintchine formula given by v (&) = |£].

1.4 Obstacle Problems

In recent years, there has been a resurgence of interest in the study of nonlocal oper-
ators, motivated by applications. In fact, such operators and the associated integro-
differential equations naturally arise in a variety of contexts, ranging from temper-
ature control to linear elasticity, from fluid dynamics to financial mathematics. To
describe the latter application in more detail, we assume that

S(t) = eX® (1.7)

models an asset price process, where {X (¢)},>¢ is a solution to the stochastic equation
(1.5). We let ¢ : R” — R be the payoff function of an American option (i.e., a profit
of ¢(s) is generated when exercising the option at time ¢ and the stock level is
s = S(¢)). Without loss of generality, we can assume that the payoff can be written
as afunction of {X (¢)},>0. We recall that, unlike the European option, in the American
option framework the holder has the right to exercise at any date prior to maturity,
and not only at the expiry date. Hence, the value of the American option with expiry
date T can be written as

v(t,x) =sup Ele " o(X(0))|X(t) =x], forall (t,x) € (0,T) x R",

where the supremum is taken over all stopping times 6 bounded by 7' — ¢, and we
assume that the expectation is taken under a risk-neutral probability measure and r
is the risk-free interest rate. Letting t be the first time that the stochastic process
{X (¢)}:>0 enters the exercise region {v = ¢}, and assuming that the value function
u(t, x) is regular enough, probabilistic arguments ensure that the stopped process
{e7" vt AT, X(t A T))}i>0 is @ martingale, which is equivalent to the equality

v+ Lv—rv=0, forall(, x)e{v>p} (1.8)

In general, however, the discounted option price process {e ""v(t, X (¢))};>0 is a
supermartingale, which translates into the inequality

v+ Lv—rv=<0, forall(t,x)e (0,T)xR" (1.9)

Combining equations (1.8) and (1.9) together with the property that v > ¢ gives us
that the value function v is a solution to the evolution obstacle problem:

min{—d;v — Lv+rv,v—¢} =0, forall(z,x) e (0,T) xR", (1.10)
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{v=¢} {v> ¢}

—Ow—Lv+rv>0 —0w—Lv+rv=0

\ exercise (free) boundary

Fig.1 A schematic description of the complementarity conditions for the evolution obstacle prob-
lem at a time slice 7. The exercise region {v = ¢} is represented by the gray area, and the remaining
region is the continuation region {v > ¢}

where L is the infinitesimal generator of {X (t)},>0. The strong Markov property of
{X (¢)}:>0 implies that the exercise decision at any time ¢ depends only on ¢ and
X (t). Therefore, for each ¢ there exist an exercise region {v = ¢}, in which one
should exercise the option, and a continuation region {v > ¢}, in which one instead
should wait. The exercise boundary is the interface separating the two. See Fig. 1
for a schematic representation. We briefly mention here that in the case of perpetual
American option, when the option has a infinite expiration time, the value function
depends only on the current value of the process {X (¢)};>0 and is a solution to a
stationary obstacle problem. We refer to Sect. 3 for further details.

1.5 Review of Literature and Outline of the Survey

If the underlying stochastic process is Brownian motion, then the infinitesimal gen-
erator of the underlying process is L = A and u will satisfy the classical obstacle
problem, which is by now very well understood [8—10, 20]. However, Brownian
motion falls short in some respects:

1. Stock prices do not move continuously, which prompts us to consider models
that allow jumps in small time intervals;

2. Empirical studies of stock price returns indicate distributions with heavy tails,
which are not compatible with a Gaussian model.

For these reasons, it becomes necessary to study jump diffusion processes, whose
infinitesimal generator is an integro-differential operator of the form (1.4). Such type
of operators was introduced in finance by the Nobel Prize winner Merton [25]. The
novel element, which reflects the presence of jumps, is the integral term. Its presence
leads to new theoretical and numerical issues. Since no closed-form solutions are
known in general for the American option, it becomes important to determine the
regularity of the exercise boundary, which in turn is closely related to the behavior
of the value function.

In the framework of jump diffusion models with a non-degenerate diffusion
matrix, regularity of the value function and efficient numerical schemes were stud-
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ied in [2, 3, 5, 23], and regularity of the free boundary was explored in [4]. Using
methods from the theory of pseudo-differential operators and the Wiener—Hopf fac-
torization, qualitative studies of American option prices and of the exercise region
under pure-jump models were performed in articles such as [6, 7, 21, 22, 26].

Our work continues the study of the regularity of solutions to obstacle problems
for nonlocal operators with (possibly supercritical) drift. The purpose of this note is
to give an overview of the regularity results obtained in [17]. In Sect. 2, we describe
two examples of stochastic processes of interest in mathematical finance to which our
results apply. In Sect. 3, we state the problem precisely, and provide the statements
of our main results. Finally, in Sect. 4, we indicate some future directions.

2 Motivating Examples

In this section, we assume n = 1 and that the asset price process can be written as
in (1.7). Moreover, r denotes the risk-free interest rate. It is crucially important to
ensure that the discounted asset price process {e " S(f)};>0 is a martingale in order
to obtain an arbitrage-free market. Assume that { X (¢)},>0 is a one-dimensional Lévy
process that satisfies the stochastic equation:

dX(t):bdt+/ yN(dt,dy), ¥t>0, 2.1)

n

where b is a real constant and N (dt, dy) is a compensated Poisson random measure
with Lévy measure v(dy). Using [1, Theorem 5.2.4 and Corollary 5.2.2], a sufficient
condition that guarantees that the discounted asset price process {e~""+X®¥},_ is a
martingale is:

/ e*v(dx) <oo and —r+y(—i) =0, 2.2)
[x[>1

where ¥ (£) denotes the characteristic exponent of the Lévy process { X (¢)};>0, that
is,

V(E) :ibs+/ (@™ — 1 — ix€) v(dx). 2.3)
R\{0}

Examples in mathematical finance to which our results apply include the Variance
Gamma Process [24] and Regular Lévy Processes of Exponential type (RLPE) [6].

When the jump part of the nonlocal operator L corresponding to the integral term
in the characteristic exponent (2.3) has sublinear growth as |£| — o0, we say that the
drift term b - V corresponding to ib - £ in the characteristic exponent (2.3) is super-
critical. An example of a nonlocal operator with supercritical drift is the Variance
Gamma Process and a subcollection of Regular Lévy Processes of Exponential type
described below.
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2.1 Variance Gamma Process

Following [14, Identity (6)], the Variance Gamma Process { X (¢)};>( with parameters
v, o, and 0 has Lévy measure given by

1 _lxl _
v(dx) = m ( p 1{x>0} +e m 1{x<0}) dx,

where 1, > 7, are the roots of the equation x?> — fvx — o?v/2 = 0, and v, 0, 0 are
positive constants. From [14, Identity (4)], we have that the characteristic exponent
of the Variance Gamma Process with constant drift b € R, {X (¢) + bt},>¢, has the
expression:

1 1
Yvg(€) = —In <1 — iOvE + 5021}&2) +ibE, VEeC,
v
and so the infinitesimal generator of {X (f) 4 bt},>¢ is given by
1 1,
L=-In(1—-6vV — 50 VA)+b-V,
v

which is a sum of a pseudo-differential operator of order less than any s > 0 and
one of order 1. When 1, < 1 and r = ¥y (—i), condition (2.2) is satisfied and
the discounted asset price process {e " *X®},_ is a martingale. Thus, applying the
results in Sect. 3 to the Variance Gamma Process {X (#)},>0 with constant drift b, we
obtain that the prices of perpetual and finite expiry American options with bounded
and Lipschitz payoffs are Lipschitz functions in the spatial variable. Given that the
nonlocal component of the infinitesimal generator L has order less than any s > 0,
this may be the optimal regularity of solutions that we can expect.

2.2 Regular Lévy Processes of Exponential Type

Following [6, Chap. 3], for parameters A_ < 0 < A, a Lévy process is said to be of
exponential type [A_, A, ] if it has a Lévy measure v(dx) such that

-1 oo
/ e u(dx) +/ e v(dx) < oo.
- 1

o0

Regular Lévy Processes of Exponential type [A_, A, ] and order v are non-Gaussian
Lévy processes of exponential type [A_, A ] such that, in a neighborhood of zero,
the Lévy measure can be represented as v(dx) = f(x) dx, where the density f(x)
satisfies the property that
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|f@) —clx|™7 < Clx™7Y Vx| <L,

for constants v’ < v, ¢ > 0, and C > 0. Our results apply to RLPE type [A_, A;],
when we choose the parameters A < —1and A; > 1. The class of RLPE include the
CGMY/KoBoL processes introduced in [ 14]. Following [14, Eq. (7)], CGMY/KoBoL
processes are characterized by a Lévy measure of the form

v(dx) = (e_G‘X|1{X<0} + e_Mlx‘l{x>0}) dx,

|x“+Y

where the parameters C > 0, G, M > 0, and Y < 2. Our results apply to CGMY/
KoBoL processes, when we choose the parameters G, M > landY < 2,or G, M >
land0 < Y < 2.

3 Statements of the Main Results

In this section, we provide the statements of our main results. Complete proofs can
be found in [17], where these results have originally appeared.

We begin by listing the required assumptions on the measure v(dx) and the coef-
ficients b(x) and F(x, y) appearing in the operator (1.6):

1. There is a positive constant K such that for all x|, x, € R", we have

/ |F(x1,y) — F(xa, I dv(y) < Klx; — x2]%,
R"\{0O}

sup |[F(x,2)| = p(y), Vx,yeR",

ZEB)y)

/ (31 v PO v(dy) < K.
"\{0}

where p : R" — [0, 00) is a measurable function.

2. The coefficient b : R" — R" is bounded and Lipschitz continuous, i.e., b €
COT(RM).

3. For the stationary problem, we assume that F (x, y) = F(y) (independent of x).

3.1 Stationary Obstacle Problem

We consider the obstacle problem

min{—Lv+cv— f,v—¢}=0 onR", (3.1
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where L is the infinitesimal generator of the unique strong solution {X*(#)},;>¢ to
the stochastic equation (1.5), with initial condition X* (0) = x. We explicitly remark
here that, in the applications in Sect.2, one chooses ¢ = r, the risk-free interest
rate. Solutions to the obstacle problem (3.1) are constructed using the stochastic
representation formula of the value function:

v(x) :=supf{v(x;t): T €T}

where 7 is the set of stopping times and
T X T X
vit) =E [e_ Jo XD ds o (x¥ (1)) +/ el (S)Wf(xx(z))dt], VieT.
0

In order to state our results, we need to introduce the relevant function spaces. We
denote by C(IR") the space of bounded continuous functions # : R* — R such that

llllcwry := sup |u(x)| < oo.
xeR”

For all @ € (0, 1], a function u : R” — R belongs to the Holder space of functions
Ccoe (R if

lullcowwny = llullcmn + [M]coe®n < 00,
where, as usual, we define

. |u(x1) — u(x)|
[M]CO,D((RM) = sup T e
x1,%2€R" x1#x |x1 - x2|

When « € (0, 1), we denote for brevity C*(R") := C%*(R"). Our first result con-
cerns the regularity of the value function.

Theorem 3.1 Letc, ¢, f : R" — R be bounded Lipschitz continuous functions, and
assume that there is a constant ¢y > 0 such that c(x) > ¢y > 0, Vx € R". Then the
following hold:

(i) (Holder continuity) There is a constant a = o ([b]co1rny, co) € (0, 1), such that
the value function v € C*(R").
(ii) (Lipschitz continuity) If in addition we have that

co = [b]cor ey, (3.2)
then the value function v € C 0.1(R™).

The proof of Theorem3.1 hinges on the stochastic representation of solutions
and on the continuity of the strong solutions to the SDE with respect to the initial
conditions. To proceed, we introduce the notion of viscosity solution, which gives
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an intrinsic definition of a solution which is local in nature but does not assume a
priori any regularity, except for continuity.

Definition 3.2 Let v € C(R"). We say that v is a viscosity subsolution (supersolu-
tion) to the stationary obstacle problem if, for all u € C 2(R"™) such that v — u has a
global max (min) at xo € R" and u(xp) = v(xp), then

min{—Lu(xo) + c(xo)u(xo) — f(x0), u(xo) — ¢(x0)} = (=)0. (3.3)
We say that v is a viscosity solution if it is both a sub- and supersolution.

Next, we show that the value function is the unique solution to (3.1).

Theorem 3.3 (Existence) Assume in addition
/ [F()I* v(dy) < o0
"\{O0}

where a € (0, 1) is the constant appearing in Theorem 3.1. Then the value function
v is a viscosity solution to the stationary obstacle problem.

Theorem 3.4 (Uniqueness) Suppose that c, f, ¢ € C(R") and c is a positive func-
tion. If the stationary obstacle problem has a viscosity solution, then it is unique.

We remark that a sufficient condition on the Lévy measure to ensure that per-
petual American put option prices are Lipschitz continuous, but not continuously
differentiable, is provided in [6, Theorem 5.4, p. 133]. However, the condition is in
terms of the Wiener—Hopf factorization for the characteristic exponent of the Lévy
process, and it is difficult to find a concrete example for which it holds. Since in
our case the order of the nonlocal operator is strictly less than the order of the drift
component, and there is no second-order term, the issue of regularity of solutions is
quite delicate.

The proof of the existence result hinges in a crucial way on a Dynamic Pro-
gramming Principle. In order to state it precisely, we need the following definition.

Definition 3.5 Forall » > 0 and x € R", we let
7, ;= inf{t > 0: X*(¢) ¢ B,(x)},

where B, (x) denoted the open Euclidean ball of radius r > 0 centered at x € R”.

Theorem 3.6 (Dynamic Programming Principle) The value function v(x) satisfies:
v(x) =sup{v(x;r, ) T <71}, Vr>0,

where we define



Obstacle Problems for Nonlocal Operators: A Brief Overview 169
v(xir, 7)i=E [e—fo’ S (45X (1)) gy, + v(X"(t))l{t:r,_})]

TAT, . . !
+E [ / e Jo O ds (XX (1)) dt}.
0

Uniqueness is proved instead with the aid of the following theorem.

Theorem 3.7 (Comparison principle) Suppose that the assumptions of the unique-
ness theorem hold. If u and v are a viscosity subsolution and supersolution to the
stationary obstacle problem, respectively, then u < v.

In financial terms, comparison principles simply translate into arbitrage inequal-
ities: if the terminal payoff of an American option dominates the terminal payoff of
another one, then their values should verify the same inequality.

3.2 Evolution Obstacle Problem

The evolution obstacle problem is given by

min{—d,v — Lv+cv— f,v—¢} =0 on [0, T) x R",

v(T,)=g on R”, 4

with the compatibility condition
g>e(T,) on R (3.5)

The treatment of this problem is very similar to the stationary case. For the sake
of brevity, we confine ourselves to mentioning here that the main new difficulty
is to establish regularity in the time variable. This is done with the aid of the fol-
lowing result concerning the continuity properties of {X (¢)},>0, which in turn is a
consequence of Doob’s Martingale Inequality.

Lemma 3.8 There is a positive constant C = C(||b||corwny, K) such that
E [m[%x] | X1 (s) — X"Z(s)ﬂf Clxi —x2)%e", Vxi,x,eR", 1t >0,
sel0,¢

E |:max] |Xx(r) - Xx(s)’z]f Clt —s|V|t—s]?, VxeR", 0<s <t

rels,t

The use of this lemma also allows to relax the assumptions on the coefficients
in that we no longer require condition (3.2) to hold and we can allow the jump size
F(x, y) to be a function of the current state x of the process.
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The relevant function spaces, in the evolution case, are as follows. For all T > 0,

1
we denote by C2 C%1([0, T] x R") the space of functions u : [0, T] x R" — R such
that

_ lu(ty, x1) — u(tz, x2)|
lull 1 4, = llullcqo.rixrny +  sup i <0
C> Cy ([0, T1xR™) nne0Tln#n |t — h|2 4 |x1 — X2|
x1,X2€R" x;#x,

and we let C!C2([0, T] x R") denote the space of functions u : [0, T] x R" — R
such that the first-order derivative in the time variable and the second-order deriva-
tives in the spatial variables are continuous and bounded. Let 7, denote the set of
stopping times t € 7 bounded by ¢, for all # > 0. Solutions to problem (3.4) are
constructed using the stochastic representation formula,

v(t, x) :=sup{v(t,x;t): 7 € Ty}, (3.6)
where we define
v(t,x;7)=E [e’forc(’ﬂ'xx(s))dsgo(t +, Xx(r))l{KT_,}]

e G C SO ] (3.7)

T
+E U o I AX O £ (¢ s XY (5)) ‘”} ’

0
for all (¢, x) € [0, T]x € R".

Proposition 3.9 (Regularity) Suppose that c, ¢, f belong to C%'([0, T] x R"), the
final condition g is in COY(R"), and the compatibility condition (3.5) holds. Then

1
the value function v defined in (3.4) belongs to C} C%'([0, T] x R").

We next define a notion of viscosity solution for the evolution obstacle problem
(3.4) extending that of its stationary analogue for Eq. (3.1) similarly to the ideas
described in [15, Sect. 8]:

Definition 3.10 (Viscosity solutions) Let v € C(R"). We say that v is a viscosity
subsolution (supersolution) to the evolution obstacle problem (3.4) if

(T, ) = ()8, (3.8)

and, for all u € C!C2([0, T] x R") such that v — u has a global max (min) at
(tg, x9) € [0, T) x R" and u(ty, x9) = v(ty, xo9), we have that

min{—23;u(to, xo) — Lu(to, x0) + c(to, x0)u(to, x0) — f (t0, X0), u(to, x0) — ¢(to, x0)} < (=) 0.

(3.9)
We say that v is a viscosity solution to Eq. (3.4) if it is both a sub- and supersolution.
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We then have the following theorems regarding the existence and uniqueness of
viscosity solutions.

Theorem 3.11 (Existence) Suppose that the hypotheses of Proposition 3.9 hold.
Then the value function v defined in (3.6) is a viscosity solution to the evolution
obstacle problem (3.4).

Theorem 3.12 (Uniqueness) Suppose that g belongs to C(R"), ¢, f, ¢ are in
C ([0, T] x R™), the compatibility condition (3.5) holds, and

lim F(x.y) =0, VxeR". (3.10)
y—

If the obstacle problem (3.4) has a viscosity solution, then it is unique.

4 Concluding Remarks

We conclude this note by observing that optimal regularity of solutions and the reg-
ularity of the free boundary are completely unexplored for the classes of operators
we consider. In this connection, we mention that some of the most powerful tech-
niques to investigate these issues for nonlocal operators are based on an extension
approach a la Caffarelli-Silvestre [13], see e.g., [12, 16, 18, 19]. However, there are
now methods not relying on an extension procedure (such as the one developed by
Caffarelli et al. [11]), but those appear to be limited to a class of operators of positive
fractional order.
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Low and High Resonance Components )
Restoration in Multichannel Data R

Daniela De Canditiis and Italia De Feis

Abstract A technique for the restoration of low resonance component and high
resonance component of K independently measured signals is presented. The def-
inition of low and high resonance component is given by the Rational Dilatation
Wavelet Transform (RADWT), a particular kind of finite frame that provides sparse
representation of functions with different oscillations persistence. It is assumed that
the signals are measured simultaneously on several independent channels and in
each channel the underlying signal is the sum of two components: the low resonance
component and the high resonance component, both sharing some common char-
acteristic between the channels. Components restoration is performed by means of
the lasso-type penalty and backfitting algorithm. Numerical experiments show the
performance of the proposed method in different synthetic scenarios highlighting the
advantage of estimating the two components separately rather than together.

Keywords RADWT - Lasso regression - Multichannel signals

1 Introduction

The problem of recovering multiple signals recorded in different channels under the
assumption that they share some common characteristics is very frequent in various
fields of application, for example, biology, neuroscience, and information technology.

In this paper, we deal with the problem of recovering the low resonance component
and the high resonance component of K simultaneous measured signals. This is very
useful for the analysis of EEG data, as explained in [4]. Specifically, we hypothesize
to have K channels and the signal measured by each of them is the sum of two
components: a low resonance component and a high resonance component; the first
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being common to all the channels, as a grand mean; the second being channel specific
but sharing some common characteristics among the channels. The definition of low
and high resonance component will be given through the introduction of the RADWT
which is a modern and fast computational tool for analyzing a very general class of
signals and will be clarified later in Sect. 2. Here, however, we want to stress that the
aim is not to recover the compound signal in each channel, as discussed in [4], but,
rather, to reconstruct each of the two components separately. Obviously, this goal
returns for free the reconstruction of the compound signal in each channel, but it has
the advantage over the technique proposed in [4] to better reconstruct the components
rather than their sum. This fact can be useful in some studies, such as those presented
in [1], where the good reconstruction of the channel-specific effect allows a better
understanding of the underlying phenomenon.

The proposal resembles the Morphological Component Analysis (MCA), an active
line of research in image processing. The MCA is a quite new method which allows
us to separate features contained in an image when these features present different
morphological aspects, see [7].

The problem discussed in this paper is the equivalent in the field of signal pro-
cessing. In fact, the hypothesis of work is that in each channel the signal is a mixture
of two components morphologically different from each other and the goal is to
separate them.

The remainder of the paper is organized as follows. Section2 describes the data
model we are considering with the working hypothesis. Section 3 presents and dis-
cusses the estimation procedure within the paradigm of Lasso procedures, enlight-
ening the connections with the procedure proposed in [4]. Finally, Sect.4 shows the
empirical performance through some numerical experiments.

2 Statistical Model

Consider the following data model:
yO =c+u® 40 k=1,...,K and ¢® ~ N(0,0°1), 1)

where vector y® represents n-equispaced observations of function c(r) 4+ u®(¢)
over the equispaced grid design #; < #, < --- < t, for each channel k =1, ..., K,
i.e., y® € R"*! In this contribution, the goal is to reconstruct the two signals ¢(t)
and u® (¢) separately in each channel and not their sum as in [4]. From the practical
point of view, the aim is to reconstruct two deterministic vectors ¢ and u® e R
given the datain (1) in each channel. We stress that, from the triangular inequality, one
has |lc +u — (¢ + )| < |lc — ¢|| + |lu — ]|, hence the task of reconstructing each
of the two components gives for free the task of reconstructing their sum. We do not
hypothesize functions c(¢) and u ¥’ () which belong to some functional Sobolev space
H; la, b]asitisusually done in functional nonparametric regression setting, instead
we let these functions to be much more general and we restrict our attention to their
finite-dimensional representation. Since many physiological and physical signals are
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not only non-stationary but also exhibit a mixture of oscillatory and non-oscillatory
transient behaviors (for example, speech, stock-market, biomedical EEG, etc.) we
suppose that each signal in each channel is the sum of two morphologically different
signals, a “high resonance” component and a “low resonance” component. By a
high resonance component, we mean a signal consisting of multiple simultaneous
sustained oscillations; in contrast, by a low resonance component, we mean a signal
consisting of non-oscillatory transients of unspecified shape and duration. We stress
that the high and low resonance component of a signal can not be extracted from
its high- and low-frequencies components in a time-scale decomposition, but they
can be well represented by a high Q-factor RADWT and a low Q-factor RADWT,
respectively, as very well explained in [6]. Hence, in this contribution we use two
different RADWT to sparsely represent the two different components.

The RADWT is a normalized tight frame' of L,(R) defined as {(%)"/le

((%)kt + %1)} where ¥ is a wavelet function and (p, ¢, s) is a triplet of inte-
kleZ

ger parameters which gives the time-scale characteristic of the frame. In particular,
the ratio ¢g/p > 1 is closely related to the scale (or frequency) dilatation factor, the
parameter s > 1 is closely related to the time dilatation factor, and . (q’i > > 1 is the
redundant factor. The Q-factor depends on these parameters although there is not an
explicit formula. In a particular setting, the dilatation factor ¢/p between 1 and 2
and s > 1 gives a RADWT with high Q-factor, while setting s = 1 we obtain a low
Q-factor RADWT with time-scale characteristic similar to the dyadic wavelet trans-
form. Wheng = 2, p = 1,and s = 1 the frame reduces to the classical wavelet basis.
Given a finite energy signal x of length n, the finite representation of the RADWT
transform is a matrix W € R"*? with d > n (the higher the Q-factor the higher the
redundancy d) such that WW’ = [,,. This matrix represents the finite frame opera-
tor, being W'x the analysis operation and W (W'x) the synthesis operation. See [2]
for details on fast analysis and synthesis schemes obtained by a sequence of proper
down-sampling operations (downsample of ¢ and upsample of p) and fast Fourier
transforms.

Let ¥ e R"™*% be the finite matrix representation of the low Q-factor analysis filter
and let ® € R"*% be the finite matrix representation of the high Q-factor analysis
filter (the synthesis operators being just the transpose matrices), then our working
hypothesis is the following:

(H1) signal cissparsein¥,i.e.,setting oy = ¥'c wehave that |S3‘| = |{j tog, F 0}|

<< di;
(H2) signals u® have a jointly sparse representation in @, i.e., setting 8" = @'u®
and S(()k)”s ={j: ,3(()];) # 0} we have that S(()l)’ﬂ == éK)”S, with the com-

mon cardinality denoted by ‘Sg ‘ << dy.
(H3) the columns of matrices ¥ and @ are normalized to have norm 1.

1A collection of functions {w;} of L, (R) forms a frame if exist two constants ¢; and ¢, such that
allfI? <Y, < fiw;i >2< ¢ || 1> forall f € La(R). The frame is tight if ¢; = c;.
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3 Estimation

Model in (1) can be rewritten as a linear model in terms of RADWT coefficients as
follows:

Yy =@ 4 @O 40
VO — w4 @D 1@
. @

y () o ®BE) 4 K,

With some basic linear algebra transformation, problem (2) can be reformulates as
follows:

y(l) ’3(1) 8(1)
@ 5O £@

y= ) =Wlpa + (@& Ik) ) + . =X+ X128 + ¢,
y(K) ﬂ(’() E(K)

where y is a column vector of nK response variables, 1x is a (K x 1) array of 1,
Ik is the identity matrix of dimension K, and ¢ is a n K -variate Gaussian random
column vector with zero mean and covariance matrix 021, x . For completeness, we
express the design matrices explicitly:

v ®0 ---0
Ulg = W and @ Q Iy = O_Q?_"'O . 4)
v 00 ...

Vectors « and 8 are unknown regression coefficients of length d; and K d», respec-
tively. Under the working hypothesis (H1), we expect the coefficients of the com-
mon part « to be sparse into the dictionary ¥, while under the working hypothesis
(H2), we expect the coefficients of the channel-specific effects § to be grouped
sparse into the dictionary @, i.e., for all j =1,...,d, we have ﬁ;k) = 0, for all
k=1,...,K or ,3;]‘) # 0forall k =1,..., K. This observation provides the fol-
lowing non-overlapping group structure for vector

{1.L2....Kdy} =G UG, U+~ UGy, with G;={B". ...} (5

While in [4], this problem has been approached by a “global” technique, i.e., a
technique for recovering a single vector 6 = (a’ 8')'; in this work we propose a
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different technique that aims to recover o and S separately. We stress that this is not
an alternative algorithm to solve the same problem, but instead a different problem,
i.e., reconstructing each component and not their sum. More specifically, in [4] the
solution is expressed by the following:

dy

~ . 1
0 = argming gt +xayx1 n—KIIy — XO|13 + Alerlly + A 21: Bgll2¢. (6)
J=

with design matrix X = [X; X»] of dimension nK X d| + kd,. In this paper, the
perspective is quite different and we look at model (3) as an additive model in which
we are interested in recovering the two components: X« and X,f8. The literature
on additive models is very extensive and surely [5] is one of the most complete
references on that subject. In [5], it is explained how a natural approach to this
problem is the backfitting technique, which consists in cyclically updating one of the
two components using the partial residual obtained with the other component fixed.
Specifically, if we suppose to know the high resonance components u® = @g®
then we can evaluate for each channel k the partial residual z*' = y® — @g* and
estimate the common low resonance component by

. ) 1
& = argmin,,_ s, {anl —X1a||§+x||a||1}, (7

where z; € R"8 %! is the concatenation of the partial residuals zik), for each k =
1,...,K.

Analogously, if we suppose to know the low resonance component ¢ = ¥ «, then
we can evaluate for each channel k the partial residual 2"’ = y® — W, and estimate
the channel-specific high resonance components by

1 &
B = argmingeprst | —llz2 = XaBl3 + 1) llfa, I ®)
j=1

where 7z, € R" %! is the concatenation of partial residuals zg{), for each k =
1,..., K. Problems (7) and (8) are both convex and can be solved by fast algo-
rithms. Specifically, problem (7) is a classical LASSO regression problem and can
be solved by a coordinate descendent algorithm, while problem (8) is a grouped
LASSO problem and can be solved by a group descendent algorithm as the one
proposed in [3]. Summarizing, we propose the following algorithm

e INPUT: 1, y¥, @, @
e initialize /3(’)‘ =0,forallk=1,...,K
e repeat until convergence for/ =0, 2, ...

— update partial residual z( = y® — @ P forallk =1,..., K
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solve problem (7) to obtain a4
— update partial residual zék) =y® g, forallk=1,...,K
solve problem (8) to obtain ,4§1+1

¢ OUTPUT: & and § = ((,@m)’ , (3(2>)’ L (gao)’)l

In this contribution, the convergence is established if a maximum number of
iterations is reached or solution improvement is negligible. The unknown components
are finally obtained by the synthesis operation ¢ = ¥@& and &#® = @B®, for k =
1,...,K.

4 Numerical Experiments

The aim of this section is to demonstrate, at least under the model hypothesis, the
advantage of using the proposed backfitting technique with respect to solving the sin-
gle problem in (6) as done in [4]. The delicate point is the choice of the regularization
parameter A that can greatly affect the results of both procedures. For this reason,
recalling from the theory that the optimal A is of order ~ log(dimension)/size, we
fix . =log(d; + kd,)/nK in all our experiments.

We generated data according to model (2) using three channels (K = 3) and
n = 256 observations in each channel. Matrix ¥ was generated using the following
choice piow = 1, Giow = 2, Siow = 1 with 4 levels of decomposition (d; = 496),
and matrix @ was generated using pign = 8, qnigh =9, Shign = 3 with 10 levels of
decomposition (d, = 695). These matrices represent RADWT with Q-factor almost
1 and 5, respectively. We considered three scenarios with different sparsity level:

Scenario 1: low sparsity, corresponding to |S,| = 24 and |S,3| =24;
Scenario 2: medium sparsity, corresponding to |S,| = 12 and |S,3} =12;
Scenario 3: high sparsity, corresponding to |S,| = 6 and ’Sﬁ| = 6;

and for each scenario we used three signal to noise ratios (SNR): 1.5, 3, 6, defined
as
LYK Var(Wa + ¢p®)

SNR = 5

o

The numerical setting mimics the one presented in [4], as well as the following
performance indexes:

e Root Mean Square Error (RMSE) defined as

n

1 N 2
RMSE = ;Z(f(k)(ti)—f(k)(ti)) k=1,....K;

i=I

with f® = ¢+ u® and f® = wg + AP as its estimate;
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e Root Mean Square Error for the low resonance component (RMSE,,,,) defined as

n

1
RMSEipy = | ) (&) —c(w)’s

i=1

e Root Mean Square Error for the high resonance component (RMSEy,;,;,) defined
as

1< 2
RMSE;., = — 10 ti) — () t L k=1,...,K;
ngn = | =2 (@0 0) —u® (1))

i=1

RMSE;,,, and RMSE;;,;, aim at evaluating a component wise accuracy.

Tables 1, 2, and 3 report results obtained for Scenario 1, 2, and 3, respectively.
In these tables, backfitting refers to the proposed technique, while multi-c
refers to the one proposed in [4]. We note that in each scenario the estimate of the
two components is better using the backfitting technique with respect to the
multi-c technique, while the estimate of the compound signal is very similar being
possible that some errors are compensated in the sum for the triangular inequality.
Finally, we observe that, as expected, for all types of scenarios the error improves
when the SNR increases.

We conclude this contribution observing that the proposed technique is very inter-
esting and deserves further investigations both from an applicative point of view as
well as from a theoretical perspective.

Table 1 Average values (standard deviation between parentheses) of RMSE, RMSE,,,, (the same
for each channel), and RMSEy; ¢, based on 10 simulations with different noise realizations. Exper-
iment carried out on Scenario 1 with SNR=1.5, 3, and 6

RMSE RMSEj RMSEgn
multi-c ‘ backfitting | multi-c ‘ backfitting | multi-c ‘ backfitting
SNR=1.5
chl 0.2051 0.2048 0.1952 0.1870 0.2185 0.2104
(0.0031) (0.0029) (0.0016) (0.0015) (0.0131) (0.0113)
ch2 0.2171 0.2167 0.1952 0.1870 0.2386 0.2304
(0.0113) (0.0112) (0.0016) (0.0015) (0.0093) (0.0109)
ch3 0.2189 0.2188 0.1952 0.1870 0.2404 0.2342
(0.0102) (0.0101) (0.0016) (0.0015) (0.0066) (0.0055)

(continued)
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RMSE RMSE; o RMSEj;;gh
multi-c ‘ backfitting | multi-c ‘ backfitting | multi-c ‘ backfitting
SNR=3
chl 0.1487 0.1481 0.1627 0.1531 0.1890 0.1788
(0.0050) (0.0050) (0.0125) (0.0105) (0.0086) (0.0088)
ch2 0.1587 0.1579 0.1627 0.1531 0.2013 0.1911
(0.0057) (0.0056) (0.0125) (0.0105) (0.0122) (0.0111)
ch3 0.1557 0.1553 0.1627 0.1531 0.2000 0.1911
(0.0045) (0.0045) (0.0125) (0.0105) (0.0078) (0.0078)
SNR=6
chl 0.1185 0.1178 0.1439 0.1346 0.1712 0.1597
(0.0057) (0.0057) (0.0157) (0.0133) (0.0112) (0.0089)
ch2 0.1327 0.1322 0.1439 0.1346 0.1932 0.1828
(0.0063) (0.0065) (0.0157) (0.0133) (0.0109) (0.0101)
ch3 0.1421 0.1415 0.1439 0.1346 0.1988 0.1885
(0.0117) (0.0115) (0.0157) (0.0133) (0.0189) (0.0179)

Table 2 Average values (standard deviation between parentheses) of RMSE, RMSE,,,, (the same
for each channel), and RMSEy; ¢, based on 10 simulations with different noise realizations. Exper-

iment carried out on Scenario 2 with SNR=1.5, 3, and 6

RMSE RMSE; o RMSEj;;gh
multi-c ‘ backfitting | multi-c ‘ backfitting | multi-c ‘ backfitting
SNR=1.5
chl 0.1641 0.1641 0.1172 0.1163 0.1485 0.1478
(0.0038) (0.0036) (0.0081) (0.0081) (0.0076) (0.0078)
ch2 0.1835 0.1834 0.1172 0.1163 0.1777 0.1773
(0.0064) (0.0063) (0.0081) (0.0081) (0.0060) (0.0061)
ch3 0.1719 0.1716 0.1172 0.1163 0.1624 0.1619
(0.0100) (0.0100) (0.0081) (0.0081) (0.0140) (0.0138)
SNR=3
chl 0.1061 0.1057 0.0865 0.0861 0.0938 0.0933
(0.0035) (0.0035) (0.0054) (0.0055) (0.0070) (0.0066)
ch2 0.1113 0.1110 0.0865 0.0861 0.1083 0.1077
(0.0027) (0.0027) (0.0054) (0.0055) (0.0059) (0.0051)
ch3 0.1116 0.1113 0.0865 0.0861 0.1082 0.1074
(0.0095) (0.0094) (0.0054) (0.0055) (0.0130) (0.0129)
SNR=6
chl 0.0849 0.0848 0.0606 0.0605 0.0827 0.0824
(0.0022) (0.0022) (0.0045) (0.0045) (0.0039) (0.0038)
ch2 0.0978 0.0977 0.0606 0.0605 0.1049 0.1046
(0.0039) (0.0039) (0.0045) (0.0045) (0.0049) (0.0050)
ch3 0.0856 0.0855 0.0606 0.0605 0.0876 0.0875
(0.0071) (0.0071) (0.0045) (0.0045) (0.0079) (0.0078)
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Table 3 Average values (standard deviation between parentheses) of RMSE, RMSE,,,, (the same
for each channel), and RMSEy,;¢; based on 10 simulations with different noise realizations. Exper-
iment carried out on Scenario 3 with SNR=1.5, 3, and 6

RMSE RMSE; o RMSEj;gh
multi-c ‘ backfitting | multi-c ‘ backfitting | multi-c ‘ backfitting
SNR=1.5
chl 0.0386 0.0386 0.0263 0.0263 0.0282 0.0282
(0.0012) (0.0012) (0.0023) (0.0023) (0.0007) (0.0007)
ch2 0.0500 0.0500 0.0263 0.0263 0.0424 0.0425
(0.0015) (0.0015) (0.0023) (0.0023) (0.0017) (0.0016)
ch3 0.0478 0.0478 0.0263 0.0263 0.0399 0.0399
(0.0008) (0.0008) (0.0023) (0.0023) (0.0015) (0.0015)
SNR=3
chl 0.0392 0.0392 0.0257 0.0257 0.0295 0.0295
(0.0016) (0.0016) (0.0021) (0.0021) (0.0004) (0.0004)
ch2 0.0495 0.0495 0.0257 0.0257 0.0422 0.0422
(0.0013) (0.0013) (0.0021) (0.0021) (0.0013) (0.0013)
ch3 0.0497 0.0497 0.0257 0.0257 0.0425 0.0425
(0.0013) (0.0013) (0.0021) (0.0021) (0.0004) (0.0004)
SNR=6
chl 0.0391 0.0391 0.0258 0.0258 0.0293 0.0293
(0.0012) (0.0012) (0.0019) (0.0019) (0.0002) (0.0002)
ch2 0.0498 0.0498 0.0258 0.0258 0.0425 0.0425
(0.0012) (0.0012) (0.0019) (0.0019) (0.0011) (0.0011)
ch3 0.0496 0.0496 0.0258 0.0258 0.0423 0.0423
(0.0009) (0.0009) (0.0019) (0.0019) (0.0001) (0.0001)
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Kernel Circular Deconvolution Density )
Estimation R

Marco Di Marzio, Stefania Fensore, Agnese Panzera, and Charles C. Taylor

Abstract We consider the problem of nonparametrically estimating a circular den-
sity from data contaminated by angular measurement errors. Specifically, we obtain
a kernel-type estimator with weight functions that are reminiscent of deconvolution
kernels. Here, differently from the Euclidean setting, discrete Fourier coefficients
are involved rather than characteristic functions. We provide some simulation results
along with a real data application.

Keywords Circular kernels - Deconvolution * Fourier coeffcients - Measurement
errors - Movements of ants

1 Introduction

Circular data arise when the sample space is described by a unit circle. By comparison
with a linear scale, the main features of circular observations are that the beginning
and the end of the measurement scale coincide, and their common location is called
the origin (or zero direction) which is usually chosen arbitrarily. Once the origin and
the direction of rotation have been chosen, any circular observation can be measured
by an angle ranging, in radians, from 0 to 27. Circular data often arise in biology,
meteorology and geology; other examples include phenomena that are periodic in
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time. For comprehensive accounts of statistics for circular data see, for example, [7]
and [8].

In this paper, we discuss the problem of nonparametrically estimating a circular
density when data are observed with error. Specifically, here we consider the case of
measurement errors described by i.i.d. circular random variables. This problem has
been studied by [6], who proposed an estimator constructed as a truncated develop-
ment of the density which is estimated by trigonometric basis in which the theoretical
coefficients are replaced by empirical ones. Then, using a model selection procedure,
[1] derived an adaptive penalized contrast estimator, and [9] proposed an orthogonal
series estimator which is optimal in the minimax sense.

In the Euclidean setting, the problem of estimating a density in the context of
errors-in-variables has been widely investigated. The most popular method is a non-
parametric one based on kernel-type estimators. A kernel density estimator in the
case of homoscedastic, classical measurement errors with known distribution has
been introduced by [10]. Kernel density estimation with a different type of measure-
ment error, named Berkson error, has been considered in [2]. A further estimator
for the case of heteroscedastic, classical measurement error has been proposed by
[5] who also considers the case of unknown error density. For this latter problem
see, among others, [4]. An exhaustive treatment of density estimation with errors-in-
variables and related topics is provided by [3]. In the directional setting, the kernel-
based methods for errors-in-variables problems seem to be substantially unexplored.
In this article, we propose to extend the Euclidean approach to the estimation of a
circular density in the case of classical, homoscedastic measurement errors being
circular random variables with known distribution.

After recalling in Sect.2, some preliminaries about Fourier series and nonpara-
metric estimation of circular densities in the error-free case, in Section 3 we discuss
the extension of the kernel-type density estimator to the case where variables are
observed with errors. Then, in Sect.4 we present some simulation results, and in
Sect.5 we conclude with a real data application.

2 Preliminaries

In this section, we provide some basic facts about Fourier series representation of
circular densities and recall the definition of the circular kernel density estimator.
2.1 Trigonometric Moments and Fourier Series

Let Q be a circular random variable and denote by f its probability density function.
Due to the periodic nature of Q, its distribution is the same as the distribution of
QO + 2m; this implies that the characteristic function of Q, which is
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2w
pol) = E['°9] = / e’quQ(q)dq,
0
is defined only for integer £s. Moreover, for any £ € Z, one has

lpoOl =1, 9o(0) =1, @o(f) = @o(=0),

where ¢ (-) is the complex conjugate of ¢g(-). Notice that the complex numbers
{po(£), £ € Z} are the coefficients in the Fourier series representation (in complex
form) of fp and correspond to the trigonometric moments of Q about the mean
direction, i.e. letting

o, = E[cos(£Q)], B, = E[sin(£Q)],
it holds that ¢ (£) = op + ify; clearly, for any £ € Z,

ag=oy, PBog=—PB ol <1, [Be| =1

Then, assuming that fy is a square integrable function on [0, 277), for g € [0, 27),
one can recover f(q) from the Fourier coefficients using the expansion

R 4 1 ad )
folq) = 52;00 po()e it = LR 2;(az cos(£q) + B sin(€q)) | .
(1)

Equation (1) is analogous to the inversion formula for characteristic functions of
real-valued random variable. In the Euclidean setting, the smoothness of a density
can be determined by the rate of decay of the Fourier transforms: a polynomial decay
characterizes ordinary smooth functions, while an exponential decay characterizes
supersmooth ones. Analogously, for a circular density the smoothness can be defined
according to the rate of decay of the coefficients in its Fourier series representation.

We recall that for a wrapped circular distribution, the trigonometric moment of
order £ € Z corresponds to the value of the characteristic function of the unwrapped
random variable, say gy, at (integer) £, i.e. o (£) = px(£).

Examples of supersmooth densities include the densities of wrapped Normal and
wrapped Cauchy distribution; conversely, the wrapped Laplace and the wrapped
Gamma densities are examples of ordinary smooth ones. See Fig. 1 for some examples
of wrapped distributions and their Fourier coefficients.

2.2 Circular Density Estimation in the Error-Free Case

Given a random sample of angles ®, . .., ®, from an unknown circular density fg,
the kernel estimator of fg at 6 € [0, 27) is defined as
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Fig.1 Examples of wrapped densities sharing the values of mean and variance of their unwrapped
versions (left) and corresponding Fourier coefficients (right)

. 1 «
fo®:x) =~ Ke(©: = 0),

i=1

where K, is a circular kernel, i.e. a periodic, unimodal, symmetric density func-
tion with concentration parameter ¥ > 0, which admits a convergent Fourier series
representation as follows

142302, ve(k) cos(£6)

K (0) = o

Notice that, by comparison with Equation (1), due to the symmetry, the Fourier coef-
ficients of K, satisfy 8, = 0and oy = y,(x) for any £. It is well known that the choice
of the kernel is generally not crucial. This means that in our case it suffices to select
any symmetric circular density function able to arbitrarily concentrate its whole mass
around zero by increasing the value of the concentration parameter x. Also, note that
circular data have a periodic range, whereas in the Euclidean case the presence of
boundaries of the sample space could require ad hoc, shape-designed kernels. Classi-
cal examples of circular kernels are the von Mises density with y, (k) = Z,(k)/Zo(k),
where Z;(«k) is the modified Bessel function of order ¢; the Wrapped Normal and
Wrapped Cauchy densities where y, (k) = k" and ve(k) = Kk*, respectively. As in
the linear setting, the role of the kernel function is to emphasize, in the estimation
process, the contribution of the observations which are in a neighbourhood of the
estimation point. Here, « controls the width of that neighbourhood in such a way that
its role is the inverse of the square of the bandwidth in the linear case, in the sense
that smaller values of « give wider neighbourhoods.
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3 Kernel Density Estimator in the Errors-in-Variables Case

We consider the problem of estimating the density of a circular random variable ©®
which is observed with error. In particular, we deal with the classical, homoscedastic
measurement error case where we wish to estimate the density fo of ®@ but we
observe independent copies of the circular random variable

@ = (O + e)mod(2x),

where ¢ is a random angle independent of &, whose density f. is assumed to be a
known circular density symmetric around zero. Notice that the density fg of @ is
the circular convolution of fg and f;, i.e. for 6 € [0, 27),

2

fo(0) = ; Jo(@) fe(0 — w)dw, (@)

s0, the estimation of fg reduces to a circular deconvolution density problem. Simi-
larly to the Euclidean case, equation (2) implies that, for £ € Z,

9o (£) = po (£)@: (),

then, a naive estimator of fg at 6 € [0, 27) could be

Pa () (f)
0) = — , 3
fo0) = E o) ¢ 3)
where @g (£) = Z?_l e't®i is the empirical version of ¢ (£). Now, since

/4 . 1 00 o ( '
[ an-sanya=3, 5 - 268) - 26)
- {=—00 3 e

Y

we have that rapid decays of ¢.(£) lead to big discrepancies between fg(6) and
f@ (9) even in correspondence of small discrepancies between g (£) and @g (£).
Therefore, in order to regularize estimator (3), a possible remedy is to introduce the
characteristic function of a circular kernel K, say ¢k, (£), as a damping factor, i.e.
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Do (5) (0)e —ito

Jo(0; k) = o0’

I o ¢k 0 1 Zeim,efiw

T e n

o 3O oo,
2nn;2 (Z) e,

which leads to the following circular deconvolution estimator of fg (0) at6 € [0, 27)

;oo 1L1g — Ye(K) s
f@(e,x)_2nn;<1+2;M(K8)cos(E(9 qb,))), 4)

where y,(x) and A, (x.), respectively, are the £th coefficients in the Fourier series
representation of K, and f.. Also, in order to guarantee that estimator (4) is well
defined, we assume that a) the error density is an infinitely divisible distribution, i.e.
it has nonvanishing coefficients |A¢(«.)| > O for any integer £, and b) the kernel K,
and fo (-; k) are square integrable functions, i.e using the Parseval’s identity,

1 [e.¢]
Z(1+22yg(/<))<oo and 2—( +2 Zy‘()>

=1

The way in which the rate of decay of the A,(x.)s affects the performance of the
estimator will be shown in the simulation experiments in the next section.

Notice that estimator (4) is suitable for the case where the &;s are homoscedas-
tic errors with known distribution. The Euclidean version designed for the case of
heteroscedastic errors has been studied by [5] who also introduce a modified estima-
tor for the problem where the distribution of the errors is unknown, but replicated
observations are available.

4 Simulations

In this section, we compare the performance of the deconvolution estimator and the
standard kernel density estimate in a simulation setting. In particular, we consider
the von Mises density (vM) with mean direction and concentration, respectively,
equal to 7 and 2 as the target density fo, and the wrapped Laplace (wL), wrapped
Normal (wN) or wrapped Cauchy (wC) with zero mean direction and different values
of the concentration parameter as the error density f.. Notice that the concentration
parameter takes non-negative real values for both vM and wL but with opposite
meaning in that, for wL, lower values of the concentration parameter give higher
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concentration, whereas for wN and wC the concentration parameter ranges from 0
to 1 with the concentration increasing with the value of the parameter.

Let vy(kg) be the £th Fourier coefficient of fg, for £ € N. We consider the
noise-to-signal ratio (NSR), defined as the ratio between the circular variance
of ¢ and that of ®, which can be expressed in terms of Fourier coefficients as
{1 — Aa(ke)}/{1 —v2(ke)}. Specifically, we consider three different settings cor-
responding to a NSR ranging from 16% to 47%, which are shown in Fig.2, where
for ease of presentation the target density has mean zero. In particular, for £ € N, we
have vy (ko) = Zy (ko) /Zo(ke), while Ay(k.) = Kfz, Ae(ke) = ng/(ﬂ2 + K;z), and
Me(kg) = Kf, respectively, give the wN, the wL and wC as the error distributions.

We generate 500 samples of sizen = 100, 200 and 400 and compare the estimators
in terms of averaged integrated squared error (AISE). In particular, we calculate the
ratio AISE../AISEyq., where dec and kde, respectively, stand for f@(e; k) and
f(.) (0; k). The smoothing parameter k has been selected by using least squares cross-
validation. The results are summarized in Table 1 and Fig. 3. It can be seen that the
deconvolution estimator outperforms the standard one especially when the NSR is
moderate or the error density is ordinary smooth.

NSR = 16%

NSR = 44% NSR = 47%

Fig. 2 vM density with zero mean direction and concentration parameter equals 2 (continuous),
error densities (dashed) which are wN (left), wL (middle) and wC (right) with zero mean direction
and concentrations, respectively, equal to 0.97, 0.33, 0.80, and convolution between target and error
densities (dotted)

Table 1 Comparison between the deconvolution estimator and the circular kernel density one
(AISEgec/AISEyq.) over 500 samples of sizes 100, 200 and 400 drawn from the target population
contaminated by noise obtained by different error populations

NSR Target density | Error density |n = 100 n =200 n =400
16% vM(r, 2) wN(0, 0.97) |0.755 0.782 0.769
44% VM(r, 2) wL(0, 0.33) |0.866 0.857 0.839
47% vM(r, 2) wC(0,0.80) |0.966 1.015 1.085
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Fig. 3 Comparison between the deconvolution estimator and the circular kernel density one in
terms of integrated squared errors (ISE) over 500 contaminated samples of sizes 100, 200 and 400
with a NSR equals to 16% (left), 44% (middle) and 47% (right)

S Real Data Example

We consider the classical dataset described by [7] concerning the directions chosen by
100 ants in response to an evenly illuminated black target placed at ir. [7] showed that
classical parametric models, like von Mises, are not suited for these data. However,
he concluded them for a unimodal population. A nonparametric approach has been
suggested by [6], who, in the context of errors-in-variables modelling, revealed some
evidence about multimodality. His approach is based on orthogonal trigonometric
series. The rationale behind the errors-in-variables hypothesis is that, due to the
typical jerky movement of the insect, the point where the ant intersects the circle can
be treated as indirect observation of the direction chosen by the ant.

We compare the standard circular kernel density estimator with our deconvolution
one. Specifically, we have assumed a wrapped Laplace error with zero mean and

05 0.6
I

04
I

Density estimates

0.1

Directions

Fig.4 Ants data (left) and kernel density estimate (continuous) and deconvolution estimate (dotted)
of the directions of ants (right)
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concentration equal to 0.2, employing a wrapped Normal weight function whose
smoothing parameter has been selected by least squares cross-validation. As it can
be seen in Fig. 4 the proposed deconvolution estimator reveals the presence of three
modes more distinctly than the standard method.
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Asymptotic for Relative Frequency When | m)
Population Is Driven by Arbitrary e
Unknown Evolution

Silvano Fiorin

Abstract Strongly consistent estimates are shown, via relative frequency, for the
probability of white balls inside a dichotomous urn when such a probability is an
arbitrary unknown continuous time-dependent function over a bounded time interval.
The asymptotic behaviour of relative frequency is studied in a nonstationary context
using a Riemann-Dini type theorem for strong law of large numbers of random
variables with arbitrarily different expectations; furthermore, the theoretical results
concerning the strong law of large numbers can be applied for estimating the mean
function of an unknown form of a general nonstationary process.

1 Introduction

Several different areas of statistics deal with an urn model including white and black
balls with probability p and 1 — p, respectively. In this very classic context a time-
dependent component is introduced, and p is replaced with po(¢) which denotes a
time varying quantity 0 < po(¢#) < 1insuch a way that at any instant ¢ € [0, T'] only
one observation is taken from the corresponding urn with probability po(¢) and the
random variable Y (¢) is obtained such that P(Y(t) = 1) = po(t), P(Y(t) =0) =
1 — po(t), E(Y(t)) = po(t) Vt € [0, T], defining the nonstationary process

Y={Y®):tel0,T]) (1)

with mean function E (Y (¢)) = po(t). The description of the above model is specified
introducing some reasonable assumptions:

A1 we assume continuity for the usually unknown mean function pg : [0, T'] —
[0, 1];
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A 2 for any fixed pair of instants 1, #, € [0, T'] the independence is assumed for the
random variables Y (#;) and Y ().

This assumption is introduced in order to apply the Rajchman Theorem (see [5])
or the classical results concerning Strong Law of Large Numbers (SLLN) (see [4]).
Namely, only pairwise uncorrelation is requested for Y (¢;) and Y (#,) but, it can be
easily checked in this case, the uncorrelation implies independence; furthermore,
independence is here a very mild condition; in fact, we may suppose that the total
number of white and black balls in the urn is big enough that the knowledge of
Y(t;) = lorY(#;) = 0does not produce a meaningful modification of the probability
distribution for Y (2,).
The main purpose of this paper consists of a double aim:

1. to study the asymptotic behaviour of relative frequency in a nonstationary context;

2. to estimate the unknown function py, i.e. the mean function py(t) = E(Y (¢)) of
the nonstationary process (1), which is an arbitrary continuous map form [0, T']
into [0, 1].

The urn evolution has effects concerning sampling; for instance, if the observations
number # is big enough, a not slight time interval will be needed in order to receive
the n observations which surely are not values taken by the same random variable.
Then, for the sake of simplification, we assume that any r.v. Y () may be observed
at most only one time. The point of view we adopt is then characterized by a strong
nonstationarity and the consistent estimation for the mean m(#y) at a fixed time
may appear as a very hard objective.

An approach to estimation for the mean function m(-) of a nonstationary process
was given by M. B. Priestley (see [10] in page 587 and [11] in page 140) when the
form of m is known and the case is suggested of a polynomial function in 7. Viceversa:
with no information on the form of m we obviously cannot construct a consistent
estimate of it. The approach here adopted is quite different from classical methods of
time series analysis; the only information available for m is the continuity property
over [0, T], and no approximation of m is introduced by continuous functions of a
known form. The estimation technique involves the process (1) which is a specified
case of nonstationarity but the theoretical results given in the last section hold true for
a general nonstationary process. The case (1) is only a concrete example of a process
having no regularity properties; nevertheless, the continuity for the mean function
m is a reasonable and not restrictive assumption which denotes compatibility with a
context of an arbitrary but not brutal evolution for the composition of the urn.

Concerning estimation problem for the mean function m(-) of a nonstationary
process, some well-known approach is available in the literature as, for instance,
the smoothing spline estimation by [13] or nonparametric regression estimation as
in [7] and [9]. These classical approaches, following the sieves technique, need the
first k,, functions belonging to a base inside a vector space and the usual assumptions
involved for the smooth function m(-) are concerning the derivatives m’, m” and so on.
Thus the estimation procedure developed in this paper may be seen as an alternative
method; only continuity is adopted for m(-) and the use of sieves technique is omitted.
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The answer to above arguments is the relative frequency

1 n
L) @)
n -
j=1
where {t; : j =1,...,n} are the first n observation times of a sequence {t; :

j =1} C [0, T] and the main purpose is that of getting consistent estimations of
m(t) = po(t) via almost sure convergence for the sequence (2). The SLLN is then
the theoretical tool needed in the below analysis, but the classical approach based on
the zero-mean r.v.’s (Y (t;) — po(t;)), i.e.

l n
=D (Y1) = po(t))) — Oas. 3)

J=1

is not enough; in fact, we need convergence for (2) with the not zero-mean r.v.’s
Y (¢;). This argument, investigated by Fiorin [8] is now improved with the help of
new results given in Sect. (5).

Nevertheless, the application of usual SLLN for studying the asymptotic behaviour
of (2) is not a trivial step and several problems arise concerning the process (1).
The family of r.v.’s {¥Y(¢;) : j > 1} is not a stationary process and then we have no
possibility of applying the classical ergodic theory (see, for instance, Chap. 3 in [2])
based on a stationary probability distribution over R* and on a measure-preserving
transformation. Analogously the generalizations of ergodic theory such as Dunford
and Schwartz pointwise ergodic theorem (see [6] in page 675) or Chacon and Ornstein
theorem [3] cannot be applied to our problem. Also law of large numbers for random
functions cannot be adapted to the above problem; taking, for instance, the Ranga
Raw law for DJ[O0, 1] valued r.v.’s [12], the main argument is given by the observable
trajectories inside the Skorohod space D[0, 1] of functions with discontinuities only
for the first kind; thus the trajectories of process (1), including any arbitrary function
taking only values O and 1, are not a random element into D[0, T']. Moreover let
us observe that, because of the discontinuity at any point ¢, the observation of any
trajectory over all the interval [0, T'], and then any law of large numbers based on
trajectories, are a too hard purpose. Consequently, the asymptotic arguments are
concerning the sequence (2), where the number of observed r.v.’s Y (¢;) tends to
infinity.

The convergence of (2) is studied via the sequence {E(Y (¢;)) = po(t;) : j > 1}
and permutations (i.e. bijections) w : N — N in fact, if a permutation 7 is intro-
duced, the possible almost sure limit of

1 n
- Z Y (tx(j) )
j=1
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is depending on . If {P,?n} is a sequence of probability measures, where each P,?n
assigns mass % to each point {po(t7(jy) : j =1, ..., n}, then the weak or vague
convergence for the sequence { P } to a probability measure P° implies almost sure
convergence of (4) to the limit fol I (v)d P°(v) where I (v) is the identity map over
[0, 1] and PO depends on the sequence {Y (¢;) : j > 1} and on permutation 7. All
the below analysis is based on the possibility of finding a permutation 7 in such a
way that the convergence of (4) is driven to a limit fol I(v)dP°(v) where PO is a
previously chosen probability measure over [0, 1]; under a theoretical point of view
this is a result for SLLN (4) which is the analogous of the well-known Riemann-Dini
Theorem for real simply convergent (but not absolutely convergent) series. Under
the operative point of view the strongly consistent estimates are the result of an
experimental design based on choosing

(I) the sequence of observation times {¢; : j > 1} C [0, T'];
(I) the permutation {t;(;) : j > 1}.

2 Convergence Elements

Ifthe observation times {¢; : j > 1} are given jointly with the observabler.v.’s {Y (¢;) :
j > 1}, an intuitive approach for studying the almost sure convergence for (2) is
suggested by the elementary equality

1 « 1 « 1 «
=D Y == (V) — EX @) + - EX(@)); (5)

j=1 j=1 j=1

if the Y (¢;)’s are pairwise uncorrelated and their second moments have a common
bound (see [5]) then the a.s. convergence to O for % Z:le (Y ;) — E(Y(¢;))) jointly
with the convergence to a limit L for the deterministic sequence

1 n
=Y EX (1)) ©6)
n

j=1

imply that (2) is a.s. convergent to the limit L. Thus the argument of below analysis
is the possible convergence to some limit L for the sequence (6). Then writing (6)
as an integral

1 & !

LY By = [ 1marw. )

n < 0
j=1

where [ (x) is the identity map and P, is the probability measure which assigns the

weight }l toeachpoint{E(Y (¢t;)) : j =1, ..., n}, and the argument of below analysis

is the possible limit for the sequence of integrals (7) adopting the technique of weak
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or vague convergence for the sequence of measures P,’s; in fact, by definition of
weak convergence for measures, we have that if the P,’s are weakly convergent to

P then .

1
lim I(x)dPn(x)=/ 1(x)dP(x). (8)
0

n—o0 0

Nevertheless, the weak convergence for P,’s is not so easy to obtain since the expec-
tations {E(Y (¢;)) : j > 1} define an arbitrary deterministic sequence and then weak
convergence is achieved via permutations.

3 A General SLLN via Permutations

A permutation is any bijection 7 : N — N defined over the naturals N in such a
way that the sequence of random variables is introduced

{Y(tz(j)) : j = 1} with expectations {E(Y (tzj))) : j = 1} )]

and thus, for any assigned natural n, P, is defined as the probability measure giving
mass % toeachpoint { E((Y (tz(j))) : j = 1, ..., n}. The main theoretical result shows
the technique of finding a permutation m such that the sequence P, is weakly
convergent to an assigned probability measure P. For a rigorous proof of below
statement see Theorem 7 in [8].

Theorem 1 For any assigned sequence of constants {E(Y (t;)) : j > 1} C [0, 1]
there exists a class M of probability measures (over [0, 1]) such that for each given
P € M acorresponding permutation can be constructed such that the sequence Py,
is weakly (or vaguely) convergent to P and then

1 1
lim 1(x)dP,,(x) = / I1(x)dP(x) and
0

n—00 0

1 !
lim — Z Y(tz(j)) = f 1(x)d P (x) almost surely.
n—oo n ot 0

Some comments and remarks may help to clarify the meaning of above result:

(a) The final goal is not only the construction of a permutation 7 making the P,,’s
a weakly convergent sequence, but also that of driving convergence to a chosen
limit measure belonging to class ./Z.

(b) The definition of class ./ is, of course, a central and rather technical argument:
for details and a rigorous treatment see the construction leading to Definition 6
in [8].
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(c) The main theorem may appear as an analogous of the well-known Riemann-
Dini theorem for convergent real series: both the proofs are clearly involving
permutations, but the technique adopted in proving the above main result is a
constructive one.

(d) The above result is a generalization of the classical SLLN concerning a sequence
of r.v.’s Y; having a common finite expectation u = E(Y;),Vj > 1. By the
elementary equality

BN 1 L
; ; V) =Y )~ E@) + - ; E(Y (1))

j=1
and if the convergence holds true:

lim % Z(Y(l‘j) — E(Y(t)))) =0a.s.
j=1

an easy direct comparison is possible:

1. in the standard case, when E(Y (t;)) = u, Vj > 1, we trivially have

1 n
~Y EX () = p.Vn.
n

j=1

This means that for each n the weight 1 is assigned to value p and then
the probability measure P, = §, are invariant with respect to any given
permutation 7 and the P,,’s are weakly convergent to measure P = §,,.

2. In the general case, when expectations { E(Y (¢;)) : j > 1} C [0, 1] are arbi-
trarily different values,

1 !
=Y E(Y (txj)) = / I(x)d Py
n = 0

depends on the sequence {E(Y (¢;)) : j > 1} and 7, and the technique based
on weak convergence for Py,’s is a generalization of the standard case.

Moreover, the limit for SLLN is written as an integral fol I(x)dP(x),1i.e. as an
expectation with respect to the probability measure P which is the weak limit of
P.,’s; thus P is defined through 7, independently of probability distribution of r.v.’s
Y (l‘j ).

Finally, let us observe that the main theorem cannot be directly applied for finding
7 because the proof technique is fully based on the knowledge of values E (Y (¢;))’s
which are the estimation object.
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4 Estimating E(Y (¢))

Let us choose as observation times any sequence {¢; : j > 1} which is dense into
[0, T'] and thus Theorem 1 can be applied to {¢; : j > 1}; because of the density of
t;’s the class .# of the weak limit measures contains all the absolutely continuous
probability measures over [0, T']. Thus Py € .# where Py denotes the uniform
probability measure over [0, T'] having density

1
fo) =2 V1 €l0.T]

and, applying the main theorem, a permutation 7 can be found such that P,,, which
assigns weight % to each point {t;¢j) : j =1, ...,n}, is weakly convergent to Py.
The continuity of the unknown function po(¢) = E(Y (¢)) for each ¢ € [0, T'] keeps
weak convergence for the induced measures over [0, 1]: then po(Py,) is weakly
convergent to po(Py), where po(Py,) assigns weight % to each point

{Poltz()) = EX (Uzp) : j=1,...,n}
and then, by the mean value theorem for integrals, the limits hold true:

1 ¢ !
Jim 3D B ) = i | 1wdpocp =
Z

n“

1 T 1 T
=/ I (x)dpo(Py) =/ po(t)dPy = ?/ po()dt = po(?)
0 0 0

for some points ¢t € [0, T'], and

n

1
nll)rglo - Zl Y (tz(j)) = po(?) almost surely.
j=

An analogous version of above result holds true for any assigned interval (a, b] C
[0, T']. Using the same above permutation r such that the P,,,’s are weakly convergent
to Py over [0, T'], for each n fixed, we collect inside the set {t;(;) : j =1,...,n}all
the 7;(;)’s falling into (a, b], i.e. the set is defined

AGT.n, (@, b)) = {tzjy € (@, b]: j=1,....n}

andif n(a, b] denotes its cardinality, the following statement holds true (see Theorem
4 in [8] for a complete proof).
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Theorem 2 The sequence of v.’s

1
@ bl > Y (tr(j)),

ta(jy EAGT,N, (@,b])

when n — 00, is a strongly consistent estimate of po(t) for some points t € [a, b].

5 Remarks

1. Theorem (2) may be applied, at the same time, to several different subintervals of
[0, T]; for instance, to all the subintervals belonging to a finite partition of (0, 7'].

2. The policy of choosing the observation times {¢; : j > 1} as a dense subset of
[0, T'] is a technique which is common to several areas of statistical inference. In
this context it can be easily checked that

(a) this choice derives directly from evolution of the nonstationary process {Y (¢) :
t € [0, T]}; in fact at most only one observation is possible for any r.v. Y (7).
Thus to increase the number of observations implies to choose new ¢;’s and
their density in [0, T'] ensures a good knowledge of the process.

(b) The density of #;’s makes necessary the use of permutations; in fact, the
sequence % Z';zl Y (¢;) has no meaning if a permutation is not assigned for
choosing the ¢;’s. But the choice of 7, as it was shown above, has a deep
effect in terms of measures P, and of convergence.
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Semantic Keywords Clustering )
to Optimize Text Ads Campaigns e

Pietro Fodra, Emmanuel Pasquet, Bruno Goutorbe, Guillaume Mohr,
and Matthieu Cornec

Abstract In this paper, we describe how to use some well-known machine learning
tools to make groups of textual queries of similar semantic meaning. Such a clus-
terization can be used to improve the performances of bidding algorithms for online
advertising, by mutualizing the signal gathered by text ads displayed on result pages
of search queries which share a similar meaning. Indeed, search engines organize
auctions wherein participants bid on selected search terms on which they wish to dis-
play an ad. Generalist e-commerce companies such as Cdiscount bid simultaneously
on millions of terms that reflect the diversity of their catalog of products, according
to the expected profits associated with the ads. Methods to estimate these expected
returns suffer from a sparsity of data, since most of the keywords have little or no
historical signal. Grouping them and exploiting information on the most frequent
keywords (short tail) to infer information on the less frequent ones (long tail), allow
to anticipate the user behavior by semantics and improve the bidding strategy. The
plan is the following: pre-process the keywords by stemming, choose an e-commerce
training corpus for the Word2Vec model, train it, and perform an embedding into a
euclidean space where we can cluster keywords thanks to a K-means algorithm. We
validate our approach on a sub-sample of the keywords for which they have anon-
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semantic distance available. Finally, all the keywords in the same cluster share the
same bid, which is computed aggregating the cluster historical signal.

Keywords NLP - SEA - Semantic clustering

1 Introduction

For large e-commerce websites, visibility is crucial and largely depends on how
Internet users find the website through the most common online search engines. In
order to appear in the search engine result page, three options are usually available.

1. The free way (SEO): the search engine matches the user query to a page of the
website. This option, despite being free, has the disadvantage of being uncon-
trollable: the search engine is entirely responsible of the matching (if and which
page) and there is no way to improve the result in a short amount of time.

2. Text Ads: for each user query, the search engine creates an auction where e-
commerce actors participate to get the best position in the result page and increase
the chances of their link being clicked. Each participant creates an ad (a rich
message and a link) and associates it to a set of keywords, for which he can
specify the maximum amount of money he is willing to pay for each click (max
cost-per-click). Then the search engine chooses, according to the overall quality
of the ad and the bid amount, which ads to show, and the position of each one on
the result page. These ads render as the textual content of the ad, equipped with
a re-direction link exactly as for free results, but with a small extra label (“Ad,”
for example) on the left. They usually appear on the top and on the bottom of the
result page.

3. Product List Ads: similar to textual ads, but rendering as a priced image usually
displayed on the top of the page, before all the textual results. For this type of ads,
even if triggered by a textual query, the participants bid directly on the product
(and not on keywords), while the search engine is usually responsible for the
keyword-product match.

In this work, we will talk about how semantic clustering of keywords can help
to improve performances of textual ads campaigns (option 2). We will address this
problem by means of Machine Learning and Natural Language Processing (NLP)
tools as Word2Vec, clustering techniques, and text processing.

In Sect. 2 we will formalize the bidding problem and explain in detail why seman-
tic clustering helps to improve the bidding strategy. In Sect.3 we will explore the
Word2Vec embedding, focusing on the metric nature of the landing space, and how
to validate the model by introducing a different distance (based on behavior) on a
subset of frequent keywords. Section4 is devoted to the semantic clustering using
K-Means, while in Sect. 5 we present a practical application and the result of an A/B
testing.



Semantic Keywords Clustering to Optimize Text Ads Campaigns 205

2 Formalization of the Bidding Problem

Before detailing the problem, let us fix some notation.

Definition 1 We take an agent participating to search engine auctions where he bids
to show textual ads for K a (finite) set of keywords (despite the name keywords,
keywords can be more than one words). We denote by k € K a generic element of
this set and define W as the set of all words contained in all the keywords in K.

Definition 2 We define a clusterization of keywords as a partition of K: a cluster C
is a non-empty subset C € K of keywords sharing some property (not necessarily
an ad group), with the property that for any two clusters C;, C;, C; N C; = @, and
Y, CGi=K

Definition 3 For each keyword k, we define ¢ as the maximum cost-per-click (abbr.
max CPC) the agent is willing to pay for a click, while we will denote by ¢¢ the max
CPC associated to a cluster if all the keywords k € C share the same bid.

Definition 4 For each keyword k, we define two random variables X; and V; rep-
resenting the total amount of money spent on k during the time interval [0, T'] and
the total revenue associated to keyword: both random sequences are controlled by
the max CPC bid ¢. Notice that increasing the bid ¢, would make both the cost X
and the revenue V; increase, even though the cost usually explodes much faster than
the revenue (saturation effect).

The bidding problem, for which we assume for simplicity that the control ® is
constant throughout [0, 7], is to maximize:

gleai]E [u (Z vkﬂ , underzk: Xi =X, (1)

keK

where X is the total budget of the agent for all his keywords, .4 the set of admissible
strategies and U/ a convex monotone utility function. We will focus on a problem
which comes before (1): in order to maximize the agent utility function, we need a
reliable model for the random variables (Vy);.

Definition 5 We use the following decomposition of the revenue:
Vi = v N, (2)
where vy is an uncontrolled (independent from @) variable representing the revenue

associated to each click (0 when a click is not followed by a purchase, which is most
of the time), and N; (controlled) is the number of clicks during [0, T'].
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Fig. 1 Example of keywords clicks distribution: in this curve 20% of the keywords account for
more than 90% of the total clicks and roughly half of the keywords have no signal at all (flat tail).
For very large accounts with a lot of keywords, this curve can be much steeper

However, even for (v;); i.i.d., estimating the average value per click can be a
challenge. In fact, as shown in (Fig. 1), most of the keywords have little or no historical
signal since they are only clicked few times during their lifetime; however, since there
are a lot of them, the impact of ignoring these keywords can be dramatic. The main
idea of this paper is to exploit semantic similarity (which is independent from ®)
to group them into clusters having a much stronger historical signal, and provide an
average estimator for the cluster only. Instead of waiting or forcing as in multi-armed
bandit theory (see [2]) for rare keywords to accumulate signal over time, we use their
short-tail neighbors. Given clusters (C;)}_,, the problem (1) becomes

E Ve, d Xe. =X 3
gle% U(Z C,> , un erZ c , 3)

i=1 i=1

where X¢, and V, are the global cost and revenue of a whole cluster. Notice that a
strategy @ € A’ if all the keywords in the same cluster share the same bid.

3 The Word2Vec Modeling

The first step is producing an embedding of W into a Euclidean metric space whose
distance respects the semantic distance among words.

In order to find this embedding, we use the Word2Vec model introduced by the
seminal paper [6] and [7], implemented by the Python package gensim (see [9]).
The Word2Vec model embeds the one-hot-encoding representation of W, which is
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a space of very-high dimension (as large as the number of keywords, which in our
case is more than one million), to a smaller Euclidean space, usually of dimension
between 100 and 500, thanks to a neural network whose hidden layer transformation
matrix is used as coordinates for the embedding. This technique works pretty well and
is able to capture the linear correlation among vectors: the classic example provided
by the paper takes into account the relationship

Y(king) — ¥ (queen) = ¥ (man) — Y (woman), 4)

which captures the semantics among the four terms involved.

However, even though the vector space structure of the landing space R? is used
to express semantic differences among couples (as in the king to queen = man to
woman example), the metric used to compare words is not the one induced by the
vector space structure (the norm), but the cosine one.

Definition 6 We define dg : W? — [0, 1] as

1 < wi, Wy >
do(wy, wa) = = (1 - —> €[0,1] &)
2 lwill flwa]l

as the semantic distance between words induced by the Word2Vec embedding.

3.1 The Behavioral Distance

Word2Vec is an unsupervised model whose performances are not easily measurable.
Thatis why we validate our approach on a keywords subset for which another distance
is available.

Definition 7 We define a subset K* C K (roughly 10%) of search terms which are
particular frequent in our internal search engine (the one allowing to explore the
website) and define a behavioral distance on K* ([3]) as

_ mlk) N(ka) .
dj(kl,kg) =1 —7'[(/{1) U7‘[(k2) S [0, 1], Vkl,kz e K , (6)

where 7 (k) is the set of all the products that have been clicked on the internal engine
after searching for k.

It is worth noticing that this distance is not available on the whole K since most
of the elements of K have never been searched . This distance is commonly known
as the Jaccard distance . For example, d; (k;, k) = 1 if the two queries lead to no
common product, while d, (k;, k;) = O if the user clicks are exactly identical for
the two queries. We call this distance behavioral, in contrast with the semantic one,
since it depends only on the user behavior and does not take into account the keyword
meaning.
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3.2 The Model Training and the Semantic Distance

In order to train the model, we need to define a training corpus D (a collection of
documents). We may use as corpus the collection of all our search terms K, i.e.,
D = K, but in this case, we would lose semantic information due to the documents
being very short (keywords are often less than 5 words) and we would not have
enough context to train the model.

That is why we have chosen the internal product description catalog, which pro-
vides a very rich and specific corpus, i.e., D is the collection of all the product
descriptions, for all the products in our catalog. In order to have a faster implemen-
tation, we have chosen to train a single model for keywords in a given category only
with the descriptions of products in the same category: since training time does not
scale linearly, this allows us to break a big problem into smaller problems (one for
each category) and still perform well.

So far, we have defined an Euclidean embedding of W, but our goal is to find a
distance between keywords, not words.

Definition 8 We define the weight associated to a word w as the inverse document

frequency ([8])
1

= wew, @)
> pep Lueam)

Uy

where DD is the corpus used to train the Word2Vec model.

Definition 9 We define

dstki k) =do | Y ewtu. Y o |. Yk k €K, ®)

weQ (k) 2€Q(k2)

where (k) is the set of all the words contained in the keyword k (e.g.,
2 (hello world) = {hello, world}).

The semantic distance dy is the Euclidean distance between the baricenters of the
two keywords, where the weight of each words decreases with the word frequency
in the corpus . This allows us to reduce the weight of the word felephone in its
category, since its presence does not help to semantically distinguish two keywords.

Once we have defined these two distances, we can compare them on K* C K by
taking the correlation value between the entries of the matrices {d ki, k j)}ij and
{ds (ki, k J)}i .. This metric allows to optimize the model hyper-parameters, as the
embedding dimension p, the extension of the training corpus, or the measure the
impact of text pre-processing. Here is our conclusions.
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corpus no tf-idf| tf-idf
product catalogs 19.3% |35.2%
product catalogs + generic| 19.1% |34.8%

Fig.2 Correlation between behavioral and semantic distance for d = 300 on the telephone depart-
ment depending on the training corpus and the use of the idf normalization (8): while adding a
generic catalog does not improve the results, and the idf normalization is essential to obtain a good
performance

e General purpose corpus: we add a general purpose corpus (e.g., WaCkY [1]) to
the training phase, which leads to a much slower training without a significant
performance improvement. We conclude that the product description corpus is
sufficiently rich for our purpose.

e Pre-processing: we have improved the model performance by stemming words,
which allows us to normalize and reduce the keywords space, as well as removing
special characters and converting Latin numbers to Arabic ones to have a homo-
geneous text treatment. We have massively relied on the Python package nltk
([5D.

e Embedding dimensions: we have found that p = 300 is a good compromise
between learning speed and performances.

e Weighting by the IDF weights significantly improves the quality of the metric
(Fig.2).

4 Keyword Clusterization

Thanks to the embedding described in the previous section, we can use the metrics
induced by dg to cluster all the keywords. However, since the number of keywords
is relatively large, we would like to use K-means ([4]) to minimize the fitting time
of the clustering model. However, we need to take care of some details.

We recall that the distance ds is the cosine distance between baricenters in the
Euclidean embedding space of the Word2Vec model. If we used a K-means on
keywords using those baricenters as Euclidean coordinates, we would be using the
norm distance to create clusters, and not the cosine one (which defines similarities
in the W2V model). To overcome this problem, it is enough to, for each K-means
iteration (Fig. 3):

1. project the whole embedding space R? — {0} to the sphere S¢ dividing by the
norm;

2. use the euclidean distance on the projected coordinates to compute centroids
(approximation of the sphere chord distance);

3. project the new centroids on the sphere.
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Fig. 3 Example of K-means on S': the projection of the cluster centroids guarantees that centroids
are still on the sphere

5 A/B Testing and Conclusions

We used the keyword clusterization defined in the previous section to create ad
groups whose keywords are forced to share the same bid (max CPC). How bids are
determined is out of the scope of this paper; however, the idea is that bidder sees a
group of keywords in the same ad group as a unique one, aggregating all the history
into a unique shared signal. We have finally build an A/B test where the bidder bids
as usual (one bid per keyword) in the A part, and a bid per ad group on the B part.
The result of the A/B encourages our researches to go further: while the A part
outperforms the B part on a relatively small of very short-tail keywords, the B part
proves to be better on the long tail, leading to an overall tie. This is mainly due to the
purely semantic clusterization: some very generic (and often short keyword) have so
much signal that they would deserve to have a special treatment. Generic keywords
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Fig. 4 Graphical representation of clusters via TSNE [10] on the telephones category. Colors
represent clusters, which are computed before TSNE, while the circle size the number of clicks for
a given keyword in log-scale

(e.g., telephone) and specific keywords (e.g., telephone brand color) have different
behavior, even if their semantics can be similar: that is the way, further work will
be dedicated to a keyword tagging allowing to order keywords according to their
level of specification. This could be done by analyzing lexical property (as for the
keyword length, for example) or their previous behavior if available.

Another development axis is the clustering technique; instead of partitioning the
keyword space, we can identify neighbors for each keyword and use smoothing
techniques (as a kernel density or a KNN) to smooth the historical signal coming
from each keyword. This approach would allow us to introduce weights into the
smoothing densities depending on the keyword behavior.
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A Note on Robust Estimation )
of the Extremal Index Gediay

M. Ivette Gomes, Miranda Cristina, and Manuela Souto de Miranda

Abstract Many examples in the most diverse fields of application show the need
for statistical methods of analysis of extremes of dependent data. A crucial issue
that appears when there is dependency is the reliable estimation of the extremal
index (EI), a parameter related to the clustering of large events. The most popular
El-estimators, like the blocks’ El-estimators, are very sensitive to anomalous cluster
sizes and exhibit a high bias. The need for robust versions of such El-estimators is
the main topic under discussion in this paper.

Keywords Dependent sequences - Monte-Carlo simulation - Robust
semi-parametric estimation - Statistics of extremes

1 Introductory Notes

The extremal index (EI), denoted by 6, is a parameter of extreme events related to
the clustering of exceedances of high thresholds. In the semi-parametric estimation
of this parameter, we have to cope with problems similar to those that appear in
the estimation of the primary parameter of extreme events, the extreme value index
(EVI), here denoted by &, related to the tail heaviness: increasing bias, as the threshold
decreases and a high variance for high thresholds. See [14] for a recent overview on
the topic of univariate statistical extreme value theory (EVT).

We generally assume to be working with a strictly stationary sequence of ran-
dom variables (RVs), {X,},~, from a cumulative distribution function (CDF) F,
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under general asymptotic and long-range dependence restrictions, like the long-range
dependence condition D ([24]) and the local dependence condition D” ([23]). Let
{Xin}u>1, 1 <i < n, denote the associated sequences of ascending order statistics.

The stationary sequence {X,},~; is said to have an EI, 6 (0 <6 < 1), if, for
all T > 0, we can find a sequence of levels u, = u,(t) such that with {Y,},-, the
associated independent, identically distributed (IID) sequence (i.e., an IID sequence
from the same CDF, F),

]P(Yn:n = un) = Fn(un) — e—r and IP>()(n:n =< un) — e_9T~
n—o00 n— 00

Thereis thus a ‘shrinkage’ of maximum values, but the limiting CDF of the maximum,
X, linearly normalized, is still an extreme value (EV) CDF, with a functional form
of the type

_ Jexpf—(14+&x)"5), 14+&x > 0,if £ #£0
Ve = {exp(— exp(—x)), x € R, if & =0.

Under the two mixing conditions D and D” (see [32]), the EI can also be defined as

1 :
0= —— - = lim P(X, < u,|X| > uy),
limiting mean size of clusters = n—o0

with
u,: Fu,)=1—1t/n+o0(l/n), as n — oo, witht > 0, fixed. (D)

The very simple m-dependent (m-DEP) processes are used here for illustration.
Those processes, with an EI given by 6 = 1/m, are based on IID Fréchet(£) RVs Y;,
i > 1, from a CDF CD;/m, with ®; (x) = exp (— x~/%), x > 0, the standard Fréchet
CDF. They are then built upon the relation X; = max<j<j4m—1 Y;,i > 1. Toenhance
the clustering of high values (with an asymptotic mean size equal to m), we present
Fig. 1.

1ID (6=1) 5 2-DEP (60=0.5) . 5-DEP (6=0.2)
10 4 10 A 10
5 5 5
o [T RREFRS ol LR e | s Vi
0 10 20 30 0 10 20 30 0 10 20 30

Fig. 1 Sample paths of an IID (left), 2-DEP (center) and 5-DEP (right) processes from the same
underlying Fréchet(®¢—), but with Els, respectively, equal to 1, 0.5, and 0.2
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Notice the richness of these processes regarding clustering of exceedances: there
is a ‘shrinkage’ of maximum values, together with larger and larger ‘clusters’ of
exceedances of high values, as 6 decreases. Indeed, serial dependence leads to large
values occurring close in time and forming clusters.

The scope of the article is the following: In Sect. 2, we deal with the El-estimation,
giving primordial emphasis to the blocks’ estimator, since it is perhaps the most
widely known El-estimator. Robust versions of the blocks’ El-estimators are dis-
cussed in Sect. 3. Such an approach provides also a bias reduction, particularly in
the presence of anomalous observations. A Monte-Carlo (MC) simulation study is
described in Sect.4, in the framework of m-DEP processes. The proposed robust
version of the blocks’ El-estimators is compared with other El-estimators in the
literature. Finally, in Sect. 5, a few overall comments are put forward.

2 Extremal Index Estimation

The traditional estimators of 6 differ mainly in the approaches and definitions used
for identifying the clusters of exceedances (see, among others, [12, 19, 20, 22, 26,
31, 33]). The most relevant approaches in the literature are (a) the blocks estimator,
where the sample is partitioned into b blocks and exceedances of high levels are
identified and counted in each block that has at least one exceedance; (b) the runs
estimator, for which the occurrence of a first exceedance determines the beginning of
acluster. Other estimators have been recommended in the literature, like an improved
version of the block’s suggested in [33], the intervals estimator in [12], the k-gaps
estimator (see [34] or [35], among others), or the Nandagopalan estimator (see [23]
and [15], also among others). Herein we focus on the blocks’ estimator. The main
goal is to improve its robustness within the family of m-DEP processes.

Consider a sequence of high levels u,, = u,,(t) such that (1) holds, and a sequence
ry, such that r, € N and r, = o(n) as n - oo, ie., r,/n— 0, as n — oco. Let
b, = |n/r,], where |x] denotes the integer part of x, and take the partition of a
sample with size n into b, adjacent disjoint blocks, all with size r,. The number of
times that {X,,} exceeds a fixed level u, is counted by the point process N,{u,(7)}.
A cluster of exceedances is defined by the number of exceedances within a block
in which there is at least one exceedance. Note that, according to this definition, the
blocks of observations without any exceedance are ignored.

In limit, it was proved in [21] that under a broad A condition, the number of
exceedances N, converges to a compound Poisson process with multiplicities equal
to the dimension of the clusters. Moreover, clusters’ size distribution is given by

70 (J) =P[Xn:ﬂx,>un =j|Z”:]1X‘.>“” > o], j=12,...
i=1

i=1

where 14 stands for the indicator function of A. If the limit exists when n — o0,
the distribution of the clusters’ size associated with the compound Poisson process
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is w = lim,_, o, 7,. In general, w is not known and can be diverse. Nevertheless,
whenever it exists, and under the aforementioned dependence condition, the limiting
mean coincides with the inverse of the EI, i.e., the EI can be expressed as ol =
lim,, o0 Z_jzl Jjm,(j). Finally, the blocks’ estimator is defined by the inverse of the
mean number of exceedances per cluster, i.e., by

05 = (Nu/Zy)™" = Zu/ N, )
where Z,, denotes the number of blocks that contain at least one exceedance, i.e., the
number of clusters by the definition of cluster. In the present paper, we consider the

blocks’ estimator (B) in a different but equivalent form of the one presented in [31].
The estimator is defined by

k
1
IOg <E Z ]IM(il)ur<un>
i=1

| rk
x Z ]IX,->MH
i=1

B = —

, 3)

with M, , = max;<;<, X;,for0 <s < r.The estimator§W is aconsistent and asymp-
totically normal El-estimator, but with a second-order asymptotic behavior better
than the one of the El-estimator in (2).

The blocks’ estimator has a simple interpretation and important asymptotic prop-
erties, but it is based on the mean and it is very sensitive to an anomalous cluster’s
size. The occurrence of just one atypical cluster size is enough to produce a disastrous
estimate for 6. Thus, our main goal is to investigate procedures that can improve the
robustness of the blocks’ estimator.

3 Introducing Robustness

Dealing with robustness in statistical EVT seems to be an apparent contradiction.
Indeed, the main robust proposals were conceived for down-weighting extreme obser-
vations and in EV—analysis, those extreme observations are the most interesting ones.
In fact the conjugation is unusual and challenging but has been successfully exploited
in papers like [10] or [37] or [5], among others. Most of those papers are devoted
to the estimation of Pareto-type parameters and the robust estimation of a positive
EVI. As far as we know, the El-estimation has not been treated from a robust point
of view.

3.1 Parametric Distribution of the Limiting Cluster Size

Since in limit the inverse of the EI represents the cluster mean dimension, we inves-
tigate the more appropriate robust procedure for estimating that mean. At a first
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glance this seems to be trivial, but it deserves particular attention. A robust estimator
must exhibit a good performance under the assumed statistical model in spite of not
being optimum and, simultaneously, it must produce reliable estimates if real data
show small departures from the assumptions. See [18] and [16], where the main
contributions for the systematization of robust statistics can be found.

Hampel’s approach considers the distribution of any estimator under F (&), the
family of all possible probability distributions defined in the sample space E and for
which the estimator is defined. It is within this framework that some fundamental
tools of robustness were defined: the influence function (IF) of an estimator, the
definition of a robust estimator when it has a bounded IF, or the development of
robust M-estimators (see, e.g., [16]), which are proportional to their bounded IF.
We have adopted the robust approach for dealing with the limiting distribution = of
the cluster dimension, i.e., we have considered 7 as 7 (9) in the broad family F of
distributions. According to [21], 7 (9) is unknown and can be diverse. Some authors
assumed specific distributions in their work, such as the Poisson model. Herein
we assume such a neighborhood approach, considering that the true distribution of
the limiting cluster size belongs to a neighborhood of the Poisson family. Such an
assumption was chosen specifically for the B-estimator, since it counts the number
of exceedances per cluster, and the Poisson process is perhaps the most used in
modeling counting processes.

3.2 Robust Estimators

In general, we expect to have small or very small cluster sizes. Their mean is thus
strongly affected by the occurrence of clusters with atypical dimensions. Robust esti-
mators can control the effect of anomalous data and they have a good performance in
a neighborhood of the assumed model. Nevertheless, the most popular and efficient
robust estimators were conceived and are computationally implemented for deal-
ing with considerable sample sizes, weighting tails usually with symmetric models,
namely, the Normal model. Thus, the selection of a robust mean estimator deserves
some concerns, particularly because robust estimators, in general, are not explicitly
defined and so, computational components play a decisive role in the results.

There is a great collection of robust location estimators whose properties are well
studied. Most of them are included in the broad family of M-estimators, which gen-
eralizes the class of maximum likelihood (ML)-estimators. Currently, the most used
robust estimators for location are perhaps the MM-estimators, a subfamily of the M-
estimators that combines efficiency with a high breakdown point (another important
measure of robustness), but their computational setup is prepared for the Normal dis-
tribution, and they are not adequate for the Poisson model. Dealing with generalized
linear models (GLM), there are robust estimators developed for the logistic regres-
sion, for the Poisson regression, for the Normal and the Gamma error terms. Those
estimators are implemented in statistical packages for the R environment (see [30]),
like the popular robustbase or the robmixglm (see [25], and [3] for documentation).
They have been tested by researchers in computational statistics and they are used by
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a wide community. We intend to use known and verified computational procedures,
aiming to simplify the procedures for data analysts. The proposals herein presented
keep thus that main goal in mind.

Due to the great number of blocks without exceedances, the probability of
occurrence of the zero value could be poorly modeled by the Poisson model.
The assumption of a Poisson distribution with parameter A for the number of
exceedances per block, Ny, including those without exceedances, would imply that
A > 1 and P[Ny = 0] < exp(—1) =~ 0.37, which seems unrealistic when dealing
with exceedances of very high thresholds. So, robust estimators prepared for the
Poisson model should not be directly applied and it is necessary to consider robust
estimators that can deal with a great number of zero observations. More precisely, the
mean cluster size will be estimated assuming a GLM framework and two different
models in the neighborhoods of the Poisson family, namely, a hurdle Poisson and a
mixture of GLMs with Poisson error terms.

First consider the robust hurdle model. The model was suggested by Heritier ([17])
as a possible way of dealing with an excess of zeros in count data. It consists of two
functionally independent processes: the first is a binary process generating the zero
values, while the second is conditional on the first one, according to a zero truncated
Poisson distribution. The model was studied in detail in [27]; also [4] presented the
link, variance, and deviance functions for the zero truncated Poisson. The Poisson
hurdle model is defined by

1—px), yi =0,
expl—A )]\ ;)] Vi = 1.2
r E) 9 e ey

4
P =y —explwnll

PLY; ZJ’i]Z{

where y; denotes the counts, x; € R?, u; € R?. In the framework of the GLM, the
first part of the model assumes a logistic model for p(x;), with

logit[p(x;)] = log [lf(—;l(i)] =xiTot, (e € R?),

and the second part considers a log-linear model for A(u;) conditionally on p(x;),
with log[i(u;)] = uiTy, (y € R?). The log-likelihood of the hurdle model can be
written in the form [(et, y; y) = l(et; y) + [(y; y), establishing the orthogonality of
the parameters @ and p. This allows the independent estimation of the two parts
of the model. Note also that for obtaining the mean cluster size estimate only the
second part is necessary. Robust estimators for the coefficients of the hurdle model
are investigated in [9]. For the logistic component of the model robust counterparts
are available, like the methods proposed in [7] and [8] or those suggested by [6].
They are implemented in the robustbase package. In [9] the authors generalize the
work in [7] to the truncated Poisson distribution: for a GLM with covariates x; and
unknown parameter B, they use a robust M-estimator which is the solution of
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n n 1
V(i ;) = I:Ipc(ri)a)(xi)_ﬂiT - a(ﬁ)} =0, (&)
2 2 o

i=1 i

where V. denotes the Huber function, which will control the effect of anoma-
lous residuals, being ¢ the tuning constant that will regulate the degree of robust-
ness/efficiency of the estimator. Moreover, r; = (yi — wi)/,/Vy, are the Pearson
residuals, with v, = V[Y;|x;], @ (x;) are weights that will control anomalous covari-
ates observations, u; = E[Y;|x;] and a(B) is a correction term that ensures Fisher’s
consistency. Robust estimators defined by ¥ -functions, as in the intermediate term
of (5), are called Mallows-type estimators. When w(x;) = 1 for all i, the estimator
becomes the Huber estimator. That is, the adequate case in the present study, since
for the mean cluster size estimation only the constant term estimate is taken. In
[17], it is recommended a c-value between ¢ = 1.3 and ¢ = 1.8, and we have used
¢ = 1.6. The properties of the robust estimator result from general M-estimation
theory, namely, their influence function is IF(y; ¥, 7) = M, m)¥ (y, 1), where

3
) =—B|———
M, m) [aﬂm,m}

and their asymptotic covariance matrix is

M@, 1) QW MM, )T,

with Q (¥, w) = E[¥ (v, u)¥ (v, u)"]. Cantoni and Zedini (see [9]) concretized the
form of matrices M (i, ) and Q (v, ) for the truncated Poisson and they deducted
robust estimators from the asymptotic covariance matrix of the corresponding Mal-
lows quasi-likelihood estimators.

The truncated Poisson component of the hurdle model can be alternatively esti-
mated with an MT-estimator (see [36]). MT-estimators are another subfamily of M-
estimators that consider a variance stabilizing transformation in the response variable
and a redescending ¥ function in (5), (instead of .). The aforementioned general
properties also follow from M-estimation theory. The computational process for
obtaining MT-estimates in simulation studies has been more complex and more time
consuming than for computing robust Mallows-type estimates. The obtained results
were very similar, and so we focus only on the former process.

Consider now the second approach referred to above, which assumes a mixture
model of GLMs by considering potential outliers coming from an overdispersed
GLM as in [1], namely,

xlTﬁv Ci=17

xIB+ri,ci =2, ©

g(uilci, Ap) = {

where ¢; = 1 stands for the standard model belonging to the exponential family,
and ¢; = 2 groups potential outliers considering a random effect A; ~ N (0, 2) and



220 M. I. Gomes et al.

assuming mixture proportions p; and p, (p; + p» = 1) fixed over x;. The estimates
are obtained by fitting the model with EM (expectation-maximization) optimiza-
tion methods, particularly, the GEM algorithm and the quasi-Newton methods. The
inclusion of the A random effect can accommodate discordant observations, allowing
good estimates for the parameters in the standard model component. From this point
of view it is a robust estimation procedure, in spite of not being defined through a
particular robust estimators family. The methodological support is explained in [2]
and computations were performed using the robmixglm package and its estimating
function with the same name. Once again, results were very similar to those achieved
with Cantoni and Zeidini proposal in [9]. In the following, we have decided to present
only the results achieved by the latter suggestion. Recall that the above computa-
tional procedures are related to the estimation of the constant term of a GLM with a
link function g(u) log(u) The obtained constant term estimate, A, needs thus to
be transformed to A = exp(X), for obtaining the mean cluster size estimate. So, the
robust version of the EI blocks’ estimator is defined by

Orop = 1/A. (7

The main steps of the computational procedures through the robustbase package are
summarized in the following algorithm.

Algorithm

Step 1. Use the function g/mrob in the R-package robustbase, inserting the observed
clusters’ size as observations of the response variable (N,’). Consider the
linear predictor as a constant term of a regression without any other regres-
SOT.

Step 2. Select the following options in the glmrob function: family="Poisson",
method="Mqle", weights.on.x= “none", control=glmrobMge.control(tcc=
¢), with ¢ a value between 1.3 and 1.8, to get a robust estimate 2 of the
constant term.

Step 3. Transform A by the inverse of the link function, obtaining the mean cluster
size estimate A = exp A*.

Step 4. Compute the El-estimate BORobs already defined in (7).

4 A Simulation Study

In the first part of the simulation study, we aim to compare BRrob (computed by
the hurdle model and the aforementioned algorithm for ¢ = 1.6) with other EI-
estimators, namely, the traditional blocks estimator GB in (2) its improved version 9w
in (3), the interval estimator Olm in [12], the runs estimator GRUM in [23] (see also [15])
and the k-gaps estimator Ode in [34]. A comparison of different EI-estimators, done
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through MC simulations, can be found in [11]. Next, we introduced contamination
in the samples for analyzing the effect on the estimates and the advantages of the
robust proposal.

The performance of all methods was evaluated regarding the simulated values in
terms of the estimated expected mean value (or equivalently, bias) and in terms of
the estimated mean squared error (MSE). All computations were developed with R
software. For the alternatives élm and éles the package extRemes ([13]) was used and
for the éGap estimator we used the revdbayes package (see [28] and a last version of
package documentation in [29]). Notice that in previous studies we have compared
the three robust procedures cited above in Sect. 3, namely, the robust approach of the
hurdle model in (4), with Huber estimators, the robust approach of the hurdle model,
again in (4), but with MT-estimators and the mixture of GLMs in (6), and the results
were similar, either with or without contamination. Thus, the results presented in this
section for fgop Were computed through the algorithm written above, at the end of
Sect.3, with ¢ = 1.6.

4.1 Simulation Study Design

Observations were simulated from a standard Fréchet model with CDF &¢(x)
=exp(—x""%),x > 0, & > 0.Inthe present study we consider m-DEP sequences.
This type of structures verifies the limit conditions imposed by the theory and the
EI can be straightforwardly computed. Originally, we have assumed different EI-
values, namely, & = 0.5,0.2, and 0.1. Those 9 values, respectively, represent the
expectations A = 2, 5, and 10, in the Poisson model, and 6 = 1/m, withm =2, 5,
and 10 in the m-DEP structures. The simulation is illustrated for 6 = 0.2, a sample
size n = 2000 and for 500 replications. We have used blocks determined by three
different partitions, associated with a number of blocks b = 100, 150, 200. The per-
formance of the estimators for each sample was evaluated considering 30 thresholds
corresponding to upper sample quantiles from 0.80 up to 0.99.

The advantages of the robust version were evaluated by comparing the results
obtained under the previous conditions with those obtained after introducing con-
tamination in the samples. We have contaminated the same samples used before in
a deterministic way. To guarantee an anomalous cluster size although not inducing
changes in the extremal index value, it has been necessary to generate a number of
sequencial exceedences so it produces an outlier in the Ny sequence. After ordering
observations in each sample, (xi, ..., x,), the central values around the median were
thus replaced, in a tiny percentage (1.2%), by the corresponding value of the order
statistic x,.,, assuring in this way an outlier over cluster dimension in every sample,
independently of the exceedance value that determined the atypical cluster size. With
this type of contamination one can observe how the estimates can be affected by the
presence of just one discordant value.
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Fig. 2 Estimated mean values (left) and MSEs (right) of éB, éw, éRUb, élm, éRuns, and éGap in a
5-DEP structure (8 = 0.2) for the sample without contamination

4.1.1 Illustration

We next provide an illustration of the performed studies with a 5-DEP structure. We
compared the El-estimators in terms of estimated mean cluster size (for bias) and
estimated MSE, considering b = 100 disjoint blocks. Figure 2 shows the results using
samples without contamination. The robust version of the blocks’ estimator éRob
produced good results, very close to the original version of the estimator. Comparing
with other estimators globally, considering both bias and MSE, the k-gaps estimator
had the best performance, followed by the runs estimator.

The scenery is very different when contamination is introduced (see Fig. 3). The
k-gaps and the runs estimator lose the advantages since their bias increases for high
quantiles, as well as their MSEs. The three versions of the block’ estimator per-
formed better, particularly, the robust blocks’ estimator which globally had the best
performance among all, observing simultaneously bias and variability.

5 Final Comments

— A robust version of the blocks’ El-estimator has been presented, considering the
limit distribution of the cluster dimension in the neighborhood of a Poisson model.
Such an approach allows the truncation associated with the definition of clusters
of exceedances. Then, the limiting mean cluster size can be estimated through the
constant term of a GLM, namely, using a truncated Poisson.
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Fig. 3 Estimated mean values (leff) and MSEs (right) of éB, éw, éRob, élm, éRunS, and éGap in a
5-DEP structure (6 = 0.2) for the contaminated sample

— We have paid attention to robust methods whose computational procedures are
available and tested, in order to facilitate their potential use by data analysts. In
the present comparative study, the robustness was integrated in the process by
assuming a hurdle model and using Huber M-estimators. Other robust estimators
could have been considered, which justifies a future and deeper investigation.

— Compared with other El-estimators and without contaminated samples, the robust
proposal performance was similar to the traditional blocks’ estimator, and the k-
gaps estimator produced the best results. With contaminated samples and under
the simulated conditions, the robust version had the best performance among all
the considered estimators, in what respects both bias and variability.

— Further work is required in investigating robust procedures for other models with
known theoretical EI.
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Abstract The main goal of this article is to compare whether different groups with
ordinal responses on the same measurement scale satisfy stochastic dominance and
monotonic stochastic ordering. In the literature, the majority of inferential approaches
to settle the univariate case are proposed within the likelihood framework. These solu-
tions have very nice characterizations under their stringent assumptions. However,
when the set of alternatives lie in a positive orthant with more than four dimensions,
it is quite difficult to achieve proper inferences. Further, it is known that testing for
stochastic dominance in multivariate cases by likelihood approach is much more
difficult than the univariate case. This paper intends to discuss the problem within
the conditionality principle of inference through the permutation testing approach
and the nonparametric combination (NPC) of dependent permutation tests. The NPC
approach based on permutation theory is generally appropriate to suitably find exact
good solutions to this kind of problems. Moreover, some solutions for a typical
medical example are provided.
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1 Introduction

Ordered categorical data are frequently encountered in many research and decision-
making fields. For instance, records from patients under different treatments in clin-
ical experiments, feedbacks of questionnaire in social sciences, data on some ques-
tions about feeling, thought or opinion collected in a natural way in psychology, qual-
ity examination of products in marketing and technology, etc. Taking clinical trails as
a guide, we intend to find if results of cure plans satisfy stochastic ordering and to find
the best treatment among cure plans. Problems of comparing whether different groups
with ordinal responses on the same measurement scale satisfy stochastic dominance
(C = 2) is our principal interest. Thereby, we intend to provide tests of hypothe-
ses with ordinal responses especially by testing for stochastic dominance since that
for stochastic ordering, (C > 2), is obtained as a combination of C — 1 dominance
partial tests. This is known to be a rather difficult problem. Many approaches are
proposed in the literature to settle it within likelihood frameworks. [14] proposed an
iterative procedure with censored data which is based on a pair-wise algorithm to find
the asymptotic MLE’s of Kaplan—Meier form. [25] introduced numerical approxi-
mation of MLE’s of two V -dimensional distributions under stochastic ordering. [27]
derived the null asymptotic distribution for the likelihood ratio test statistic for some
testing procedures. Testing procedures based on maximum likelihood estimates of
odds ratios have been considered by [2, 3] and others. Moreover, Kateri and Agresti
(2013), in place of traditional frequentist methods, applied a Bayesian approach to
test if the structure of an association between the response variable and the explana-
tory variable in two samples is ordinal. When available, likelihood-based solutions
within their stringent assumptions are provided with known inferential properties.
In general, however, it is quite difficult to obtain proper testing inference, especially
for the multivariate case. Multivariate case is much more difficult to be analyzed
within likelihood frameworks than the univariate one. In such a setting, the number
of underlying nuisance parameters and/or that of observed variables can often be
much larger than sample sizes. So, unless clearly justified assumptions allowing for
considerable reduction of underlying complexity, the most intriguing of which is
when one pseudo-parameter is expressed as a function of many underlying nuisance
parameters, no correct general testing solution is possible within that approach.
Our approach to this kind of problems is within the conditionality principle of
inference [13], where the conditioning is with respect to a set of sufficient statis-
tics in the null hypothesis as usually the pooled observed data is. That is, by using
the permutation testing theory and the nonparametric combination (NPC) of depen-
dent permutation tests [4—8, 18-23]. When the underlying population distribution
is unknown, nonparametric permutation methods might become a necessity. This is
especially true when the number of categories and/or that of underlying nuisance
parameters are not very small. [16] studied the testing for marginal inhomogeneity
and direction-independent marginal order under the global permutation tests. [15]
utilized x2-P statistic with small sample size under the permutation approach. The
NPC approach is a general methodology for multivariate problems, especially, for
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stochastic dominance and stochastic ordering. The NPC testing solution performs
[24] Union-Intersection (UI) approach when an equivalent set of sub-problems is
properly carried out.

In principle, the exact calculations of required testing distributions are obtained
through complete enumeration of all data permutations. This, however, becomes
impossible in practice when the cardinality of permutation spaces are large. To this
end, a conditional Monte Carlo procedure was suggested to practically obtain their
estimations, at any desired degree of accuracy ([18, 20, 22]). Main NPC routines are
achieved in MATLAB, R, Python, StatXact, SAS, etc.

The rest of the paper is organized as follows. Section 2 introduces a typical real
example. Section3 discusses the two-sample basic problem under unidimensional
and multidimensional cases. Section4 studies approaches for stochastic ordering
restriction in C-sample designs. Solutions to the example are in Sect.5. Some con-
cluding remarks are in Sect. 6.

2 A Typical Medical Example

Let us consider the example in Table 1 from Chuang-Stein and Agresti (1997), also
reported by [1, 2, 12, 26]. It regards a unidimensional survey on subarachnoid hem-
orrhage measured by Glasgow outcome scale, where 210 patients received a Placebo,
190 received a Low dose, 207 a Medium dose, and 195 a High dose. Response data,
related to the extent of trauma, measured on the same ordinal scale, are classified
according to C =4 doses of a treatment, {Placebo, Low, Medium, High}, with
outcome classified in K = 5 ordered categories { Death, Vegetative state, Major dis-
ability, Minor disability, Good recovery}.

Based on our intuition, but also in accordance with quoted authors, patients taking
Placebo are expected to achieve lower treatment effect than those taking Low dose,
patients taking Low dose have lower effects than those with Medium dose, and so
forth. Therefore, it is expected that patients exhibit monotonically non-decreasing
responses X as the dose increases. Thus, it is required to test whether there is a
monotonic stochastic ordering on related response data. Formally, the hypotheses to

d d d
considerare Hy : Xp 4 XL 4 Xy 4 Xy against Hy : Xp < X < Xy < Xy with

Table 1 Dose and Extent of trauma due to subarachnoid hemorrhage

Treatment | Death Veget Major Minor Recov Total
Placebo 59 25 46 48 32 210
Low 48 21 44 47 30 190
Medium 44 14 54 64 31 207
High 43 4 49 58 41 195
Total 194 64 193 217 134 802




230 H. Huang et al.

atleast one strictinequality. If responses were quantitative, this problemis also termed
of isotonic regression. Defining the cumulative distribution function for responses X
at ordered categories ¢; < ... < cg as Fx(cx) = Pr{X < ¢}, namely, the hypothe-
ses are equivalently expressed as Hy : {Fx, = Fx, = Fx, = Fx,} against H, :
{Fx, > Fx, > Fx, > Fx,}, with at least one strict inequality.

With clear meaning of the symbols, the rationale for this formulation resides
in that if, according to increasing doses, non-decreasing treatment effects § occur at
latent variables Y, i.e.,8, < 6;,1 < h < j < C, then latent responses should behave

as V= (Y +8) S Y, = (Y +3)).

The related testing problem has a rather difficult solution within the likelihood-
ratio theory, which with categorical data in addition presents quite a serious difficulty:
even for moderate number of cells it is recognized to be not unique ([10-12, 26, 27];
etc.). Moreover, to get a solution, important supplementary options, difficult to justify
in terms of the real problem under study, are required. This difficulty mostly consists
in that the set of alternatives is restricted to liein the (C — 1) x (K — 1)-Dimensional
positive orthant where the likelihood cannot be maximized under Hy by ordinary
methods of maximization.

Our solution does firstly consider the setting of two treatments, and then, according
to [24] UI and Jonckheere—Terpstra’s approaches, by a breakdown of the hypotheses
into C — 1 pairs of sub-hypotheses. Later, all resulting dependent partial tests are
combined by a NPC method.

3 The Two-Sample Basic Problem

Let us firstly consider the two-sample basic case, where data are in a 2 x K table
and the specific hypotheses are expressed as Hy : X S X, ={Fi(ck) = Falep), k =

d
1,...K}against H; : X| < Xp = {Fi(cx) = F>(ck), k =1, ... K} with at least one
strict inequality. The related testing problem can be equivalently set as Hj : 5;11

[Fi(ck) = F>(ck)] against the set of restricted alternatives H, : U,{:ll[Fl (cr) >
F(cr)].

It is worth noting that i) according to [24] the problem is equivalently broken-
down into K — 1 one-sided sub-problems; ii) H| defines a multi-one-sided set of
alternatives; iii) since under both Hy and H; it is Fi(cgx) = Fy(ck) = 1, category
ck is not considered; iv) the global solution requires the joint comparison of K — 1
random relative frequencies: ﬁl (cr) — I:“z(ck), k=1,...,K—1.

Since the number of unknown nuisance parameters to take care in any 2 x K
testing process is 2 x K — 1 and the likelihood is to be maximized in the (K — 1)-
dimensional positive orthant, indeed a very difficult task especially when K > 4, our
approach is to stay within the conditional principle of inference.

The conditioning should be on a set of sufficient statistics in the null hypoth-
esis for the unknown underlying common distribution F. To this end, let pr(X)
be the underlying likelihood related to F, and let the two independent sam-
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ples of IID data, respectively, sized n; and n,, be X; = (Xy1,..., X1,,) and
X, = (Xa21, ..., X24,). So the data set is X = (X, X,), whose joint likelihood is
prX) =TT, pr(X1) 12, PR (X2:). In null hypothesis, it is assumed that there
is no difference between two distributions, namely, F; = F, = F. Thus, the joint
null likelihood pr(X) = 1—1?:1 [1/2, pr(X ;) is invariable with respect to any per-
mutation X* of the observed pooled data X = (X [+)X;), where (4 is the symbol
for pooling two data sets. This shows that data under Hj are exchangeable, i.e., per-
mutable. Moreover, under H, pooled data X are always a set of sufficient statistics
for any underlying distribution F' [18-20, 22]; so, any information on parameters
defining F is wholly contained in X. The set of all permutations X* of X is indicated
with T1(X). It is worth noting that IT(X) = IT(X*), i.e., the set of permutations of
X coincides, VX* € IT(X), with that of X*. Of course, under the alternative H; the
above invariable property does not work, because the two distributions are different
by assumption: indeed X is sufficient for F| and X is sufficient for F; and so pooled
data are not exchangeable.

The act of conditioning on a set of sufficient statistics for F in Hj entails that
any conditional inference is independent of the underlying population distribution
F. This conditioning gives rise to the following fundamental property:

Let (X, A, F) be the probability space related to data X, then sufficiency of X
forunderlying F, under Hy, implies that the null conditional probability of any event
A € A, given X, isindependent of F,i.e., PriX* € A; F | X} = PriX* e A | X} =
P[A | X].

Three relevant consequences of this property are cl) under Hy all M permutations
X* of X are equally likely; c2) so P[A | X] = #(X* € A)/M, where #(-) is the
number of elements of IT(X) that satisfy condition (), i.e., P[A | X] is properly
a count ratio; ¢3) if T = (T}, ..., Ts)" is a vector of § > 1 permutation statistics
(e.g., tests) and ¢ : RS — R!' is any measurable function, then the conditional null
distribution of ¢ is independent of F; indeed,

Prio(Ty,...,T{) <z; F | X} = PrieT), ..., T{) <z | X}

#X* € o1 ()]

= Prigr' () | X] = m : (1)

since, due to measurability of ¢, ¥z € R, itis ¢p '2) € A.

It is worth noting that (c3) is the central property for deducing and justifying
the NPC of dependent permutation tests. Also worth noting is (i) the conditional
probability P[A | X] has always an objective existence; (ii) the conditional null
distribution of ¢ is independent of all dependence parameters underlying T; (iii)
to characterize sufficiency of X in Hj, permutation tests require the existence of a
likelihood pr(X) > 0, not its calculability; (iv) when X is minimal sufficient for
F, it makes no sense to work outside the permutation testing principle [20]; (v)
permutation tests are nonparametric, distribution-free, and intrinsically robust.
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For operating with categorical data, to the usual contingency table we prefer using
its unit-by-unit representation: X = {X (i),i = 1, ..., n; ny, ny}, withn = n; + n»,
where it is intended that the first n; data belong to the first sample and the
rest belong to the second. Such a representation, is one-to-one related with the
table for unidimensional variables, as with the example; it is much more efficient
for multidimensional variables, where working with contingency tables becomes
more and more difficult, up to impossibility, as the number of variables increases.
Using that representation, a random permutation X* € I1(X) can be expressed
as X* = {Xu}),i =1,...,n;n1,ny}, where u* € I1(u) is a random permutation
of the unit labels u = {1, ..., n}. The corresponding permuted table is calculate
as {f, =#(X5, € cr), k = 1 , K, j = 1,2}. Obviously, the marginal frequen-
cies are permutatlon invariable quantities since fx = fik + foo = fix + o = 5
k=1,...K. Similarly, the cumulative marginal frequencies are also invariable:
Ni = Nix + Nop = N with Nj = Zssk fis-

3.1 The?2 x K One-Dimensional Case

We start with the two-samples one-dimensional problem. For the case of C = 2,
the related stochastic dominance testing problem becomes Hy: Fi=F =
N F () = Faled)] against H 2 Fy > Fy = S [Fi(er) > Fa(e)], whose
global analy51s requires the joint comparlson of K — 1 differences of random fre-
quencies: F 1(cx) — Fz(ck) k=1, — 1. Since the crucial point for that joint
analysis is the proper handling of all underlying dependences, to attain general
solutions we must work within the UI-NPC of related dependent permutation tests
because, due to c3) (see Sect.3), the estimation of dependence coefficients is not
required since NPC works independently of such dependences, how complex these
are.
Accordingly, the K — 1 partial test statistics are

A A 1
TF=Cny,m) - [Ff, — F31[Fx(—Fp] *, k=1,....,K—-1, (2

where ﬁfk = I%" (cr) = N]’f‘k/nj,j =1,2; F.k = N.;/n are permutation and marginal

empirical distribution functions (EDFs); N{, and N,k =1,..., K — 1 are permu-
tation cumulative frequencies obtained from the permuted table { f ;‘ Jk=1,...,K,
j=12}

It is worth noting that (i) EDFs F x are maximum likelihood unbiased estimates
of population CDFs F;(cx), k=1,..., K — 1, j =1, 2; (ii) each partial tests T;*
is a reformulation of Fisher’s exact probability test and so it is a best conditional
test; (iii) large values of each partial test 7;* are significant against its related null
sub-hypothesis Hjy; (iv) the K — 1 partial tests are positively dependent; (v) for
computation of 7", 0 is assigned to expressions with the form 0/0; (vi) C(n, ny) =
[n1ny(n — 1)/n*]"/? is a permutation constant not dependent on k; (vii) for increasing



Multivariate Permutation Tests for Ordered Categorical Data 233

Table 2 Representation of the conditional Monte Carlo method in multivariate tests

X Xt X: X
% Ty T Ty, T Ty
Tg T o g, o Tgr
\
0 * * *

sample sizes, each T;* under Hy converges to the standardized normal distribution:
T % N0, 1).

According to the approach discussed in [18, 19, 22], the global testing solution
can be obtained by their UI-NPC while using any admissible combining function.
The simplest admissible combination is by the direct sum of partial tests:

K-1 K—1
A A - - _1
Tip= Y T;=Cni.ny)- Y [Fi— F31[Fa(l = Fp)] 3)
k=1 k=1

Such a solution looks like the discrete version of Anderson—Darling goodness-of-
fit type test for multi-one-sided alternatives. It is worth noting that (i) each partial
test is unbiased and so T, is unbiased; (ii) at least one partial test is consistent
and so T, is consistent; (iii) 7, is an admissible combination of partial best tests
and so provided with good power behavior. Of course, by using other admissible
combining functions one can obtain other good solutions, none of which, however,
being uniformly better than any other.

The corresponding p-value-like statistics can be written as Asp = Pr{T}, >
T7, | X}, where T7, = T4p(X) is the observed value of T4p on pooled data X.
So, remembering that p-value-like statistics play the role of tests whose common
critical value is «, if A4p < «, the null hypothesis is rejected at significance level
a>0.

Consider the representation displayed in Table 2. It corresponds to the NPC pro-
cedure for a general problem with K partial tests, R random permutations, and
combining function .

Under H, the sub-matrix {7} } k x g simulates the K -dimensional null distribution
of K partial permutation tests. The sub-vector {T;, } r simulates the null permutation
distribution of combined test 7.

Thus, the statistic )AW =#(T; = T;)/R gives an unbiased and, as R diverges, a
strongly consistent estimate of the p-value statistic Ay, of T,.

Under H,, at least one T, presents larger observed values than in Hy; so, if the
combining function v is non-decreasing in each argument, the p-value statistic satis-

N d
fies the relation: Ay i, < Ay, p, uniformly for every data set X and every underlying
distribution F'. Hence, the latter justifies that Hy is rejected when A, < o; moreover,
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it can be proved that 7, is provided with the unbiasedness and consistency properties.
Details and proofs for these and other properties are in [18-20, 22].

3.2 The 2 x K Multidimensional Case

In the general multidimensional case, let us start from two-sample V-dimensional
problem, V > 2. The formulation of testing for multidimensional hypotheses are

H, : X S X, against H; : X i X,. The hypotheses Hy and H;, according to
[24] are assumed to be equivalently broken-down into K > 2 sub-hypotheses,
Hy, = ﬂle Hy, and H, = Ule Hj;. Thus, with V dimensional ordinal data and
K ordered categories for each variable, the hypotheses are equivalently written as
4 K-1 14 k-1 .
ﬂvzl ﬂk:l [Fiy(ck) = Fa(cr)] and Uv:l Uk:l [Fiv(ck) > Fay(cr)], respectively.
Thus, for variable v = 1, ..., V, partial test is T ;,, according to Sect.3.1. Since all
these partial tests are standardized and so, sharing the same asymptotic null distribu-
tion, for their combination we can proceed with their direct sum. This provides for the
V-dimensional extension of Anderson—Darling test for multi-one-sided alternatives:

Vv K-1

\%4
Tip =Y Tipy=Ci.n) Y > [Ffy — B [Fu(l — Fu)]

v=1 v=1 k=1

(NI

“4)

It is worth noting that, now, with symbol X it is represented the V-dimensional
variable and the pooled sample data matrix, the context generally suffices avoiding
misunderstandings. Of course, the V -dimensional Ty, enjoys the same good proper-
ties as the unidimensional. In place of the direct combination of V' partial tests 7, ,
i.e., one Anderson—Darling test for each variable, it is possible to think of a more
general combination like, for instance, T]// =Y (Tipy>---» Tipy)- The most com-
monly used combmmg functions y are Fisher’s Tp = —2 Z log(A% p,), or Liptak’s

=3, ®7 (1 = 1%,,), where A%, is the p-value statistic of T, and ®(-)~!
is the inverse standard normal CDF. Since in T, all summands are well defined,
it is also of some interest to observe that the double summation can equivalently be

computed as ), > .

4 The C-sample Stochastic Ordering Problem

Considering the Jonckheere—Terpstra idea, the C x K table can be broken-down
into (C — 1) sub-tables. Accordingly, the testing problem is broken-down into
(C — 1) sub-problems each based on a 2 x K sub-table. To be specific, for any
je{l,...,C — 1}, we divide the data set into two pooled pseudo-groups, where
the first pseudo-group is obtained by pooling data of the first j ordered groups and
the second by pooling the rest. Thus, the procedure considers the first pooled pseudo-
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group as Yi(j) = X; 4)... )X and the second as Yo(j) = X1 ... W Xe, j =
I,...,C—1,where X; = {Xj;,i =1,...,n;} is the data set in the jth group.

In the null hypothesis Hy, related pooled variables satisfy the relationships
Yi(j 4 Yoy, j=1,...,C — 1, thus, data from every pair of pseudo-groups are
exchangeable. In the alternative H;, as for at least one j the relation inequal-

ity X; < Xj41,1 < j <C —1 is strict, the corresponding stochastic dominance

d
between each pair of pseudo-groups Y, < Y(;) is true for all j < C — 1. There-
fore, the hypotheses for monotonic stochastic ordering problem can be equivalently

written as Hp : {ﬂ (Yl(j) =Yyj))}and H, : {Uc_1 X(jy < Y»(j))}, emphasizing
a break-down mto a set of C — 1 sub- hypotheses For each sub-problem we can
consider the test:

K—1
A - - - _1
Tingy = Clngyna) - Y [Fl*(j)k - Fz*mk] [Fud = Fpol™2, j=1,....C—1,

k=1

(5)
where nyjy =n1 +...+nj, nyjy =n — ny;); the permutation relative frequen-
cies are ﬁl’z k= #(Xl*(j) = cr)/n;y, I =1,2; the marginal relative frequencies
are F(/)k = [#(Xuj) =< c) —i—#(sz =< ¢x)]/n; partial tests T:D(j) are positively
dependent; and C(n(j, ny¢j)) are the permutation k-invariable constants. So the
global problem is solved by combining the C — 1 partial tests within the UI-NPC as,

for instance, by
c-1

Tin =Y Tin: (6)

Jj=1

According to our experience, except for the direct, the most suitable combining
functions for this problem are Fisher’s and Liptak’s. Since in the stochastic ordering
alternative all C — 1 partial tests contain a positive non-centrality quantity, i.e., all
lie in their respective sub-alternatives, Tippett’s combination is less sensitive than
others.

Of course, if V > 1 variables were involved, the multivariate stochastic order-
ing solution would require one stochastic ordering partial test for each variable
v=1,..., V. So, with clear meanings of the symbols, the global test, by direct
combination, is

Cc—1 V K-1

1

TXD,V=ZC(”1<1>’”2(/‘>)'Z [ TGk — 2v(j)k][ k(1= Fyy)] 2.
=1 v=1 k=1

(7
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Table 3 p-values based on UI-NPC approach
i T o) TG)
AAD()) 0.0141 0.0025 0.0074 0.0017 0.0015 0.0012 0.0068
iw(j) 0.0131 0.0021 0.0076 0.0010 0.0012 0.0010 0.0053

AM() 0.0144 0.0024 0.0062 0.0011 0.0014 0.0011 0.0068

5 Solution of Medical Example

The analyses of the data from medical example, based on R = 100000 random
permutations, for tests: Anderson—Darling 7';,,, on scores 7y, and on mid-ranks T,
and their combination functions: 7}, direct, T, Fisher’s, T}’ Liptak’s, and T} Tippett’s
are shown in Table 3. Note that (i) W scores are assigned to ordering integer numbers
as(w; = 1, wy =2, w3 = 3, wg = 4, ws = 5); (ii) since small p-value statistics are
evidence for H,, Fisher’s, Liptak’s, and Tippett’s are non-increasing functions of
partial p-values. The p-values based on UI-NPC method are

Results in Table 3 clearly show that the p-values based on four different combi-
nation functions TL/;, T;, TZ, and 77, all reject the null hypothesis at significance
level @ = 0.01 of monotonic stochastic ordering among the C = 4 doses. So the
inferential conclusion is that patients present non-decreasing responses as the dose
increases.

It is worth noting that the three combined p-value statistics T, T, and T, differ
only slightly in the fourth digit. This means that related tests are all suitable for
testing unidimensional dominance and stochastic ordering alternatives. In our case,
if the stochastic ordering alternative is true, it is also jointly true by construction for
all C — 1 partial tests 77, So, Tippett’s T} differs from other combination functions
because its power behavior is mostly sensitive when only one partial test lies in the
alternative. Due to too many ties in the data set, test with rank transformations was
not considered.

Since all p-values statistics related to T4 p(3) are < 0.05/3, by simple Bonferroni’s
rule it results that subjects taking High dose exhibit significantly lower responses than
those taking lower doses.

6 Concluding Remarks

The basic idea in this paper is to test for stochastic ordering restrictions with mul-
tivariate ordered categorical data through a suitable combination of a set of partial
tests by UI-NPC approach based within the permutation theory. Such problems have
quite difficult solutions within the likelihood ratio theory which, when available,
have nice characterizations under their usually too stringent assumptions.

The UI-NPC approach is within the conditionality principle of inference, where
the conditioning is with respect to a set of sufficient statistics in the null hypothesis like
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the pooled observed data. So, it is based on the permutation testing approach and the
NPC of dependent permutation tests. The NPC approach shows a good general power
behavior, it is rather efficient and less demanding in terms of underlying assumptions
comparing to parametric competitors when these exist and are available.

References

10.

11.

12.

13.
14.

16.

17.

18.

19.

20.

21.

22.

. Agresti, A., Coull, B.A.: Order-restricted inference for monotone trend alternatives in contin-

gency tables. Comput. Stat. Data Anal. 28, 139-155 (1998)

. Agresti, A., Coull, B.A.: The analysis of contingency tables under inequality constraints. J.

Stat. Plann. Infer. 107, 45-73 (2002)

. Agresti, A., Mehta, C.R., Patel, N.R.: Exact inference for contingency tables with ordered

categories. J. Am. Stat. Assoc. 85, 453-458 (1990)

. Arboretti, G.R., Bonnini, S.: Moment-based multivariate permutation tests for ordinal categor-

ical data. J. Nonparametr. Stat. 20, 383-393 (2008)

. Arboretti, G.R., Bonnini, S.: Some new results on univariate and multivariate permutation tests

for ordinal categorical variables under restricted alternatives. Stat. Methods Appl. 18, 221-236
(2009)

. Basso, D., Pesarin, F., Salmaso, L., Solari, A.: Permutation tests for stochatic ordering and

ANOVA: theory and applications in R. Springer, New York (2009)

. Bazyari, A., Pesarin, F.: Parametric and permutation testing for multivariate monotonic alter-

natives. Stat. Comput. 23, 639-652 (2013)

. Bonnini, S., Prodi, N., Salmaso, L., Visentin, C.: Permutation Approaches for Stochastic Order-

ing. Commun. Stat. - Theory Methods. 43, 2227-2235 (2014)

. Chuang-Stein, C., Agresti, A.: A review of tests for detecting a monotone dose-response rela-

tionship with ordinal response data. Stat. Med. 16, 2599-2618 (1997)

Cohen, A., Kemperman, J.H.B., Sackrowitz, H.B.: Properties of likelihood inference for order
restricted models. J. Multivar. Anal. 72, 50-77 (2000)

Cohen, A., Madigan, D., Sackrowitz, H.B.: Effective directed tests for models with ordered
categorical data. Aust. N. Z. J. Stat. 45, 285-300 (2003)

Colombi, R., Forcina, A.: Testing order restrictions in contingency tables. Metrika 79, 73-90
(2016)

Cox, D.R., Hinkley, D.V.: Theoretical Statistics. Chapman & Hall, London (1974)

Feltz, C.J., Dykstra, R.L.: Maximum likelihood estimation of the survival functions of N
stochastically ordered random variables. J. Am. Stat. Assoc. 80, 1012-1019 (1985)

. Gokpinar, F., Gokpinar, E., Bayrak, H.: Permutation approach for ordinal preference data.

Commun. Stat. Simul. Comput. 46, 2321-2332 (2017)

Jelizarow, M., Cieza, A., Mansmann, U.: Global permutation tests for multivariate ordinal data:
alternatives, test statistics and the null dilemma. J. Royal Stat. Soc. C. 64, 191-213 (2015)
Kateri, M., Agresti, A.: Bayesian inference about odds ratio structure in ordinal contingency
tables. Environmetrics 24, 281-288 (2013)

Pesarin, F.: Multivariate Permutation Tests: With Applications to Biostatistics. Wiley, Chich-
ester (2001)

Pesarin, F.: Permutation test: Multivariate. In Encyclopedia of Statistical Sciences. John Wiley
& Sons Inc, New York (2006)

Pesarin, F.: Some elementary theory of permutation tests. Commun. Stat. Theory Meth. 44,
48804892 (2015)

Pesarin, F., Salmaso, L.: Permutation tests for univariate and multivariate ordered categorical
data. Austrian. J. Stat. 35, 315-324 (2006)

Pesarin, F., Salmaso, L.: Permutation tests for complex data: theory, applications and software.
Wiley, Chichester (2010)



238 H. Huang et al.

23. Pesarin, F., Salmaso, L., Carrozzo, E., Arboretti, R.: Union-intersection permutation solution
for two-sample equivalence testing. Stat. Comput. 26, 693-701 (2016)

24. Roy, S.N.: On a heuristic method of test construction and its use in multivariate analysis. Ann.
Math. Stat. 24, 220-238 (1953)

25. Sampson, A.R., Whitaker, L.R.: Estimation of multivariate distributions under stochastic order-
ing. J. Am. Stat. Assoc. 84, 541-548 (1989)

26. Silvapulle, M.J., Sen, PK.: Constrained Statistical Inference: Inequality. Order and Shape
Restrictions. Wiley, New York (2005)

27. Wang, Y.: A likelihood ratio test against stochastic ordering in several populations. J. Am. Stat.
Assoc. 91, 1676-1683 (1996)



Smooth Nonparametric Survival Analysis | M)

Check for
updates

Dimitrios Ioannides and Dimitrios Bagkavos

Abstract This research proposes the local polynomial smoothing of the Kaplan—
Meier estimate under the fixed design setting. This allows the development of esti-
mates of the distribution function (equivalently the survival function) and its deriva-
tives under the random right censoring model. The asymptotic properties of the
estimate, including its asymptotic normality are all established herein.

Keywords Kaplan—Meier - Local polynomial fitting - Censoring

1 Introduction

The present research proposes the combination of the Kaplan—Meier estimate with
the local polynomial fitting technique. The result is an estimate of the distribution
function and its derivatives for discretized (binned) data, under the right censorship
model.

The motivation behind this research is two fold. One aspect is that the original
version of the Kaplan—Meier estimate comes with some significant limitations. Per-
haps the most important is that it produces a step function. This contradicts the quite
plausible assumption of continuity and smoothness of the distribution and survival
functions. Subsequently, this limits the scope of the estimate’s application, especially
for inferential purposes where differentiability plays a key role. Another aspect which
prompted the present research is that the literature seems to be rather thin on bound-
ary aware kernel estimates of the density function and its derivatives under the right
censorship model. However, these quantities are quite useful in bandwidth selec-
tion, estimation of the slope, curvature, or mode of a population among many other
applications.
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With the purpose to address all aforementioned points, this work combines the
Kaplan—Meier estimate of the distribution function which intrinsically admits right-
censored data and the local polynomial fitting principle which allows estimation of
distribution function derivatives of any arbitrary order. The benefit of this approach
is that additionally to filling these gaps, it produces distribution / survival function
estimates with asymptotically smaller mean squared error compared to the Kaplan—
Meier estimate.

The proposed estimates together with the necessary notation and its asymptotically
equivalent form are introduced in Section 2. Their asymptotic properties together with
quantification of their asymptotic distribution are discussed in Section 3. All proofs
are given in Section 4.

2 Local Linear Estimation of the Distribution Function and
Its Derivatives

Let Ty, T»,..., T, be a sample of i.i.d. survival times censored on the right by
i.i.d. random variables Uy, U,, ..., U,, which are independent from the 7;’s. Let
fr be the common probability density and Fr the distribution function of the
T;’s. Denote with H the distribution function of the U;’s. Typically the randomly
right-censored observed data are denoted by the pairs (X;, §;),i = 1,2, ..., n with
X; = min{T;, U;} and §; = 17,<y,}, where 1, is the indicator random variable of
the event {-}. The distribution function of X;’s satisfies 1 — F = (1 — F;)(1 — H).
It is assumed that estimation happens in the interval [0, M] where M satisfies the
relationship
M =sup{x : 1 — F(x) > ¢} for asmall ¢ > 0.

We are interested in estimating the distribution function F7(x) and its derivatives of
any arbitrary order. An immediate byproduct of obtaining an estimate of Fr (x) is its
use in estimating the survival function Sy (x) = 1 — Fr(x). The classical nonpara-
metric estimate of Fr, [11], is given by

0, 0<x=<Z2,
Fs@) = 11-TI0) (25)", Zea<x<Zi k=2....n, ()
1, x> 7,

where (Z;, A;) are the ordered X;’s, along with their censoring indicators §;, i =
1,...,n. According to the standard local polynomial principle, first, partition the
interval [0, M] into g disjoint subintervals {/;, j = 1 ... g} of equal length b. Denote
withx; = (j — %)b, J =1,..., g, the center of the interval ;. Essentially b can be
determined by an optimal histogram bin width selection rule.

Denote with o2 (x;) the variance of ﬁs (x;) at x; and lete;,i =1, ..., g be inde-
pendent random vectors with mean 0 and variance 1. Also, setm(x;) = Fr(x;). Since
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F. s(x;) is an asymptotically unbiased estimate of Fr (x) it can be used as the response
to the local nonparametric regression problem

Fs(x)=m@x) +o(xe, i=1,...,g.
Using the data {I:" s(x;), x;},i =1,..., g, the regression function m can be approxi-

mated locally in a nearby point x( such that |x — x¢| < ¢ for an arbitrarily small ¢,
by a Taylor expansion

p (k)
ma) =y = kf’“’) (r = x0)* + Re(x),
k=0 ’

with R (x) being the Lagrange remainder term. Set K, (u) = h~'K (u/h). Here K
is a kernel function, usually a symmetric density, assumed to be supported on a
symmetric and compact interval. & denotes the bandwidth which controls the spread
of the kernel. Define the ith kernel moment by

+oo
pLi(K)E/LiZ/ wKw)du, i=0,1,...,v+1.

o0

It is assumed throughout that K satisfies ug = 1, u; = 0, and u, < +o00. Also, let
B =m® k!, k=0,..., p. The estimates of B, say B will result by solving the
optimization problem

Bi.k=0,....p <
j=1

2
8 P
min Y {Fsocf) ) Bilxj - x)k} Ky(xj —x). )
k=0
According to [5], the optimal order of the local polynomial to use in (2) depends on
the order of the derivative being estimated and is given by p = v + 1. This yields
the solution

4

A Xi— X\ ~

ﬂu=E KU( ; )Fs(x,-),V=0,1,2,... 3)
i=1

where
Ko =el ST, hu, ..., (hw)", (hu)" ") h™'K (u).

el, | denotes a vector with v + 2 elements with 1 in the (v + 1)th position and zeros
elsewhere. S is the (v + 2) x (v + 2) matrix (S, j+1)0<ji<v+1 With

8
Sua(x) =Y Kp(xi —x)(xi —x), 1=0,1,...,20+2.

i=1
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Thus, F}V) (x) is estimated by F L(V) (x) = v!B,.

In the definition of K, the role of e’ | S™!(1, hu, ..., (hw)”, (hu)"*")Th~"is to
automatically reinstate the kernel mass falling outside the region of estimation back
in so as to correct the estimate at the boundary. In the interior this factor equals to 1
and the estimate defaults to a regular kernel estimate. To see this, assume without loss
of generality that K is supportedon[—1, 1]andlet0 < ¢ < 1 sothatx = ch € [0, h)
is a boundary point. Correspondingly, in the interior we have x = ch, ¢ > 1 so that
x € [h, M — h]. Define

+oo
Mi,c=/ uwKw)du, i =0,1,...,2v+2.

c

In the interior where ¢ > 1, ;. = p;. Let Sc = (Wi j.c)o<i, j<v+1. From the proof
of Theorem 1 in [1],

8
Sui(¥) =Y Kn(xi = x)(x; —x)' = b7 W g (1 + 0(1), 1=0,...20+2.

i=1
“4)
Then it is easy to see that in the interior we have

Ay & Xi— X\ ~
FL( )(x) = E K7, < h ) Fs(x;)(1 + o(1)),
i=1

where
Kiy=el (ST (Lu, ... u’, u?™ b K@) o) (),

and for ¢ > 1, K, (u) = h=“"DK* (u)(1 + o(1)). In order to facilitate the theoret-

ical study of F z") (x) it is worth defining the following equivalent formulation of the
estimate. For fixed j and fork € {1, ..., g} set

e = Lyt gy (Xj, 85 = 1),
Since the X, X5, ..., X, are i.i.d., using the strong law of large numbers yields

“ a.s Xi+%
'Y ey b_I/ frN( = H(y)dy =
j=1 "

b
2

~ b~ 'bfr(x)(1 = Hx)) = fra) (1= H(x)). (5)

Thus, dividing the empirical estimate of fr(x;)(1 — H(x;)) by an estimate of 1 —
H (x;) yields an estimate of fr(x;). Following [13], by reversing the intuitive role
played by T; and U;, 1 — H(x) can be estimated by the (sightly modified) Kaplan—
Meier estimator,
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1, 0<x <17,

A~ _ . 1—A;
1—Hx) = ]_[lel(z_;z) s Zil <x<Zpk=2,...,n,

TI—A
[T (Z;ié) v Zp <X,

Thus, from (AS), for fixed i, an empirical estimate of bfr(x;) at the ith bin center,
denoted by fr(x;) is defined by

n

A 1 Cij
i) = — _— b i)
Sr(xi) " jél A fr(xi)

Let

u

W:(u)zfu K, (t)dt and W;ﬁc(u)zf K (1) dt.

00 —

Following [15] and [10], fT (x;) can be used to approximate the jump of the Kaplan—
Meier estimate at x;. As a consequence F 2”) (x) can be approximated as

8
FO@ =YW, (x" ;x> frx)
i=1

[ L .
DL (x’ . x) Froa (1 +o(1)).
i=1

An obvious estimate of the survival function S7(x) is §T x)=1- F L(O) (x). Addi-
tional applications include using F L(”) (x) (for v > 1) in plug-in bandwidth selection
rules in estimation of population characteristics etc. For all these it is important to
establish the theoretical properties and the asymptotic distribution of F: ;V) (x). These
are discussed next.

3 Asymptotic Properties

Denote with by .(x) and of,c (x) the bias and variance of a 2”) (x) using bandwidth
h, at the boundary point x = ch,. The notation &, instead of the simpler form 4 is
used henceforth so as to emphasize the fact that different bandwidth should be used
according to the order of the derivative being estimated. Let by (x) and az (x) denote
correspondingly the bias and variance in the interior. Also, let u;(K}), i (K} )
denote the ith kernel moment of K in the interior and K . in the boundary. The

asymptotic properties of F L(V) (x) are summarized in the next theorem.

Theorem 1 Assume that for | =0,...,v+1,K D is bounded, absolutely inte-
grable, with finite second moments and Fr is | + 2 times differentiable. Assume
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also that as n — +o00, h, — 0, nh%" — +ooand b/ h, — 0. Then, the asymptotic
bias and variance of F EU) (x) are given by

brio(x) = ml@ﬂ( c)(KV(C))F;VH)(X) +o(hy),
! 2
0L (o) = (hzv [G( ) — ZhDg(x)/tK*( oW (s)ds
—{F @ + R+ 2D e (K CpF}““)(x)}z}
+ 0 'n) + o(h}),
where

g = fr( —Hx) ™, G = /0 g di, Wi ,(s) = / K ) du.

Further,
FO@) ~N (F;W @) + brio (), o2 (x)) .

Remark 1 The asymptotic properties of F £v) (x) in Theorem 1 show that the estimate
automatically achieves boundary corrections. In the interior the estimate behaves
like a conventional kernel estimate, e.g., the survival function estimate of [10].

Remark 2 Theorem 1 also implies that the derivative order leaves the bias rate
of convergence unaffected. Further the second term of the variance expression is
negative and this indicates that kernel smoothing improves the estimate’s variance
compared to the variance of Fr (x) by a second-order effect.

Remark 3 Theorem I also shows that random right censoring does affect the vari-
ance leading term because of the survival function 1 — H (x) in the denominator. As
a result it is expected that the censored data estimate to be more variable in practice
than its complete sample counterpart.

4 Proofs and Auxiliary Lemmas

Let

n

- _ l Cij
fr(x) = . ;—1 “HG)

From [12], sup, |H (x) — H(x)| = O,(n""/?) and thus
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1 1 1 1

1—H() 1—HO)+Heg) —Hg) 1= Hx) n H(leg(f;lg)xi)

1R (He -Am)) i
- 1—H(x,-)k§)(_l) ( 1— H(x) T1-H) Il+0”(" )]

Therefore, fT (x;) can be approximated asymptotically by fT (x;) with negligible
error. For this reason, we equivalently prove theorem 1 for estimator

. 'S i—x\ =«
Fx) = ,‘1’— ; W, (%) Fr( +o(1)).

Lemma 1 Assume that Fr is twice differentiable, continuous and that b = o(h),
then, as n — o0,

Ecij = Ecy; = Ec}; = Ecj; = bfr (xo)(1 — H(x)) + o(b), (6)

E(cijcir) = Blejcir)” = Eciicnr) = E(cyjenr) = b f7 () (1 = H(xp))?
+o(b?) forr # j, ©)

E(cyjcirci) = E(cijcercu) = b f0a) (1 — H(x))® + o) forr # j #1,
®)
E(cjcrrcruc) = b* f7(x)(1 — Hx ) + o(b®) forr # j #1 #1, 9)

where all r, j, 1, t above are between I and g.

Proof First note that conditioning on X; = y and §; = 1, for fixed k and j,

XH—%
E {1y pe0 (X508, = D} = / o = Hy)dy
=bfr(xi)(1 — H(x)) +o(b). (10)
Now, using

E(ijckr) = El[xk_%,xk_‘_%](xja (Sj = I)El[xk_gyxk_‘.%’](xra s =1
=b? fF(x) (1 — H(xp)* + o(b),

together with the fact that
Ec,%jck, = Ec,%j]Eck, = EcjEcir = (IElckj)2 = IE(ckjck,)2 = Ec,fjck,

completes the proof of (7). The proofs of (6), (8), and (9) follow similarly.
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4.1 Proof of Theorem 1

The proof of the theorem is based on a combination of lemma 1 with straightforward
algebra and well-known results. Thus only a sketch is provided here and only for
the boundary case x = ch,, 0 < ¢ < 1 as the result for the interior follows by letting
¢ — +00. Combining (3) and (4), forv =0, 1,2, ..., and by Lemma 1,

. & bfr(x)(1 — H(x;
EFY (x) = Z ( ) fT(’f)_(H( i)(x))(1+0(b)).

i=1

By lemma 2 of [1], we have

( ‘ )bfT(x,)—/ (%)ﬁ(u)du
<—/( ( )fT(u)) du. (1)

Then, by applying integration by parts, performing the change of variable u — x =
sh,, Taylor expanding around x and using the boundary conditions

+00
/ ul K3 (w)ydu=26,4, 0<v,qg<p

c

where 6, 4 is Kronecker’s delta, which establishes the bias expression. The variance
is treated similarly by combining Lemma 1 and approximating the sums by integrals
based on lemma 2 of [1]. Now, forv =0, 1, ... set

n 8

(V) _ _ _ v! * Xi — X Cij

FL (x)_W—ZWja Wj_nthWVvC( h )I—H(xi).
j=1 Vo=l

v

Note that the random variable W; depends only on the pair (X}, §;) and thus

FPx)y=w=)"w,

is asum of independent random variables. Hence, the asymptotic normality of F L(V) (x)
will result by the application of the Lyapunov Central Limit Theorem (Theorem 4.9
in [14]) according to which a sufficient condition for

WEWd

' Var(W) - NO.I)

to hold is
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lim Var(W)~ 3/2ZE|W EW; | = (12)

n—00
i=1

To verify the condition, first note that fixing j and using the nonnegativity of W; in
the first step below, using an approximation similar to (11) in the third step, in the
fourth step the change of variable u — x = th,, subsequently expanding fr(x + th,)
in Taylor series around x and by the assumption that K,,, and therefore its integral
over its support is bounded, yields

> EIW; —EW; P < nBE(W; ) + 8[E(W))[) < 16n[E(W))|?

j=l1
3
O RS xi—x\ Eey
— W* J
ST 2 Wi (o 1= H(x)

i=1

(v))3 A 3
= 23 Z ( ) bfr(x))(1 4+ o(b))

(V!)3 % u—x 3
n2h3 / W (T) Jr@)(1 +o(b)) du}

<
whH3 3

= hv/Wic(t)fr(x +th,)(1 —l—o(b))dt}
n*hyY

=0n2h;%"). (13)

Also, fixing j in the second step below, using in the fourth step twice an approximation
similar to (11), applying the change of variable u« — x = th, and subsequently Taylor
expanding fr(x +th,)(1 — H(x + th,))" " and sz (x + th,) around x and using (as
in obtaining (13)) the fact that W is bounded, the variance of W becomes

! : —x Cij
Var W) = {ZZW ( v )1—H<x,~>}

v j=li=l
< (v)? Xg: W (xl- —x)2 [Ec,zj - (Ecij)zl
nhi” =N (1 — H(x;))?
Sy S wy <Xi . x>2 bfr (i) (1 = HGi) — {bfr (x)(1 = HEi)
i AN (1= H(x))?
x (14 o(b))
(w2 o (u—x\>[ frw 5
T k2 /W”’”< hy ) {I—H(u) _bfT(")} du(l +o®))

=0 hy PV D)1+ ob)). (14)
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Using (13) and (14) back to (12) yields

lim Var(W)™2 % " |W; —EW;|> = 0 (0?1}~ 2/2n 20 7) = 0 (n™'7?)

n—00

i=1

which verifies the condition and finishes the proof.
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Density Estimation Using Multiscale )
Local Polynomial Transforms G

Maarten Jansen

Abstract The estimation of a density function with an unknown number of sin-
gularities or discontinuities is a typical example of a multiscale problem, with data
observed at nonequispaced locations. The data are analyzed through a multiscale
local polynomial transform (MLPT), which can be seen as a slightly overcomplete,
non-dyadic alternative for a wavelet transform, equipped with the benefits from a
local polynomial smoothing procedure. In particular, the multiscale transform adopts
a sequence of kernel bandwidths in the local polynomial smoothing as resolution
level-dependent, user-controlled scales. The MLPT analysis leads to a reformula-
tion of the problem as a variable selection in a sparse, high-dimensional regression
model with exponentially distributed responses. The variable selection is realized by
the optimization of the 11-regularized maximum likelihood, where the regularization
parameter acts as a threshold. Fine-tuning of the threshold requires the optimization
of an information criterion such as AIC. This paper develops discussions on results
in [9].

Keywords Wavelets + Sparsity * Local polynomials - Kernel - Smoothing

1 Introduction

Due to its natural intermittency, the estimation of a non-uniform density can be
described as a nonequispaced multiscale problem, especially when the density con-
tains singularities. Indeed, when the number and the locations of the singularities
remain unknown, then the estimation procedure is deemed to go through all possible
combinations of locations and intersingular distances. Also, since a given bandwidth
in a kernel-based method may be too small in a region of low intensity and too large
in a region of high intensity, a local choice of the bandwidth can be considered as an
instance of multiscale processing, where the bandwidth is seen as a notion of scale.
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A popular class of multiscale methods in smoothing and density estimation is
based on a wavelet analysis of the data. The classical wavelet approach for density
estimation [3, 6] requires an evaluation of the wavelet basis functions in the observed
data or otherwise a binning of the data into fine scale intervals, defined by equispaced
knots on which the wavelet transform can be constructed. The preprocessing for the
equispaced (and possibly dyadic) wavelet analysis may induce some loss of details
about the exact values of the observations.

This paper works with a family of multiscale transforms constructed on noneq-
uispaced knots. With these constructions and taking the observations as knots, no
information is lost at this stage of the analysis. The construction of wavelet transforms
on irregular point sets is based on the lifting scheme [11, 12]. Given the transforma-
tion matrix that maps a wavelet approximation at one scale onto the approximation
and offsets at the next coarser scale, the lifting scheme factorizes this matrix into a
product of simpler, readily invertible operations. Based on the lifting factorization,
there exist two main directions in the design of wavelets on irregular point sets. The
first direction consists of the factorization of basis functions that are known to be
refinable, to serve as approximation basis, termed scaling basis in a wavelet analysis.
The wavelet basis for the offsets between successive scales is then constructed within
the lifting factorization of the refinement equation, taking into account typical design
objectives such as vanishing moments and control of variance inflation. Examples
of such existing refinable functions are B-spline functions defined on nested grids of
knots [8]. The second approach for the construction of wavelets on irregular point
sets does not factorize a scheme into lifting steps. Instead, it uses an interpolating or
smoothing scheme as a basic tool in the construction of a lifting step from scratch.
Using interpolating polynomials leads to the Deslauriers-Dubuc refinement scheme
[2, 4]. To this refinement scheme, a wavelet transform can be associated by adding
a single lifting step, designed for vanishing moments and control of variance infla-
tion, as in the case of factorized refinement schemes. This paper follows the second
approach, using local polynomial smoothing [5, Chapter 3] as a basic tool in a lifting
scheme. For reasons explained in Sect. 2, the resulting Multiscale Local Polynomial
Transform (MLPT) is no longer a wavelet transform in the strict sense, as it must be
slightly overcomplete. Then, in Sect. 3, the density estimation problem is reformu-
lated in a way that it can easily be handled by an MLPT. Section 4 discusses aspects of
sparse selection and estimation in the MLPT domain for data from a density estima-
tion problem. In Sect. 5, the sparse selection is finetuned, using information criteria
and defining the degrees of freedom in this context. Finally, Sect.6 presents some
preliminary simulation results and further outlook.

2 The Multiscale Local Polynomial Transform (MLPT)

Let Y be a sample vector from the additive model Y; = f(x;) + 0;Z;, where the
covariates x; may be non-equidistant and the noise Z; may be correlated. The under-
lying function, f(x), is assumed to be approximated at resolution level J by a linear
combination of basis functions ¢ ¢ (x), in
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Vlj—l

1) =) 0ru@)sip = @ (x)s,.

k=0

where @ (x) is a row vector containing the basis functions. The choice of coefficients
s ; is postponed to the moment when the basis functions are specified. At this moment,
one could think of a least squares projection as one of the possibilities.

The Multiscale Local Polynomial Transform (MLPT) [7] finds the sparse
coefficient vector v in s; = Xv, using a linear operation v = Xs 7. Just like in
wavelet decomposition, the coefficient vector of several subvectors v =
[s{ d{ d{ 4.4 ;71 17, leading to the following basis transformation

J-1

D ;(x)s; = Py;(0)Xv = Pp(x)s, + Z‘I’j(x)dj,
=L

where we introduced ®; (x) and W, (x) for the submatrices of the transformed basis
®;(x)X, corresponding to the subvectors of the coefficient vector v. The detail
vectors d ; are associated to successive resolution levels through the decomposition
algorithm, corresponding to the analysis matrix X,

forj=J—-1,J-2,...,L

e Subsamplings, i.e., keep a subset of the current approximation vector, § 4., =
Jjs;y1, with J; an; x nj, submatrix of the identity matrix.

e Prediction, i.e., compute the detail coefficients at scale j as offsets from a predic-
tion based on the subsample.
dj=sj1—Pjsji.

e Update, the remaining approximation coefficients. The idea is that s; can be
interpreted as smoothed, filtered, or averaged values of s ;.
si=8j+1.+U;d;

Before elaborating on the different steps of this decomposition, we develop the
inverse transform X by straightforwardly undoing the two lifting steps in reverse
order.

forj=L,L+1,...,J—1

e Undo update, using s; ;1. =s; — U;d;.
e Undo prediction, using s ;1 =d; +P;s;; ..

2.1 Local Polynomial Smoothing as Prediction

The transform in this paper adopts a smoothing operation as prediction, thus incor-
porating the covariate values as parameters of the analysis. As an example, the
Nadaraya—Watson kernel prediction leads to
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K Xj+1k—Xje

Bt
nj K Xj+1,k—Xj1 ’
1= ( hjt )

In this expression, K (1) denotes a kernel function, i.e., a positive function with
integral 1. The parameter /4 ; ;| is the bandwidth. While in (uniscale) kernel smoothing
this is a smoothing parameter, aiming at optimal balance between bias and variance
in the estimation, it acts as a user-controlled scale parameter in a Multiscale Kernel
Transform (MKT). This is in contrast to a discrete wavelet transform, where the scale
is inherently fixed to be dyadic, i.e., the scale atlevel j is twice the scale atlevel j + 1.
In an MKT, and also in the forthcoming MLPT, the scale can be chosen in a data
adaptive way, taking the irregularity of the covariate grid into account. For instance,
when the covariates can be considered as ordered independent realizations from a
uniform density, it is recommended that the scale is taken to be & ; = holog(n;)/n;
[10]. The scales at fine resolution levels are then a bit larger, allowing them cope up
with the non-equidistance of the covariates.

A slightly more complex prediction, adopted in this paper, is based on local
polynomial smoothing. It fills the kth row of P; with P(x;1; ), where the row
vector P ;(x) is given by

Py =

- T N |
P =X (X W0xP)

with the row vector of power functions, X'”(x) = [1 x ... x”~'] and the corre-
sponding Vandermonde matrix at resolution level j, X;p "= x o X 5’ ~!]. The
diagonal matrix of weight functions is given by (W;)g(x) = K (x_h—f”) )

The prediction matrix has dimension# ;1 x n;. This expansive or redundant pre-
diction is in contrast to lifting schemes for critically downsampled wavelet transform,
such as the Deslauriers—Dubuc or B-spline refinement schemes. In these schemes,
the prediction step takes the form d; = s;11, — P;§j41 ., Where sj41, = J;s]'+1,
with J; the (nj11 —n;j) X nj; subsampling operation, complementary to J;. In
the MLPT, a critical downsampling with J; and J 5 would lead to fractal-like basis
functions [7]. The omission of the complementary subsampling leads to slight redun-
dancy, where n data points are transformed into roughly 2n MLPT coefficients, at
least if n; is approximately half of n;, at each scale. The corresponding scheme
is known in signal processing literature as the Laplacian pyramid [1]. With an out-
put size of 2n, the MLPT is less redundant than the non-decimated wavelet trans-
form (cycle spinning, stationary wavelet transform) which produces outputs of size
nlog(n). Nevertheless, the inverse MLPT shares with the non-decimated wavelet
transform an additional smoothing occurring in the reconstruction after processing.
This is because processed coefficients are unlikely to be exact decompositions of an
existing data vector. The reconstruction thus involves some sort of projection.
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2.2 The Update Lifting Step

The second lifting step, the update U;, serves multiple goals, leading to a combi-
nation of design conditions [8]. An important objective, especially in the context
of density estimation, is to make sure that all functions in W;(x) have zero inte-
gral. When f;(x) = ®(x)s. + Z]J;i W;(x)d, then any processing that modifies
the detail coefficients d;, e.g., using thresholding, preserves the integral of f;(x),
which is interesting if we want to impose that ffooo fj(x)dx = 1for an estimation or
approximation of a density function. Another important goal of the update, leading
to additional design conditions, is to control the variance propagation throughout the
transformation. This prevents the noise from a single observation from proceeding
unchanged all the way to coarse scales.

2.3 The MLPT Frame

Examples of MLPT functions are depicted in Fig. 1. It should be noted that these
functions are defined on an irregular grid of knots. Nothing of the grid irregularity
is reflected in the approximation and detail functions ®; (x) and W; (x). Also, as the
detail functions form an overcomplete set, they are not basis functions in the strict
sense. Instead, the set of ®; (x) and W;(x) for j =L,L+1,...,J —liscalleda
frame.

Unlike in a B-spline wavelet decomposition, observations in the knots are valid
fine scale approximation coefficients [9]. More precisely, the approximation

frx) =" fOi)gsix),

i=1

has a convergence rate equal to that of least squares projection. This property is
important when incorporating a MLPT model into the regression formulation of the
problem of the density estimation problem in Sect. 3.

VRN

Fig. 1 Left panel: approximation function, i.e., one element of @ (x). Right panel: detail or offset
function, i.e., one element of W; (x). It holds that ffooc V;(x)dx = OJT
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2.4 The MLPT on Highly Irregular Grids

The regression formulation of the density estimation problem in Sect.3 will lead to
regression on highly irregular grids, that is, grids that are far more irregular than
ordered observations from a random variable. On these grids, it is not possible to
operate at fine scales, even if these scales are a bit wider than in the equidistant case,
as discussed in Sect.2.1. In order to cope with the irregularity, the fine scales would
be so wide that fine details are lost, and no asymptotic result would be possible.
An alternative solution, adopted here, is to work with dyadic scales, but only pro-
cessing coefficients that have sufficient nearby neighbors within the current scale.
Coefficients in sparsely sampled neighborhoods are forwarded to coarser scales. The
implementation of such a scheme requires the introduction of a smooth transition
between active and non-active areas at each scale [9].

More precisely, the reconstruction from the local polynomial prediction s ;4| =
d; +Pjs;i,,isreplaced by a weighted form

siv1 =Qin (P5; +d)) + (1 — QeI s). (1

The diagonal matrix Q. has values between 0 and 1. The value is 0 when a coef-
ficient is not surrounded by enough neighbors to apply a regular local polynomial
prediction P;, and it gradually (not suddenly, that is) tends to one in areas with
sufficiently dense observations to apply proper polynomial prediction.

3 A Regression Model for Density Estimation

Let X be a sample of independent realization from an unknown density fy(x) on
a bounded interval, which we take, without loss of generality, to be [0, 1]. The
density function has an unknown number of singularities, i.e., points xq € [0, 1]
where lim,_,,, fx(x) = 0o, as well as other discontinuities.

Asin [9], we consider the spacings AX,,.; = X(.;y — Xn:i—1) 1.€., the differences
between the successive ordered observations X ;). Then, by the mean value theorem,
we have that there exists a value &,,.; € [Xsi—1), X(u:i)] for which fx(§,.)AX i =
AUy, where AUpi = Uiy — Umii—1y = Fx(X ;i) — Fx (X nii—1)-
Unfortunately, the value of &,,.; cannot be used as such in the subsequent asymptotic
result, due to technical issues in the proof. Nevertheless, for a fairly free choice of
&nii € [Xsio1), X(n:iy], close to En;i , the theorem provides nonparametric regression
of AX,.; on &,.;. For details on the proof, we refer to [9].

Theorem 1 Let fx(x) be an almost everywhere twice continuously differentiable
density function on x € [0, 1]. Define Ay s C [0, 1] as the set where fx(x) > 6
and fy(x) < M, with 8, M arbitrary, strictly positive real numbers. Then there
exist values &,.; € [Xu.i—1), Xu:i)], so that with probability one, for all intervals
[(Xi-1), Xyl C Ams,
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the value of fx(§,.;)(n + 1)AX,.;, given the covariate &,.;, converges in distribution
to an exponential random variable, i.e.,

FE)(n+ DAX i lEni > D ~ exp(l), a.s.

We thus consider a model with exponentially distributed response variable Y; = (n +
1)AX,.i1&,.; and the vector of parameters 6; = fx(&,.;) = 1/ with u; = E(Y3),
for which we propose a sparse MLPT model § = Xg, with X the inverse MLPT
matrix defined on the knots in &.

The formulation of the density estimation problem as a sparse regression model
induces no binning or any other loss of information. On the contrary, the information
on the values of X; is duplicated: a first, approximative copy can be found in the
covariate values &,.;. A second copy defines the design matrix. The duplication pre-
vents loss of information when in subsequent steps some sort of binning is performed
on the response variables.

4 Sparse Variable Selection and Estimation in the
Exponential Regression model

For the i.i.d. exponential responses Y ~ exp(|@|) with § = X, and u; = 1/6;, the
score is given by V1og L(0;Y) = X7 (Y — p), so that the maximum £, regularized
log-likelihood estimator B = arg maxg log L(B) — A||B]; can be found by solving
the Karush—Kuhn-Tucker (KKT) conditions

XI(Y — ) = hsign(B)) if ; #0,
’XJT(Y—[L)‘ <A if B; = 0.

Even if we knew which components of § were nonzero, the KKT would still be highly
nonlinear. This is in contrast to the additive normal model, where u = Xf. The esti-
mator given the selection then follows from a shrunk least squares solution. Indeed,
with 7 the set of selected components, we have /ﬂ} = (X;XIY1 ST, (X%Y) , where
ST, (x) is the soft-threshold function. In the case of orthogonal design, i.e., when
X7TX7 is the identity matrix, and this reduces to straightforward soft-thresholding in
the transformed domain. In the case of non-orthogonal, but still Riesz-stable, design,
straightforward thresholding is still a good approximation and a common practice, for
instance, in B-spline wavelet thresholding. For the model with exponential response,
the objective is to find appropriate values of S, so that § = X - ST, (XS,). can be
used as an estimator. For this we need at least that

(C1)  the expected value of S, is close to 0, so that E()’ZS‘]) ~ X0 = B,
(C2) the MLPT decomposition 8 = X# is sparse,
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(C3) the MLPT decomposition of the errors, i(S ; — 6) has no outliers, i.e., no
heavy tailed distributions.

As 0; = 1/u; = 1/E(Y;), it may be interesting to start the search for appropriate
fine scale coefficients S;; from SB‘?} = 1/Y;. Unfortunately, S[,?} is heavy tailed.
Experiments show that the heavy tails cannot be dealt properly by truncation of 1/Y;
in S[J'} = min(1/Y;, smax) Without loss of substantial information about the position
and nature of the singular points in the density function.

Therefore, a prefilter with a binning effect is proposed; however, keeping track of
the original values of Y through the covariate values in the design X. More precisely,
let

S; = 1D, st )

The matrices TI and TI represent a forward and inverse, one coefﬁcient'at-a-time,
unbalanced Haar transform defined on the data adaptive knots #;; = Z;;t) Y, and
t;.0 = 0. An Unbalanced Haar transform on the vector of knots ¢, is defined by

P A1 2kSj+1,2k F A g1 2k418j+12k41 Ayt 2kS 41,2k F A1 2k415)41,2k41
k= =
Ajx Ajyi2k + Ajir ok

djr = Sjt12%+1 = Sjk>

where Ay =ty —tjx =Y and A = Aj12r + Aji12k41. In the coefficient
at-a-time version, the binning operation A ;| ox + A1 241 takes place on a single
pair Ajyx and Ay 41, chosen so that Ay = Ak + Ajyi ey i as small as
possible. Finally, the diagonal matrix Dy, in (2), replaces all details d;; by zero
for which the scale A ; is smaller than a minimum width /. The overall effect of
(2) is that small values in Y are recursively added to their neighbors until all binned
values are larger than ;. For values of &, sufficiently large, it can be analyzed
that the coefficients of §; are close to being normally distributed with expected
value asymptotically equal to 6 and variance asymptotically equal to /4,0 [9].
Unfortunately, a large value of % also introduces binning bias. In order to reduce
this bias and to let i o be sufficiently large, the choice of & is combined with a
limit on the number of observations in one bin [9].

5 Fine-Tuning the Selection Threshold

The estimator E =X.ST, (iS 7). applies a threshold on the MLPT of S;. The
input S is correlated and heteroscedastic, while the transform is not orthogonal.
For all these reasons, the errors on XS§; are correlated and heteroscedastic. In an
additive normal model where variance and mean are two separate parameters, the
threshold would be taken proportional to the standard deviation. In the context of the
exponential model with approximate variance function var(S;;) = E(S;;)/h,.0,
coefficients with large variances tend to carry more information, i.e., they have a
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larger expected value as well. As aresult, there is no argument for a threshold linearly
depending on the local standard deviation. This paper adopts a single threshold for
all coefficients to begin with. Current research also investigates the use of block
thresholding methods.

The threshold or any other selection parameter can be finetuned by optimiza-
tion of the estimated distance between the data generating process and the model
under consideration. The estimation of that distance leads to an information criterion.
This paper works with an Akaike’s Information Criterion for the estimation of the
Kullback-Leibler distance. As data generating process, we consider the (asymptotic)
independent exponential model for the spacings, and not the asymptotic additive, het-
eroscedastic normal model for § . This choice is motivated by the fact that a model
for S, is complicated as it should account for the correlation structure, while the
spacings are nearly independent. Moreover, fine-tuning w.r.t. the spacings is not
affected by the loss of information in the computation of S . R

_The resulting information criterion is given by the sum of two terms, AIC(f) =
?(0) —D(#). The first term is the empirical log-likelihood

€)=Y [log@) —6,Y].

i=I

while the second term is an estimator of the degrees of freedom
~ ~T
v(@) = E [0 (n— Y)] .

The degrees of freedom are also the bias of ?(5) as estimator of the expected log-
likelihood has taken over the unknown data generating process. The expected log-
likelihood in its turn is the part of the Kullback—Leibler distance that depends on the
estimated parameter vector.

An estimator of the degrees of freedom is developed in [9],
leading to the expression

@) = Tr [D,\)N(T_Z(ST@"X] ,

where ©lisa diagonal matrix with slightly shifted versions of the observed values,
i.e., @;i - i—1. The matrix Y is a diagonal matrix with the observations, i.e.,
Y;; = Y;. The diagonal matrix D, has zeros and ones on the diagonal. The ones
correspond to nonzero coefficients in the thresholded MLPT decomposition.
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6 Illustration and Concluding Discussion

Ongoing research concentrates on motivating choices for the tuning parameters in the
proposed data transformation and processing. In particular, the data transformation
depends on the choice of the finest resolution bandwidth %, the degree of the local
polynomial in the prediction step, the precise design of the updated step. Also, the
Unbalanced Haar prefilter is parametrized by a fine scale £ o. Processing parameters
include the threshold value, which is selected using the AIC approach of Sect. 5, and
the sizes of the blocks in the block threshold procedure.

For the result in Fig.2, the MLPT adopted a local linear prediction step. In the
wavelet literature, the transform is said to have two dual vanishing moments, i.e.,
P = 2, meaning that all detail coefficients of a linear function are zero. The MLPT for
the figure also includes an update step designed for two primal vanishing moments,

A A
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10 10
0 02 04 06 0.8 0 02 04 06 0.8
(@ (b)
A A
40 a0
30 30
20 | 20
10 10
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Fig. 2 Panel (a): power law and its estimation from n = 2000 observations using the MLPT pro-
cedure of this paper. Panel (b): estimation from the same observations using a probit transform
centered around the location of the singularity, thus hinges on the knowledge of this location.
Panel (c): estimation using the finest possible Haar wavelet transform. This transform involves full
processing of many resolution levels. Panel (d): estimation using straightforward uniscale kernel
density estimation
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meaning that f_oooo W;(x)x"dx = 0forr = 0andr = 1. Block sizes were set to one,
i.e., classical thresholding was used.

The density function in the simulation study is the power law fx(x) = K|x —
xo|¥ on the finite interval [0, 1], with a singular point xo = 1/2 in this simulation
study and k = —1/2. The sample size is n = 2000. The MLPT approach, unaware
of the presence and location of x(, is compared with a kernel density estimation
applied to a probit transform of the observations, ¥ = ®~!(X — x) for X > xg
and Y = @ 1(X — xo + 1) for X < x¢. This transform uses the information on the
singularity’s location, in order to create a random variable whose density has no end
points of a finite interval, nor any singular points inside. In this experiment, the MLPT
outperforms the Probit transformed kernel estimation, both in the reconstruction of
the singular peak and in the reduction of the oscillations next to the peak. With the
current procedure, this is not always the case. Further research concentrates on the
design making the MLPT analyses as close as possible to orthogonal projections,
using appropriate update steps. With an analysis close to orthogonal projection, the
variance propagation throughout the analysis, processing, and reconstruction can
be more easily controlled, thereby reducing spurious effects in the reconstruction.
Both MLPT and Probit transformation outperform a straightforward uniscale kernel
density estimation. This estimation, illustrated the Fig.2d, oversmooths the sharp
peaks of the true density.
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On Sensitivity of Metalearning: An ®)
Illustrative Study for Robust Regression e

Jan Kalina

Abstract Metalearning is becoming an increasingly important methodology for
extracting knowledge from a database of available training datasets to a new (inde-
pendent) dataset. While the concept of metalearning is becoming popular in statistical
learning and readily available also for the analysis of economic datasets, not much
attention has been paid to its limitations and disadvantages. To the best of our knowl-
edge, the current paper represents the first illustration of metalearning sensitivity
to data contamination by noise or outliers. For this purpose, we use various linear
regression estimators (including highly robust ones) over a set of 24 datasets with
economic background and perform a metalearning study over them as well as over the
same datasets after an artificial contamination. The results reveal the whole process
to remain rather sensitive to data contamination and some of the standard classifiers
turn out to yield unreliable results. Nevertheless, using a robust classification method
does not bring a desirable improvement. Thus, we conclude that the task of robus-
tification of the whole metalearning methodology is more complex and deserves a
systematic future research.

Keywords Linear regression + Automatic method selection + Contamination *
Sensitivity + Robustness

1 Metalearning

Metalearning can be characterized as a methodology for extracting knowledge from
a database of training datasets with the ability to apply the knowledge to new inde-
pendent (validation) datasets. It can be perceived as learning to learn or learning of
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metaknowledge, which is defined as knowledge about whole datasets which serve as a
prior knowledge rather than measured values contained in these datasets. Metalearn-
ing represents an approach to machine learning (i.e., automated statistical learning)
popular in recent computer science and data mining [13, 15]. Italso starts to penetrate
to economic applications [1], not limited to big data analysis [14].

While the most renowned works on metalearning principles [4, 12] appraise met-
alearning and list its appealing properties, a truly critical evaluation of metalearning
seems to be still missing. It is mainly the fully automatic characteristic of the met-
alearning process which hinders a profound interpretation of the results, which would
standard in the statistical community but not in computer science usually exploiting
heuristics and black-box procedures. Other important issues include stability and
robustness, while these two concepts do not actually coincide. The instability of
metalearning, manifested, e.g., as different recommendations for two rather similar
datasets, has been reported with a recommendation for using ensemble methods [4].
However, we are not aware of any discussion of the presence of noise and outlying
measurements (outliers) in the data and their influence of the metalearning process,
nor we have found any attempts to robustify the metalearning against outliers.

In the current paper, we illustrate the sensitivity of metalearning as its weak point
deserving further attention of researchers. The novelty of the current paper is also
considering the promising (but not much known) least weighted squares estimator
[10, 17] and also a robust version of linear discriminant analysis.

Section 2 of this paper describes principles of our study of metalearning sensitivity,
which is performed on 24 real datasets as well as on their artificially contaminated
versions by noise or outliers. Section 3 presents results of primary learning as well
as metalearning and, finally, Section 4 presents a discussion and conclusions.

2 Description of the Study

We proposed and performed a metalearning study with the aim to compare various
linear regression estimators and to find a classification rule allowing to predict the
best one for a given (new) dataset. It remains namely unknown (and too difficult to
study theoretically) which of the methods should be used for a particular dataset or
under particular conditions or which are the most relevant criteria for determining
the most suitable method.

The primary learning task is to fit various linear regression estimators for each
of the given datasets. The best estimator is found using a specified characteristic of
goodness of fit. The subsequent metalearning part has the aim to learn a classification
rule allowing to predict the best regression method for a new dataset not present in
the training database. Its input data are only selected features of individual datasets
together with the result of the primary learning, which typically has the form of the
index of the best method for each of the training datasets.

In general, the user of metalearning must specify a list of essential components
(parameters), which have been systematically described by [12] and denoted as P,



On Sensitivity of Metalearning: An Illustrative Study for Robust Regression 263

A, F Y, and S, where some (P, A, Y) are used in the task of primary learning
(base learning) and the remaining ones (F, S) in the subsequent metalearning. Their
meaning and our specific choices will be now described.

2.1 Primary Learning

(P)

A)

(Y)

Datasets. Metalearning should always use real datasets because any random
generation of data is performed in a too specific (i.e., non-representative, biased)
way. However, we are not aware of any public repository of metadata (at least
for a regression task). Therefore, we use 24 datasets listed in Table 1, which are
publicly available datasets investigated primarily with economic motivation. In
addition, we also modified the datasets by artificially added contamination as
described below.

Algorithms. In each of the datasets, we consider the standard linear regression
model

Yi=pBo+BiXo 4+ BpXipte i=1....n (M)

where there are p regressors and n observations. We use four different estimators
of the parameters:

— Least squares,
— Hampels’s M-estimator [6],
— Least trimmed squares (LTS), investigated, e.g., in [16] defined as

h
arg ming g1 Z ugy (b), @)

i=1

where u;(b) is a residual corresponding to the i-th observation for a given
b e RP*+! and u%l)(b) <...< u%n)(b) are values arranged in ascending order.
We use the probably most common choice & = L%J , where | x| denotes the
integer part of x.

— Least weighted squares (LWS) of [17] with linearly decreasing weights w; =
I1—@G—1/nfori=1,...,n0of[10] is defined using the same notation as

arg min, g+ Z w,-u%i)(b). 3)

i=1

Prediction measure. We use the prediction mean square error (PMSE) in the
form Z;’zl Y = Y)? /n, where Y; denotes the fitted value of the i-th observation
(in each of the datasets).
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Except for the least squares, the regression estimators presented under (A) were
proposed as its robust alternatives [6]. Robust statistics, which gradually becomes
important for the analysis of economic data [2, 8], distinguishes between local and
global robustness (resistance, insensitivity). From the set of four estimators described
above, only Hampel’s M-estimator and the LWS are robust in the local sense and
only the LTS estimator is highly robust in the global sense; we may refer to [6, 17]
for a deeper explanation of the concepts, which are to a large extent contradictory.

We considered two types of data contamination. These can be characterized as
a local (i.e., aiming at local sensitivity) and a global (corresponding to global sen-
sitivity) contamination of regressors of individual datasets. For both cases, we will
need the following notation. Each measured value will be denoted as X;jx, where
i corresponds to a particular dataset, j to an observation within this dataset, and
k to a particular variable. The idea is to replace X;;x by X;jx + &;jx, where &’s are
(mutually) independent random variables independent on the given data and ¢;  is
generated from normal distribution N(0, S6i.2i «)» Where &fj « 1s an estimated variance
of the j-th variable within the i-th dataset and s is a chosen constant.

1. Local contamination. Each observation in each dataset is contaminated by a slight
noise, i.e., with a small s.

2. Global contamination. A small percentage of observations is contaminated by
severe noise, while the remaining ones are retained. Particularly, ¢ x 100 % of
the values are randomly chosen for each dataset across all relevant features for a
given (and rather large) s.

In the primary learning task, we find the best method for each dataset. This is
done using PMSE in a leave-one-out cross-validation, which represents a standard
attempt for independent validation. Then, the output of the primary learning is the
knowledge (i.e., factor variable, index) of the best method for each of the datasets.

2.2 Metalearning

The subsequent metalearning task exploits nine features for each dataset and the
factor variable of Table 1 denoting the index of the best method. Parameters of the
metalearning will be now described again using the P-A-F—Y-S notation [12].

(F) Features of datasets. We select nine features, which can be (avoiding details)
for each of the datasets characterized as

The number of observations 7,

The number of regressors p (excluding the intercept),

The ratio n/ p,

Normality of residuals of the least squares evaluated as the p-value of the
Shapiro—Wilk test for the least squares,

5. Skewness of residuals of the least squares,

s
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Kurtosis of residuals of the least squares,

Coefficient of determination R? for the least squares,

Percentage of outliers estimated by the LTS,

Heteroscedasticity of residuals evaluated as the p-value of the Breusch—Pagan
test for the least squares.

0 xX =

(S) Metalearning method. We exploit the following classification methods:

— Support vector machines (SVM),

— Linear discriminant analysis (LDA),

— MWCD-LDA with linearly decreasing weights, i.e., a robust version of LDA
defined in [9], where it was proposed as a linear classification rule based on
the minimum weighted covariance determinant (MWCD) estimator of [8, 11],

— k-nearest neighbors for various values of k.

We note that three features, namely 7, p, and their ratio, are retained as fixed even
if the data are contaminated, while each of the remaining ones is influenced (less or
more) by data contamination.

3 Results

3.1 Primary Learning

Table 1 contains together with the list of datasets also the estimated values of o2,
which were used for obtaining the contaminated datasets as described in Section 2.1.
Further, Table 1 shows the best method for raw datasets. Particularly, the best regres-
sion method is shown in the table for each of the datasets. Finally, the results are
given for datasets modified by each of the two different types of contamination (for
different parameters).

Global contamination seems to influence the results of primary learning in a
stronger way compared to local contamination. A more detailed analysis, however,
reveals that individual features are influenced remarkably in both situations and we
can perceive both types of contamination (with selected parameters) to be compa-
rable in terms of severity. We can also say that under global contamination, robust
estimators become more commonly the best method with an increasing ¢, while no
clear tendency can be observed for the local contamination.

We also inspected features those are mostly influenced by the contamination.
These are features 4 and 9 for the local contamination and features 7 and 9 for the
global one. These (and mainly normality and heteroscedasticity of residuals) are,
however, crucial ones for the choice of the appropriate regression estimator. Thus,
the whole primary learning is influenced strongly by the contamination. While three
features remain to be the same under every contamination, these are not so important
for the resulting classification rule.
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Table 1 Results of primary learning for 24 investigated datasets (raw or contaminated). The best
method was found according to the smallest PMSE in a leave-one-study cross-validation study.
Columns of the table with the best method serve as factors (responses) for the subsequent classifica-
tion task of metalearning. Regression methods include (1) least squares, (2) Hampel’s M-estimator,
(3) LTS with 2 = [0.75n], and (4) LWS with linearly decreasing weights

Dataset 62 Raw Best method
data

Local contam. Global contam.

with s = withs =9and ¢ =

0.1 0.2 0.3 0.06 0.12 0.18
1 Aircraft 57.8 3 3 3 3 4 3 3
2 Ammonia 8.9 4 4 3 3 4 4 4
3 Auto MPG | 17.9 3 3 3 3 3 4 3
4 Cirrhosis 103 1 2 3 3 1 3 3
5 Coleman 32 1 1 1 1 1 1 1
6 Delivery 9.7 2 3 3 2 3 3 3
7 Education 1537 2 2 2 3 2 4 3
8 Electricity 0.85 2 2 2 2 2 2 4
9 Employment | 55463 |3 4 3 3 3 3 3
10 Furniture 1 | 0.0019 |2 2 2 2 2 3 2
11 Furniture 2 | 0.056 3 3 3 4 3 3 3
12 GDP growth | 9467 2 2 2 2 2 2 3
13 Houseprices | 14.6 4 4 3 3 3 3 3
14 Housing 54.3 2 2 2 3 2 4 3
15 Imports 4.2 3 3 3 3 3 3 3
16 Kootenay 22.0 1 1 3 2 1 1 2
17 Livestock 29.4 3 3 3 3 3 4 4
18 Machine 3495 3 3 3 3 3 3 3
19 Murders 17.7 4 4 4 4 4 4 4
20 NOx 0.30 2 3 3 3 4 3 3
21 Octane 0.19 2 2 2 2 2 2 2
22 Pasture 75.4 4 4 4 4 4 4 3
23 Pension 0.24 3 3 3 3 3 3 3
24 Petrol 4022 2 3 3 3 2 3 3

3.2 Metalearning

The results of metalearning are overviewed in Table 2, namely as classification per-
formances of the classification rules learned withing the metalearning tasks. There,
the performance is evaluated as a classification correctness in a leave-one-out cross-
validation study. Comparing both types of contamination, the classification perfor-
mance remains to be low.
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Table 2 Results of metalearning for 24 investigated datasets (raw or contaminated) evaluated as
classification correctness in a leave-one-out cross-validation study. The classification rule for the
best regression estimator is learned not over the original datasets, but using 9 features of each dataset
together with the indicator of the best method obtained from Table 1. The best result in each column
is shown in boldface

Classification Best method
method
Raw data | Local contam. with Global contam. (s = 9)
s=0.1 |s=02 |s=03 |¢c=0.06 |c=0.12 |¢c=0.18

SVM (linear) 0.38 0.38 0.38 0.38 0.38 0.38 0.38
LDA 0.29 0.29 0.29 0.25 0.17 0.29 0.38
MWCD-LDA 0.33 0.33 0.33 0.33 0.29 0.33 0.33
k-NN (k=1) 0.29 0.25 0.21 0.25 0.29 0.33 0.29
k-NN (k=3) 0.29 0.29 0.25 0.25 0.33 0.29 0.25
k-NN (k=5) 0.33 0.33 0.33 0.29 0.38 0.33 0.38

For the local contamination, SVM turns out to be the best method. For most meth-
ods, we can observe only small changes (typically a decrease of performance) with
an increasing c. A closer analysis exceeding the scope of this paper shows instability
again. MWCD-LDA seems robust, but is not very reliable in the classification task,
perhaps because MWCD-LDA is reliable in classification tasks to two groups and
loses much efficiency with an increasing number of groups. The k-nearest neighbors
classifiers suffer from the most dramatic loss of performance, although the method
is very common (perhaps the most common) in the metalearning task.

For the global contamination, SVM is again the winner, although its performance
is reached also by other methods. With an increasing s, the changes in the best method
are quite unpredictable, unstable. SVM seems very robust. It may be a preferable
method, although not much used in the metalearning context.

Let us also point out at the increasing performance with an increasing global
contamination, e.g., for the standard LDA, which is known as very non-robust (see
e.g., [7]). Its performance is improving with an increasing contamination, but this
advantage is only illusionary due to excessive effect of outliers.

4 Conclusions

To the best of our knowledge, none of the available metalearning studies has focused
on the influence of noise or outliers on the results. Thus, such a unique sensitivity
study, which reveals the vulnerability of metalearning, is presented in the current
paper. The metalearning task itself, which has the aim to predict the most suitable
linear regression estimator for new datasets, is accompanied by a study over datasets
with economic background contaminated in two different possible ways.
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The SVM is the best method for raw data as well as for any contamination. Its
classification performance, although rather low, is not deteriorated by the contamina-
tions under consideration. This cannot be, however, said about most of the remaining
classifiers.

The local contamination has the idea to slightly modify each observed value of
all training datasets. It is true that the best method shown in Table 1 is retained to a
large extent with a similar performance to that obtained for raw (non-contaminated)
datasets. However, our further analysis shows individual features to be rather remark-
ably influenced by the contamination, which is consequently manifested on the met-
alearning results, e.g., on very different sets of wrongly classified datasets.

The global contamination has another idea to greatly modify a small percentage
of selected observed values. Already a smaller percentage of severe outliers has a
remarkable influence on the results of metalearning. The results for some of the
regression estimators change dramatically in an unpredictable way, which is not
monotonous with increasing contamination. The classification rules of non-robust
classifiers (such as LDA) are then formally successful, while a more detailed analysis
reveals the success to be putting too much influence on outliers, i.e., more information
is drawn from errors and randomness than from the signal whose influence on the
resulting classification rule is decreased. This idea is supported by the fact that it
happens exclusively for a larger percentage of severe outliers that LDA outperforms
MWCD-LDA. The classification rule is arbitrary (i.e., useless) determined primarily
by outliers.

Thus, the study reveals a weak point of metalearning and motivates a possible
future critical evaluation of the metalearning process. Let us now try to list all possible
factors which contribute to the sensitivity of metalearning:

e The choice of datasets. We use rather a wide spectrum of datasets with different
characteristics from different research tasks, while metalearning is perhaps more
suitable only for more homogeneous data (e.g., with analogous dimensionality) or
for data from a specific narrow domain.

e Difficult (and unreliable) extrapolation for a very different (outlying) dataset.

e The prediction measure. In our case, PMSE is very vulnerable to outliers.

e The number of algorithms/methods. If their number is larger than very small,
we have the experience that learning the classification rule becomes much more
complicated and less reliable.

e The classification methods for the metalearning task depend on their own param-
eters or selected approach, which is another source of uncertainty and thus insta-
bility.

e Solving the metalearning method (S) by classification tools increases the vul-
nerability as well because only the best regression estimator is chosen ignoring
information about the performance of other estimators.

e The process of metalearning itself is too automatic so the influence of outliers
is propagated throughout the process and the user cannot manually perform an
outlier detection or deletion.
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Let us also particularly discuss the performance of robust methods withing the
metalearning study.

e The LWS estimator turns out to be the best method for some datasets, which is
a novel argument in favor of the method. This is interesting because the LWS is
using simplistic weights, which could be actually further improved.

e The study presents also a unique comparison of MWCD-LDA with standard LDA.
While the robust approach does not improve the performance compared to LDA, its
results are not misleading the presence of contamination. MWCD-LDA together
with the SVM classifier is the only method with this property, which brings a novel
argument in favor of the MWCD-LDA.

Finally, there remain some topics for future research, which can be listed from
the simplest to the most difficult (and most important):

e The study can be extended by considering also noise added to the response or
additional features, e.g., a robust test of heteroscedasticity.

e A detailed interpretation of the classification rules of metalearning; especially
we expect to find arguments that the effect of outliers, although it improves the
classification performance, is detrimental.

e Ensemble classification can be used for the metalearning task, which could hope-
fully improve stability and robustness. In fact, robustness in the task of statistical
learning was introduced by Breiman [5], whose ideas have not been exploited in
the metalearning context yet.

e We are interested in extending metalearning tasks to extracting association rules
from data in the spirit of [3].

e The whole metalearning methodology should be robustified, which remains a more
complex task than just a robustification of each of its individual steps.
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and Unitary Operators

Estate Khmaladze

Abstract We describe another approach to the theory of distribution free testing.
The approach uses geometric similarity within various forms of empirical processes:
whenever there is an empirical object (like the empirical distribution function) and
theoretical parametric model (like a parametric model for distribution function) and a
normalised difference of the two, then substitution of estimated values of the param-
eters leads to projection of this difference. Then one can bring some system in the
multitude of these projections. We use unitary operators to describe classes of sta-
tistical problems, where one can “rotate” one projection into another, thus creating
classes of equivalent problems. As a result, behaviour of various test statistics could
be investigated in only one “typical” problem from each class. Thus, the approach
promises economy in analytic and numerical work. We also hope to show that the
unitary operators involved in “rotations” are of simple and easily implementable
form.

Keywords Distribution free testing * Discrete distributions - Uniform empirical
process in [0, 1]¢ + Linear regression + Equivalence of testing problems

1 Basic Setup

Consider a function parametric empirical process based on a sample (X;)}_, of F-i.i.d.
random variables,

1 n
wr(@) = > [cp(xi) - f ¢<x)dF(x)} . ¢ e Ly(F),
i=1

or its point parametric version, i.e. with ¢, (X;) = I(X; < x),
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n

v () = % I <0 —Fwl, xeR’

i=1

The following problem of weak convergence: “describe the class ¥ C L,(F),
on which {v, r(¢), ¢ € ¥} converges to F-Brownian bridge {vr(¢), ¢ € ¥}’ is an
extremely important problem, with broad and interesting mathematical theory behind
it, see, for example [19]. However, in this short overview, we want to focus on
somewhat different direction concerning function parametric empirical processes.
The question we ask is “for K a linear operator on L,(F'), find what new processes
can be obtained as

K*Vn,F(q‘)) = Vn,F(K(b)’ (1)

and why can they be interesting”. “Linear operator”, however, seems too general for
specific results, and everywhere below we consider only unitary operators; for the
general theory of unitary operators we refer, e.g., to [3].

It is not immediately obvious that the question is sensible. Indeed, the covariance
operators of the processes v, r and K*v, r are unitary equivalent, which, with some
freedom of speech, is the same as to say they are equal, and therefore the second order
properties of the two processes will be the same. Why such thing will be useful?

Nevertheless, we will see that the construction can be applied to various forms of
empirical processes in different parts of statistics and lead to a general approach to
distribution free testing theory.

Sections 2—4 below contain a review, much shorter, and hopefully clearer, of some
of the results already published. Section 5 contains short presentation of new material
described in [10]. Farther developments, for example on point processes, also new,
will appear in [11].

2 Discrete Distributions

We start with the situation, which will allow us to explain the main point of this
approach in a very simple way. Consider a finite-dimensional discrete distribution

p =&)L, pl) >0, Yy pl)=1, m< oo,
k=1

and let vy, denote the frequency of the outcome k in n independent trials. Further,
consider the vector of “components” of the x-test statistic:

Vin — np (k)

vnp(k)

Yn = (Ykn)llz;lv Ykn =
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so that the y2-statistic itself is
(Yo, Yu) = ZY,?H X2, n—> oo.

Thus, asymptotic distribution of x-test statistic is free from p.
At the same time, analogues of Kolmogorov-Smirnov statistics, such as

max E Yin
1_1<m

will have a limit distribution very much dependent on p. As a matter of fact, it is only
the x 2-statistic, if we do not count asymptotically equivalent forms of it, which leads
to reasonable goodness of fit test and is, at the same time, asymptotically distribution
free. This situation is in contrast with what we have for continuous distributions,
where, from the very beginning, we have had a class of distribution free goodness of
fit test statistics, see, e.g. [1, 13, 17].

However, the choice of asymptotically distribution free statistics in the discrete
case can be broadened to its full extent.

With . /p = (/p(k))j,, we know that

Y, > ¥, Y =X— (X, /p)D @)

where X = (X;);, is the vector with independent coordinates with standard normal
distribution each. The vector ,/p is vector of unite length. Now let /7 be another
vector of unit length, and put

Zn = Yn - (an \/_ \/_ «/_ (\/_ \/_) (3)

The transformation of Y, into Z, is one-to-one: it is unitary transformation which
maps ,/p to A/ and vice versa. That is why, being applied to the projection Y, it
maps it into projection Z.

Theorem 1 Khmaladze [7] If Y, i) Y, then

Z, 27, Z=X— (X, JAJ/r )

Although the proof of the theorem is immediate, it lies at the heart of very wide
possibilities of extension, some of which we demonstrate below.

For discrete distribution it implies the following: the transformation (2) of X to Y
is a projection; it projects X parallel to the vector \/p. If we had a different discrete
distribution, say, g = (q(k))}._,, then the vector, parallel to which we project, will be
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different. Theorem 1 above allows us to choose any vector of unit length, and switch
from projection Y to projection Z.

In more detail, consider the class of discrete distributions of the same dimension
m. The vector of components of x*-statistic corresponding to each of them, say, to
distribution p, can be thus mapped to the vector with the same limit distribution as the
vector of components of x2-statistic for any other distribution, say, for distribution
q. Or any of them can be mapped into vector Z, corresponding to some, fixed,
distribution, say, to uniform distribution on m disjoint events. Therefore, statistics
for testing p which are based on the transformed vector Z,, will have limit distribution
completely free from this p. At the same time, since the correspondence between Y,
and Z,, is one-to-one, the “statistical information”, whichever way we measure it, in
both vectors is the same.

It is shown in [7] that the approach can be used in testing hypothesis about para-
metric families of discrete distributions. It seems to work for quite high dimensions
of the parameter. In [15] it was shown how to apply this method to test hypothesis
in contingency tables, when parameters can be of dimension 20-25, and the sample
size not too large, about n = 400 — 500.

3 Uniform Empirical Process on [0, 114

Let us use notation vy for F-Brownian bridge, and wr for F-Brownian motion, and
consider F, which lives on [0, 1]¢ and has positive density. Then, see, e.g., [4, 16],

ve(x) = wp () — F)wp (1),

where 1 denotes the vector with all d coordinates equal 1. This process can not be
normalized to something standard:

dvp(x)  dwp(x) dF(x)

Jo Jo Jo "

and although dwp(x)/./f (x) behaves in distribution as differential of the standard
Brownian motion, this is not enough to standardize dvy (x) as there is another differ-
ential on the right hand side, dependent on F'. However, with use of one extra Winer
stochastic integral, the normalisation becomes possible.

@,

Theorem 2 Khmaladze [9] (i) The process with differential

vr(dx) veldy)  A—-yfe)
Vf(x) [0, 13 f(y) 1= f[O,l]d \/f()’)dy

is the standard Brownian bridge on [0, 11¢.

u(dx) =
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(ii) If G K F and l(x) = /d G (x)/dF (x), then the process with differential

vg (dx) = 1(x)v (dx)_f 15)ve(dy) P -l
G = F 011 Y)vr(ay I_f[OJJJ 1(y)dF (y)

is G-Brownian bridge.

Being applied to empirical process v, p based on a sample form distribution F
the transformation in part (i) will transform it into a process, u,, with the same limit
distribution as the uniform empirical process, that is the one, based on uniform ran-
dom variables on [0, 119, although in the transformation there are no other random
variables, but those with distribution F. Transformation of v, r as in (ii) will map it
into a process v, g, with the same limit distribution as the empirical process based
on sample from the distribution G.

In order to show how this theorem follows from the general construction of (1)
consider the subspace of functions L(G) = {« € L,(G) : {(a, 1) = 0}, where 1
stands for function identically equal to number 1. This is the subspace on which the
process vg “lives”: Brownian bridge v is Brownian motion wg restricted to L(G),
see, e.g., [8]; for Gaussian measures on Hilbert spaces see also [14]. Similarly,
the process vg lives on the subspace L(F) = {a € Ly(F) : {a, 1)p =0} If G ~
F, the operator of multiplication by 1, i.e. la(x) = [(x)x(x) will map L,(G) into
L, (F) isometrically, so that the function 1 (from Ly(G)) is mapped into function I,
while the subspace L(G) is mapped into the subspace of functions, orthogonal to 1.
What remains is to rotate this latter subspace into L(F), the subspace of functions,
orthogonal to 1 (from Ly(F)). For this we use appropriate unitary operator in Ly (F):

1
Kg=p8- (- 1)m(/3»l— Dr.

IfB L1, 1, then KB = B, while Kl = 1, and K1 = l. Therefore, as a result,
ve (@) = vr(Kla),

and this is equivalent to statement (ii).

Shifting orthogonality constrain. We know that a Brownian bridge vy is a Brownian
motion, subjected to orthogonality condition vp(1) = 0, or, equivalently, restricted
to the subspace L(F). We can, however, use unitary operator to “move” this orthogo-
nality condition “further away”, which may lead to unexpected results. We illustrate
the fact in Theorem 3 although we did not investigate statistical implications of these
possibilities enough.

Choose na to be a density on “small” set A C [0, 11¢. For ¢ € L(U), choose

Kw———(\f ff (Via = f &) € LF).
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Consider

b(y) = ve(Kar).

In the statement below, we can use ¥ equal indicator function of [0, x] and thus
speak about differential of b(r).

Theorem 3 The process with differential

v (dx) na(y) (Vnax) — /f ()
b(dx) = / J (@) - dx
V) For T o oy

is a standard Brownian motion on [0, 1]¢ \ A, while

/ na(y)b(dy) = 0.
yeA

On the interval [0, 1], A = [0, A] and uniform F it takes the form

b(dt) = u(dt) — Qd t< A,

b(dt) = u(dt) + Ldr, 1> A,

VA-A

and represents b(x) as Brownian bridge on [0, A] and Brownian motion on [A, 1].
This is very different from the usual form

w(dt) = u(dt) + Ldt

with w also a Brownian motion.

4 Parametric Hypotheses in R?

LetF = {Fy(x),x € R?,0 € ® C R™} be a parametric family of distributions in R?,
which depend on m-dimensional parameter 6. Suppose we need to test hypothesis
that an unknown distribution F belongs to this family. Let v, r(x, 8) = /n[F,(x) —
Fy(x)] be empirical process where we have to substitute an estimation for 6 based
on the sample, and let 6 be the MLE for 6.

The first order Taylor expansion in  of the parametric empirical process v, r (x, 6)
produces

A~ d A
Vnp (%, 0) = vn(x, 0) = =5 Fy (x) V(O —60) + R, (x),
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where, for a regular family [, the residual R, is asymptotically negligible [2, 4, 16].
With notation Iy for Fisher information matrix, and notation

1 /2f_0
% (x)

for the orthonormal version of the score function, the function parametric version of
v, F can be written as

alx) =T,

k(@) = Var($.0) = var(9) — (§.a) v r(@) + Ru(9).

As aresult, one can see that the limit in distribution for v, r is the process

V() = vi (@) — (¢, a) vr(@) = vr(d — (¢, a) a). 5)

It is easy to verify that Vr is projection of vg. This fact was shown in more general
context in [5], and was subsequently, to some surprise, often overlooked. It explains,
however, interesting phenomena in asymptotic behaviour of empirical processes
with estimated parameters—for example, that even if one knows the value of true
parameter, it is usually better to substitute an estimator, because the power of a test
based on v, ¢ will be higher than of the same tests based on v, .

The projection structure of the right hand side in (5) can therefore be established for
any regular parametric family, and, generally, at any particular value of the parameter
within the same family. Therefore, we end up with lots of projections; distribution
of a tests statistic based on one of them will differ from that based on another one.
There seems to be endless need for numerical approximations of these distributions.
However, there is a way to glue wide classes of them all in one single problem, as
explained below.

From one parametric hypotheses to another. With F = Fy, a = ay and similarly
G = Gy, b = by, consider
LF,a) ={¢ € Lo(F) : (¢, ) = (¢, a)r =0},

L(G,b) ={p € L2(G) : (¢, )¢ = (¢, b)g = 0}

Similarly to what we said about v and v¢ in Sect. 3, the limiting processes Vr and
V¢ live on these subspaces, respectively. On these subspaces, their distribution is the
same as corresponding Brownian motions. Therefore, in order to transform v into
V¢ one needs unitary operator, which maps one subspace into another:

Upa : Lp(G) —> Ly(F),
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and, consequently,

Vo) =V (Upa).

Consider again Hellinger function

and denote ay(x) = 1 and by(x) = 1, the same function but considered as elements of
different spaces. Then the operator K of the previous section, which we now denote
K1, Will rotate theilfunction lby into ay, but it will not necessarily rotate /b; into aj,
but only into some [b;. Here a; and b denote first coordinates of normalized score-
functions a and b. In general, a; and by, k = 1, ..., m, will denote their respective
k-th coordinates.

__Since Ky, 1, 1s a unitary operator, it preserves norms and angles, and therefore
Iby L ayp. Now we can rotate [b; further into a; using operator K, i and then
consider the product

Uav,1(P) = K, 15, Kay. 16, ([D).

As a product of unitary operators, it is a unitary operator itself. It maps by into ag
and b, into a;, and it will leave all functions orthogonal to a; and [b; unchanged, see
[9], Sect.4, or [11], Sect. 3.

For parametric families with m-dimensional parameter, we use induction. Given
Jj €1{0,1,...,m}, suppose we have a unitary operator U, , ; that maps [b; to a; for
0 <i <. For example, we have constructed above U, p 0 = Ky, 1p, and U, 5,1 =

K, i3, Kay. 1n,- Now define the function

b1 = Uq i jlbjy1,

and introduce
Uajr1r = Ky, 5y Uaioj-

Then Uy, 1, j+1 is a unitary operator that maps [b; to a; for 0 < i < j + 1. Continuing
in this fashion, we see that U, 5, 1S a unitary operator that maps [b; to a; for all
i =0, ..., m. Therefore by an analogous argument as in the case of Brownian bridge
we have the following theorem:

Theorem 4 Khmaladze [9] Suppose V. is projected Brownian bridge, parallel to an
(orthonormal) m-dimensional vector-function a, and, similarly, suppose V¢ is pro-
Jected Brownian bridge, parallel to an (orthonormal) m-dimensional vector-function
b. If measures F and G are equivalent (mutually absolutely continuous), then Vi can
be unitarily mapped into Vg as follows:

V5 Ua, o 1) 06 (0). 6)
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5 Distribution Free Testing for Linear Regression

A wider version of this section, although still in a draft form, can be found in [10].
It includes general parametric regression models and multi-dimensional covariates.

Consider a sequence of pairs (X;, ¥;)!_,, where Y; is a “response variable” and
X; is the corresponding “covariate”. We, basically, will not assume anything about
probabilistic nature of (X;)}_,, except that their empirical distribution function weakly

converges to some distribution function:

I W
Fax) = ~ > Iy, and F, > F.

i=1

About (Y;)?_, we assume, that given (X;)!_,, they are independent, and moreover,
that there exists a function m(x), such that the differences, or “errors” (g;)7_;, with
g = Y; — m(X;), are G- i.i.d. random variables.

How shall we test a simple linear regression, which states, that m(x) = xT6 or

Yi=X"0+e, i=1,...,n,

with some constant 6? Here not any test will do. Tests we want should have two
properties: they should be able to detect all contiguous alternatives to the linearity,
i.e. the local deviations form linearity of order 1/4/n, and they should have limit
distribution independent from the vector of covariates (X;)7_; and the distribution
G of G-ii.d. errors g;. One method to create class of such tests was described in
[12] and in [18]. Both of these papers have been based on the approach suggested
in [6], although in several respects they are technically different from each other. In
this section we outline another method, which is much simpler. Its implementation
is straightforward.
In vector form, one can write the regression above as

Y=X"0+e 6eRY
where X7 is a matrix, with i-th row X;”. The residuals can be written as
=Y —X"9 with 6 =xx")"'xy,
or, using normalised vector of residuals z = (XX7)~1/2X,

=Y —zlz¥ =¢ —7'ze. @)
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The empirical regression process (partial sum process)

. 1 <.
Ry (x) = ﬁ ZgiH(Xin)
i1

is the natural object to base test statistics upon, cf. [12] and in [18]. Therefore, we
should be interested in asymptotic behaviour of this process.
Let

1 n
Ws,n(x) - 7% Z EiH(Xifx)'
i=1

It is clear that if the errors ¢; have finite variance, the process w; , converges weakly
to a Brownian motion wg in time F'. Then it is possible to describe the process ]}M
as asymptotically one-dimensional projection of w, ,, cf. [10]. However, IA?M is not
a Brownian bridge. Indeed, its variance is

A . | —
ER;, ((x) = F,(min(x, y)) — - TS By
i=1

which, clearly, is not of the form F,(x) — F’ f (x). Thus, the limit distribution of IAQ,[,E
depends on values of the covariates, and that in unfamiliar fashion. The covariance
matrix of £ also depends on covariates:

EgeT =1—7".

Therefore, limit distribution of tests statistics based on IAQM needs to be calculated
anew for new values of the covariates.

To present the main step below, we do not need X; € RY,d > 1,itis enough that
d = 1. Consider the operator in R",

(a_b5 '>F .
Uyp=1———"@—->b th =|b|| = 1.
b (@, br, (a —b) with |lall = [Ib]l

This operator is unitary, and (cf., e.g., [7])
Uypa=b, Upyb=a, U,pc=c, ifc La,b.

Now choose a = zand choose bequalr = (1, ..., 1)7 //n, the vector not depend-
ing on covariates at all. Since &€ L z we obtain:

e=U,,6=6—————(r—2),
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or

The new residuals have covariance matrix
Eee =1 —rrT.
This would be the covariance matrix of the residuals in the problem of testing
Yi=0+e, i=1,2,...,n, (8)

which is completely free from covariates.
For the partial sum process based on the new residuals,

n

N 1 o
Rn,e(x) = % Z ei]I(XISX)’

i=1

we have .
ER. ,(x) = F,(x) — F1(x).

Thus, this process is asymptotically Brownian bridge in time F and the class of
distribution free test statistics based on R, . is broad and well known.

Linear regression with constant term. This extension can be made with no extra
difficulty. Let now )
Y =61 + (X —X1)6; +¢,

(here 1 stands for the n-dimensional vector with all coordinates equal number 1).

Substituting the usual least square estimators for 6 and 6, and using again notation
r and notation

1 _
i=——X-X),

V2l (X — X)?
one can write the residuals in succinct form
e=Y (Y, r\r—{(Y,2)Z=¢—{e,r)r — {s,2)Z.
From this it follows that the covariance matrix of € is
EeeT =1 — " — 227,

and it still depends on the values of the covariates. The regression process with these
residuals,
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. |
Rn,a ()C) = % Z Si]I(X:fX)’
i=1

will, therefore, have asymptotic distribution which depends on Z.

Vector r is, obviously, free from covariates and there is no reason to replace it,
but it will be useful to replace the vector z. Introduce another vector 7, different
from Z, which also has unit norm and is orthogonal to . It is simpler to arrange the
coordinates of both vectors z and 7 in increasing order. As an example of 7 consider
the function

nt

/i i on+1 (i
r(;)zx/ﬁ[;— 5 }andlet Q,,(t):Zr(;) /n, )

i=1

where now i equals the rank of X;. What we will do now is to rotate z into 7, leaving
vectors orthogonal to them unchanged. Define

PRy S Lk U S S L
1_<Z7r> 1_<Z7r>

7 —2). (10)
Thus calculation of new residuals in this case is as simple as in the previous one.
Theorem 5 Khmaladze [10] (i) Covariance matrix of residuals ¢ in (10) is

Eeel =1 — T — 77T,

(ii) The regression process based on e,

i?n,e(x) = % ; eillix, <v)s
has the covariance function
ER, o (ORye(v) = Fa(min(x, )) — Fy()Fu(y) — O (Fa () Qu(Fu () + O(1/n),
As a corollary of (ii), the process IA?n,e, with change of time ¢ = F'(x), converges in

distribution to projection of standard Brownian motion on [0,1] parallel to functions
t and Q:

&m=wm—mm—Qm/mmmx

and statistics based on IA?M, invariant under the time transformation above, will be
asymptotically distribution free.
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Rank-Based Analysis of Multivariate )
Data in Factorial Designs and Its e
Implementation in R

Maximilian Kiefel and Arne C. Bathke

Abstract Recently, a completely nonparametric rank-based approach for inference
regarding multivariate data from factorial designs has been introduced, with theoreti-
cal results for two different asymptotic settings. Namely, for the situation of few factor
levels with large sample sizes at each level, and for the situation of a large number
of factor levels with small sample sizes in each group. In this article, we examine in
detail how this theory can be translated into practical application. A challenge in this
regard has been feasibly implementing consistent covariance matrix estimation in
the setting of small sample sizes. The finite sampling distributions are approximated
using moment estimators. In order to make the results widely available, we intro-
duce the R package nparMD which performs nonparametric analysis of multivariate
data in a two-way layout. Multivariate data in a one-way layout have already been
addressed by the npmyv package. Similar to the latter, within the nparMD package,
there are no assumptions met about the underlying distribution of the multivariate
data. The components of the response vector do not necessarily have to be measured
on the same scale, but they have to be at least binary or ordinal. Due to the factorial
design, hypotheses to be tested include the main effects of both factors, as well as
their interaction. The new R package is equipped with two versions of the testing
procedure, corresponding to the two asymptotic situations mentioned above.

Keywords Nonparametric model - Multivariate test + Rank statistic - MANOVA -
Factorial design + Non-normalitt
1 Introduction

This paper demonstrates how to perform nonparametric inference on multivariate
responses in factorial designs. In order to allow for immediate application to real
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data, we introduce the R [15] package nparMD [10], which performs fully nonpara-
metric, rank-based analysis of multivariate data samples with two fully crossed design
factors. The package is available at the Comprehensive R Archive Network (CRAN)
under https://CRAN.R-project.org/package=nparMD. While the results presented
here pertain to a design with two factors, a generalization to higher-way layouts is
methodologically straightforward but rather technical.

The underlying asymptotic theory which is related to semiparametric
heteroscedastic two-factor MANOVA (see [8]) has largely been described in [1,
2, 5, 9, 12]. Howeyver, translating this theory into applicable procedures requires
three major steps. The first one is to find a feasible way to estimate the covariance
matrix in the setting of several samples with small sample sizes each. The second one
is to devise reasonable finite-sample approximations to the sampling distributions
of the test statistics considered. And the final step is to provide an effective way
for researchers to actually apply these methods to their data—that is, developing an
adequate statistical software package.

As the methods considered here present a generalization of the multivariate non-
parametric inference procedures described by [2—4, 7, 9, 11], the implementation in
R is also partially related to the methods used in the corresponding npmv package
[6] which is designed for comparing multivariate data samples in a one-way layout.
Similarities appear, for example, in terms of the classes of test statistics known as
Wilk’s Lambda (LR), the ANOVA-type or Dempster’s (D), the Lawley—Hotelling
(LH), and the Bartlett—Nanda—Pillai (BNP) criteria which are used frequently in this
context. The nonparametric versions and finite approximations of these test statistics
have been investigated and discussed in the publications cited above.

However, differences between the setting considered in the present paper and the
one-way layout discussed in the above publications appear in many aspects regarding
hypotheses to be tested and their interpretation, estimation of covariance matrices,
asymptotics, and further details including computational challenges. An essential
part of the nonparametric model is their reliance on the nonparametric relative effect
as a statistical functional and the subsequent construction of relative effect estima-
tors which are based on midranks. In contrast to methods where longitudinal data are
examined for simple factor effects [13], the current method is based on variablewise
ranks. This means that separate rankings are performed for each component within
the p-dimensional observation vector X;;, = (Xl(]lr), R ijpr))/, wherei =1,...,a
and j =1, ..., b denote the factor levels, while »r =1, ..., n;; denotes the experi-
mental units (subjects) or replications within a certain factor level combination. The
underlying model states that for each value of i and j, all n;; observations within
the group (i, j) follow the same p-variate distribution X;;. ~ F;;. All observation
vectors X, are also stated to be independent while the components of the response
vector are allowed to be dependent with arbitrary dependence structure. Let I; be
the d x d identity matrix, J, be the d x d matrix of ones, and P; =1, —d~'J,.
Then, the hypotheses of interest can be formulated via the vector of cumulative dis-
tribution functions ¥ = (Fyy, ..., Fip, Fo1, ..., F,) and a suitable contrast matrix
as CF = 0, with the following choices of C.
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1
Cya =P, ® l—]J b (no main effect of factor A)
1
Cp=-J.0P, (no main effect of factor B)
a
Cisp =P, P, (no interaction effect between A and B).

Note that A ® B denotes the Kronecker product and A @ B will denote a block

diagonal matrix with blocks A and B. Let c(x) =0, % lifx <,=,>0. Forl =

1 a b ny
o _ 1L i O yO .
L....,pletR;;, = > + E o E i E o c(X;;, — X;/},,) denote the midrank
amongall N =" | % ?: | Iij observations X 511)1 ey ngn“b which is equal to row-

wise ranking when all observations are arranged into a p x N-matrix. Define

b LAY R
(A) _ L . ’
HY = @—DN? -E,I(R"' R OR;.. —R)

1 a b ~ _ _ _ ~ B B _
(AB) _ . . _R . _R: —R /
HOW = oz 2 2Ry —Re R +RO®Ry — R —R; +R )
i=1 j=1

njj

~ 1 , _
Sij = G —DN? ];(Rijk - Ri)Rijr — Ryj)
1 a b 1~
= E 22 nij ijs

where R;;, = (Rm

ijro

™y R — 1 i D _ 1y R > I
SR Ry = n—”_ i1 Rijes Rio=330_ Ry, R; =
IS Ry, R =230, Z?:l R;;. In the definition of H” and S;;, the sums
of squares and cross-product matrices are divided by N? indicating the use of rank
transforms (RT) Yi(jlz =N"! (Ri(j.), - %) which themselves are related to asymptotic

b
rank transforms (ART) Yl(f: = H(l)(X;jl.)r). Here, HO (x) = % Yo 2:] nij Fl(f) (x)is
i=

defined as average cdf for variable (/) of the response vector. It would also be possible
to directly formulate the test statistics using RT instead of original ranks (Yi(jlg instead
of R[(;)r and without division by N?). However, ranks are more intuitive, due to their
straightforward interpretation.
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Now let v = (A, B, AB). The nparMD package uses the following core test
statistics which are based in construction on the homonymous classical parametric
test statistics that had been proposed for the analysis of multivariate data in the normal
model.

ANOVA Type (Dempster’s) criterion : Tp = tr(HY) /tr(G) (1)
Wilk’s Lambda (Likelihood Ratio) criterion : T; z = log |I + HY' G| )
The Lawley—Hotelling criterion : Ty = tr(HY’G™) 3)

The Bartlett—-Nanda-Pillai criterion : Tgyp = r(HY G-I+ HY’G)7). @)

As non-singularity of G or I + H¥)G~ can not be assumed in general we use a
so-called pseudoinverse, the Moore—Penrose generalized inverse which is defined
as matrix satisfying the Penrose conditions [14]. For each of these types of tests,
nparMD provides two testing procedures tailored to the two different asymptotic
settings mentioned above.

2 Large Sample Sizes n;;

The nparMD package provides a function for the large sample case (at least seven
observations per factor-level combination are recommended), where the hypothe-
ses are tested by nonparametric analogs to Dempster’s ANOVA and the Lawley—
Hotelling criterion. Following the recommendations of [5, 12], the distribution of
the ANOVA-type statistic T is approximated by a central F(7, 7, distribution with
estimated degrees of freedom, as follows.

(a— D2N2tr(Vy)?

fa = N &)
(@bN)2tr(ToVNTaVy)
. (b —12Ntr(Vy)?
o= ——— e ©)
(@abN)2tr(TgVyTsVy)
~ (a—1D2b— D2N2tr(Vy)?
AB = ) N (7)
(@bN)2tr(TagVyTasVy)
~ Nztr(V )2
fo= - - Nl S\’ ®)
N i e e ()
where
1
T,=P,® ZJ;, ®I, ©)

1
Ts = ;Ju P, I, (10)
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Tip=P, 0P, ®1I, (11)
a b

V=N -DDS;- % (12)

i=1 j=1

As fa tends to be very large in this setting, an F Tiu00) approximation is actually
used in the implementation. The distribution of the Lawley—Hotelling type criterion
T, u as defined before is approximated by a central y2-distribution since gTL(lﬁ,)
is approximately X,Zc distributed [8], where g = (a — 1,b— 1, (a — 1)(b — 1)) and
f=g-p

Table 1 shows the results of a simulation study that has been carried out in order
to demonstrate the actual performance of the test under several conditions, that is,
different underlying distributions and different sample size settings. The simulated
power of the test is shown in Fig. 1. Alternatives were formulated as location shifts
for the first level of factor A (see also figure captions for details). Underlying distribu-
tions were homo- and heteroscedastic multivariate normal, as well as multinomial.
Heteroscedasticity and response dependency were modeled by symmetric p x p
covariance matrices X;; with off-diagonal elements p;; = /ij/(1 + i) and diago-
nal elements 1 — p;;.

In order to simulate the power for underlying ordinal response data, includ-
ing dependency of the components, we drew samples from a multinomial distri-
bution with parameters n =5 and p = (0.2,0.3,0.5) (if i > 2) and p = (0.2 —
8p,0.3,0.546p) (if i = 1). §p denotes the probability shift inducing a main effect

Table 1 Simulated & (nominal @ = 5%);a =3;b=2;p =3

Underlying | ¢ T ') Ty T\ TV ')
distribution
7< nij < 12 15 < nij < 20 25 < nij < 30
mvrnorm A 0.043 0.078 0.050 0.065 0.049 0.060
AB 0.047 0.084 0.045 0.062 0.047 0.060
B 0.050 0.077 0.050 0.059 0.047 0.054
ordinal A 0.049 0.082 0.052 0.068 0.050 0.062
AB 0.046 0.077 0.050 0.066 0.046 0.056
B 0.048 0.072 0.049 0.058 0.049 0.054
lognormal A 0.047 0.078 0.051 0.068 0.053 0.063
AB 0.051 0.080 0.050 0.068 0.051 0.059
B 0.050 0.071 0.054 0.066 0.050 0.054
mvrnorm A 0.057 0.081 0.054 0.069 0.060 0.057
(high correla-
tion)*
AB 0.058 0.077 0.058 0.066 0.057 0.055
B 0.053 0.068 0.056 0.063 0.051 0.055

*covariance matrix (oy,,) with diagonal entries 1 and off-diagonal entries 1-0.1-|m — n|



290 M. Kiefel and A. C. Bathke
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Fig. 1 Simulated power

of A. Asshownin Fig. 1 §p ranges from 0 to 0.14. Sample sizes were chosen randomly
between 7 and 12 (discrete uniform distribution).

3 Small Sample Sizes n;;, Large Number a of Samples

The setting described in this section applies to small samples, but with a minimum
requirement of four observations per factor-level combination. Asymptotics in this
situation rely on the number of samples, that is, the number of levels of one factor
(here, without loss of generality, a being large). A semiparametric approach to the
small sample case has been described in [8]. Under suitable centering and scaling, all
four test statistics are shown to have an asymptotic normal distribution for increasing
number of factor levels a. The covariance matrix estimation, which has to be done
for each group individually, is one of the main challenges within the theoretical part
but also in terms of implementation. Bathke and Harrar [1] proposed a consistent
variance and covariance matrix estimator based on the theory of U-statistics. For



Rank-Based Analysis of Multivariate Data in Factorial ... 291

practical reasons it is formulated in terms of RT SA(,'j, = (I?i(jl,), cee I}Z(J":) )—recall that
ART are not observable. Define

1 . . . .
Vij(2) = 4c: Z RYiji, — Yijk) Yiji, — Yijiy) X
il e o s eyt

9(?“/{3 - ffij/q)(?ijk_; - ?ijlq)/s (13)

where J7 is the set of all quadruples « = (ki, k2, k3, k4) without replication, ¢;; =
nij(nij — 1)(n;j — 2)(n;; — 3) and £ a matrix of constants with dimension p x p.
Obviously, this construction requires n;; > 4 while |.%'| is growing very fast for
increasing n;; which might lead to high computational cost in practice. Therefore,
the nparMD package performs a randomized covariance matrix estimation if the
groupsize n;; exceeds a default limit 7,,,, for a certain factor-level combination.
If necessary, 2% is replaced by a random subset £’ C %, where | #”| = cjpax =
Nmax Mmax — 1) (Mpax — 2)(Mmax — 3). Within the simulation study, a default limit
of n,,,x = 6 has proved as an appropriate tradeoff between computational cost and
estimation accuracy. To avoid misunderstanding, this procedure is not equivalent to
drawing 6 observations for the covariance matrix estimation of larger groups since
that would lead to high loss of information. An example to demonstrate the runtime
difference and results in a difference between using full %" and using %" instead
is shown in Table 2. Without explicit functional modeling of the actual runtime with
regard to the sample size, it appeared to improve from approximately exponential to
linear within the simulation study.

The underlying asymptotic theorem of the inference procedure requires cen-
tering and scaling of the four test statistics such that a unified null distribu-
tion can be obtained: \/E(ETgy) +h) = Jatr(HY —G)R + op(1), where £ =
1,2,1,4, h=1,2plog2, p,2p and 2 = (%)I,,, G ,G,G forY =D, LR,
LH, BN P. Then the null distribution is given by the following theorem.

Theorem 1 ([1]) Let v = A, AB. Under the null hypothesis (no  effect) and for

any fixed matrix of constants 2

JatrHY) - G)R 11;1(.9) 4 N(0,1) as a — oo and n;; and b bounded,
Fvi(2) + 55} when ¥ = AB

2{v1(2) + v2(R2)} when ¥ = A.

Here, vi(2) = & Y0 Y0, s tr (1 (2)),

_ 1 a b tr(828;;28,;1))
and vy(R2) = - >, Z#j, T i

2 _
where Tj, =

Figure 2 shows the actual size of « (desired size o = 0.05) of the test for different
values of the number a of factor levels when Theorem 1 is applied.

Figure 3 shows the simulated power of the test under true alternatives. 1 denotes
the p-dimensional vector of ones. The true main effect of factor A is modeled by mul-
tivariate normal distributions of the form N (1 - §, Xj;) (ifi < 10) and N(—1 - §, X;;)
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Table 2 Example: elapsed time and results difference (error)

nj tf t3 Error Tp Error Tpg | Error Ty | Error Tgyp
<6 0.32 0.28 0 0 0 0

<10 2.64 0.42 0.00012 0.00137 0.00022 0.00056
<15 14.12 0.64 0.00062 0.00044 0.00026 0.00014
<20 45.66 1.03 0.00075 0.00021 <1073 0.00023

* 11 versus r, show the elapsed time (stated in seconds) of the testing procedure using full # (1)
versus % (t) with n,,4x = 6
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Fig. 2 Simulated o under null hypothesis (b = 3, p = 3,4< n;; < 10)

(else) with location shift §, where X;;, as defined above, induces heteroscedasticity
and response dependency. A true interaction is simulated in a similar way, that is
N@1-$, %) (ifi < 10andifj < 2) and N(—1 - §, X;;) (else). As shown in Fig. 3, §
ranges from 0 to 0.5 It appeared that X;; did not affect the actual size of the test when
there was no true effect in terms of location shift. See Fig. 2 ata = 20. Again, to simu-
late the power for underlying ordinal response data, including dependency of the com-
ponents, we drew samples from a multinomial distribution with parametersn = 5 and
p=1(0.2-6p,03,0.5+3dp) (if i <10) and p = (0.2+46p,0.3,0.5 — 5p) (else)
with §p denoting a shift in probability again. In order to induce an interaction effect
the setting is changed to p = (0.2 —§p, 0.3,0.5+46p) (if i < 10 and j < 2) and
p =(0.246p,0.3,0.5 — ép) (else).
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Fig. 3 Simulated Power of all four test statistics (@ = 20, b =3, p = 3,4 < n;; < 10)

Within this setting of small sample sizes, but many samples (large a setting),
the null hypothesis “no main effect of factor B” is not considered explicitly, as this
situation would actually correspond to having several observations for each level
of factor B. Thus, by relabeling the factors, it fits into the previously discussed
asymptotic framework.

4 Conclusion

Nonparametric rank-based inference procedures for multivariate data in two-way
factorial designs have been developed by adapting theoretical results from [1]. This
includes the development of an R package nparMD. Note that the response variables
are not required to be metric—in fact, a mix of metric, ordinal, and binary responses
is just fine.

At a glance, the R package nparMD consists of two major functions (nparml
and nparms), and it is designed to cover a large number of situations in which
multivariate data occur, as, for example, in many biological, biomedical, behavioral,
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and clinical studies. The function nparml should be used for larger samples, that
is, at least seven observations per factor-level combination according to recommen-
dations and simulation results. In case of smaller samples, the nparms function can
be used—provided that, with regard to one of the explanatory factors, there are many
samples available.

Future versions of the package will include the Wilk’s Lambda and the Bartlett—
Nanda—Pillai criteria also for the large sample case as well as for explicitly testing
the main effect of factor B in the small sample case.
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Tests for Independence Involving )
Spherical Data i

Pierre Lafaye De Micheaux, Simos Meintanis, and Thomas Verdebout

Abstract We propose consistent procedures for testing the independence of circular
variables based on the empirical characteristic function. The new methods are first
specified for observations lying on a torus, i.e., for bivariate circular data, but it
is shown that these methods can readily be extended to arbitrary dimension. The
large-sample behavior of the test statistic is investigated under fixed alternatives.
Finite-sample results are also presented.

Keywords Empirical distribution function - Directional statistics + L2-type test

1 Introduction

Circular distributions naturally arise in many areas of applied research such as biol-
ogy, meteorology, animal behavior, geology, etc. Realizations of such random vectors
are interpreted as directions, and analogously to the problem with conventional mul-
tivariate random vectors there exist circumstances where two or more directions may
or may not be independent. An obvious way to go about testing independence is to u