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Preface

This book provides a selection of papers developed from talks presented at the

Fourth Conference of the International Society for Nonparametric Statistics

(ISNPS), held in Salerno (Italy) June 11–15, 2018. The papers cover a wide

spectrum of subjects within nonparametric and semiparametric statistics, including

theory, methodology, applications, and computational aspects. Among the most

common and relevant topics in the volume, we mention nonparametric curve

estimation, regression smoothing, models for time series and more generally

dependent data, varying coefficient models, symmetry testing, robust estimation,

rank-based methods for factorial design, nonparametric and permutation solution

for several different data, including ordinal data, spatial data, survival data and the

joint modeling of both longitudinal and time-to-event data, permutation and

resampling techniques, and practical applications of nonparametric statistics.

ISNPS was founded in 2010 “to foster the research and practice of nonpara-

metric statistics, and to promote the dissemination of new developments in the field

via conferences, books, and journal publication”. ISNPS had a distinguished

Advisory Committee that included R. Beran, P. Bickel, R. Carroll, D. Cook, P. Hall.

R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosen-blatt, G. Roussas, T.

SubbaRao, and G. Wahba; an Executive Committee that comprised of M. Akritas,

A. Delaigle, S. Lahiri and D. Politis; and a Council that included P. Bertail, G.

Claeskens, R. Cao, M. Hallin, H. Koul, J.-P. Kreiss, T. Lee, R. Liu, W. Gonzáles

Maintega, G. Michailidis, V. Panaretos, S. Paparoditis, J. Racine, J. Romo, and Q.

Yao.

The 4th ISNPS conference focused on recent advances and trends in several

areas of nonparametric statistics. It included 12 plenary and special invited sessions,

69 invited sessions, 30 contributed sessions, with about 450 participants from all

over the world, thus promoting and facilitating the exchange of research ideas and

collaboration among scientists and contributing to the further development of the

field.

We would like to thank Dr. Veronika Rosteck and Dr. Tatiana Plotnikova of

Springer for their support in this project. Finally, we are also extremely grateful to

all Referees who reviewed the papers included in this volume, giving a constructive

v



feedback on a tight schedule for timely publication of the proceedings. Their

valuable contribution and their efforts significantly improved the quality of this

volume.

Co-editors also wish to thank Chiara Brombin for her great commitment and

support in coordinating and managing the referring and editorial process.

Salerno, Italy Michele La Rocca

Rome, Italy Brunero Liseo

Vicenza, Italy Luigi Salmaso

Co-Editors of the book

and Co-Chairs of the Fourth ISNPS Conference
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Portfolio Optimisation via Graphical

Least Squares Estimation

Saeed Aldahmani, Hongsheng Dai, Qiao-Zhen Zhang,

and Marialuisa Restaino

Abstract In this paper, an unbiased estimation method called GLSE (proposed by

Aldahmani and Dai [1]) for solving the linear regression problem in high-dimensional

data (n < p) is applied to portfolio optimisation under the linear regression frame-

work and compared to the ridge method. The unbiasedness of method helps in

improving the portfolio performance by increasing its expected return and decreas-

ing the associated risk when n < p, thus leading to a maximisation of the Sharpe

ratio. The verification of this method is achieved through conducting simulation and

data analysis studies and comparing the results with those of ridge regression. It is

found that GLSE outperforms ridge in portfolio optimisation when n < p.

Keywords Graphical model · Linear regression · Ridge regression

1 Introduction

In the world of finance, investors usually seek to construct a portfolio that maximises

expected returns and minimises their risk through diversifying and computing the

correct weights of the assets in that portfolio. This weights computation can be

S. Aldahmani (B)

Department of Statistics, College of Business and Economics, United Arab Emirates University,

Al Ain, UAE

e-mail: saldahmani@uaeu.ac.ae

H. Dai

Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK

e-mail: hdaia@essex.ac.uk

Q.-Z. Zhang

Institute of Statistics, Nankai University, Tianjin, China

e-mail: zhangqz@nankai.edu.cn

M. Restaino

University of Salerno, Fisciano, Italy

e-mail: mlrestaino@unisa.it

© Springer Nature Switzerland AG 2020

M. La Rocca et al. (eds.), Nonparametric Statistics, Springer Proceedings

in Mathematics & Statistics 339, https://doi.org/10.1007/978-3-030-57306-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57306-5_1&domain=pdf
mailto:saldahmani@uaeu.ac.ae
mailto:hdaia@essex.ac.uk
mailto:zhangqz@nankai.edu.cn
mailto:mlrestaino@unisa.it
https://doi.org/10.1007/978-3-030-57306-5_1


2 S. Aldahmani et al.

achieved by what is technically known as portfolio optimisation, a problem that

was addressed by Markowitz [14] through utilising a model known as Markowitz

theory. The Markowitz theory for portfolio optimisation stipulates selecting portfolio

weights w that minimise the risk (variance) of the portfolio return for a predetermined

target return. This idea assumes that the future performance of asset returns’ mean

μ and variance are known. However, in practice, these two factors are unknown and

should be estimated using a historical dataset. To select an optimal portfolio, investors

need to estimate the covariance matrix � of the returns and take its inverse. This is a

typical inverse problem if the number of assets p is too large in relation to the return

observations n; i.e. the inverse of the covariance matrix of the returns is singular.

Therefore, many regularisation methods have been proposed in the literature to find

covariance matrices and their inverses, such as in Bickel and Levina [2], Huang et

al. [10], Wong et al. [19]. However, the estimates of these methods are biased, which

might give undesirable weights for some higher return assets in portfolio.

Britten-Jones [3] utilised regression in order to find the portfolio weights as fol-

lows:

w =
β̂

β̂
�
1v

, (1)

where β̂ is the ordinary least squares (OLS) estimate of the coefficient parameter β

for the linear regression model

y = xβ + �, (2)

where the response y = 1v.

When n < p, the popular ordinary least square method (OLS) becomes ineffec-

tive, and this has triggered the proposal of many methods to solve this issue, such

as Least Absolute Shrinkage and Selection Operator (LASSO) [18], Least Angle

Regression (LARS) [7] and ridge regression [9]. However, all these methods suffer

from the limitation of giving biased estimates. In addition, LASSO and LARS suffer

from the problem of not selecting more than n covariates [20] and giving a sparse

portfolio. Another problem with some of these methods is over-shrinking the final

regression coefficients [16], which might lead to inaccuracy in portfolio weights.

Apart from these methods, some other related approaches could be found in Can-

des and Tao [4], Meinshausen and Yu [15], DeMiguel et al. [6], Still and Kondor

[17], Carrasco and Noumon [5], Fastrich et al. [8] and Lin et al. [12]. These methods,

however, still give biased estimates and perhaps produce inaccurate weights for some

higher return and less risk assets in the portfolio.

Aldahmani and Dai [1] proposed an unbiased estimation method called GLSE

which can provide unbiased estimates for regression coefficients in high-dimensional

data (n < p). The GLSE method is closely related to the theory of graphical models,
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where least square estimation in conjunction with undirected Gaussian graphical

models is implemented.

GLSE can give unbiased coefficient estimates for all assets, which helps the low-

risk and high return assets maintain their correct weights in the portfolio and conse-

quently assists in maximising their expected returns and lower the associated risk.

Such an advantage will lead to increasing the Sharpe ratio and the expected rate

of returns and decreasing the risk of the portfolio for both in-and-out-of-sample

periods. This is particularly important upon comparison with other regularisation

methods such as ridge, where the weights of low-risk and high return assets may be

sharply reduced due to the method’s biasedness, thus causing the portfolio’s expected

returns to fall down and its risk to rise. Moreover, unlike other regularisation methods

which produce sparse portfolios(such as LASSO and LARS), GLSE and ridge share

the advantage of generating diversified portfolios across a large number of stocks, as

they produce non-sparse portfolios. This diversification of the portfolio leads to low-

ering the risk [13] due to the fact that when one or more sectors of the economy fail

or decline, the rest of the sectors can then mitigate the significant impact of the loss

caused by market fluctuations. However, due to the biasedness of ridge regression,

the weights of some low-risk and high return assets may be sharply reduced, which

may deprive ridge of its ability to reduce the risk through diversifying the assets.

This limitation can clearly be overcome by GLSE due to its unbiasedness feature.

In the rest of the paper, graph theory and Matrices are given in Sect. 2. Section 3

presents the main methodology of GLSE and its properties. Section 4 provides the

algorithm of graph structure selection. Simulation studies are given in Sect. 5, and a

real data analysis is presented in Sect. 6. The study is concluded in Sect. 6.

2 Graph Theory and Matrices

2.1 Graph Theory

An undirected graph G consists of two sets, a set P and a set E . The set P denotes

the vertices representing variables and E is the set of edges (a subset of P × P)

connecting the vertices [11]. The elements in the set P are usually natural numbers,

i.e. P = 1, 2, . . . , p, representing the labels of random variables. If all the pairs of

vertices in P in a graph G are joined by an edge, then the graph is complete. If

A ⊆ P , the subset A induces a subgraph G A = (A, EA), where EA = E + (A × A).

The subset graph G A is complete if it induces a complete subgraph from G. This

subgraph is maximal if it cannot be extended by including one more neighbouring

vertex. A complete subset that is maximal is called a clique.
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2.1.1 Decomposition of a Graph

A triple (A, B, C) of disjoint subsets of the vertex set P of an undirected graph G is

said to form a decomposition of G if P = A , B , C and the following conditions

hold [11]:

• B separates A from C ;

• B is a complete subset of P .

An undirected graph G is considered as decomposable if it holds one of the

following:

• Graph g is complete.

• There is a proper decomposition (A, B, C) into decomposable subgraphs gAB and

gBC where B separates A from C .

Consider a sequence of sets C1, . . . , Cq that are the subsets of the vertex set P of

an undirected graph g such that C1 , · · · , Cq = P . If the following holds, then the

given sequence is said to be a perfect sequence [11]:

S j = C j + (C1 , C2 , · · · , C j−1) ⊆ Ci ,

where j = 2, . . . , q and i ∈ {1, . . . , j − 1}. The sets S j are the separators. These

orderings, if they exist, might not be unique.

2.2 Matrices

A p × p matrix F can be written as (Fk j )k, j∈P . F ∈ R p represent a vector. Denote

FAB = (Fk j )k∈A, j∈B , a submatrix of F. Denote [FAB]� as a p × p-dimensional matrix

obtained by filling up 0s, with

(

[FAB]�
)

jk
=

{

F jk if j ∈ A, k ∈ B

0 otherwise.
(3)

Similarly, let xA is a matrix only having covariates with indices in set A and

ssdA = x�
AxA. Then [(ssdA)−1]� represents a p × p-dimensional matrix obtained

by filling up 0s, with

(

[(ssdA)−1]�
)

jk
=

{
(

(ssdA)−1
)

jk
if j, k ∈ A

0 otherwise.
(4)
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3 The Idea of GLSE

Suppose that the graph G is decomposable and let C denote the set of cliques and S

denote the set of separators [1]. Then the GLSE is given as follows:

β̂ =

[

∑

C∈C

[(ssdC)−1]� −
∑

S∈S

[(ssdS)
−1]�

]

x� y. (5)

For the existence of the GLSE, the following condition must hold

Condition 3.1 The sample size n > maxC∈C{|C |}.

For unbiasedness of β̂, based on Aldahmani and Dai [1], the following condition is

imposed:

Condition 3.2 Write the cliques and separators of g in the perfect ordering, as

C1, · · · , Cq and S2, · · · , Sq , such that

xC1\S2
= xS2

· rS2,C1\S2
+ ξ 1, E(ξ 1) = 0,

xCk\Sk
= xSk

· rSk ,Ck\Sk
+ ξ k, E(ξ k) = 0, k = 2, · · · , q,

where rSk ,Ck\Sk
are constant matrices with dimensions |sk × (ck − sk)|;

Under Conditions 3.1 and 3.2, Aldahmani and Dai [1] show that the above esti-

mator is unbiased;

E(β̂) = β.

4 Model Selection

A stepwise selection algorithm has been used by Aldahmani and Dai [1] to find

which graph G is the best for the data. The method considers adding/deleting edges

one by one to/from the current graph. When an edge under consideration is not in

the current graph, it will be added if the addition makes an improvement in terms of

the predetermined criteria; otherwise it will not be added. The same applies to the

case of edge deletion. According to Aldahmani and Dai [1], the best graph is given

by minimising a target function T(β, g, λg):

(β̂, ĝ, λ̂g) = arg min
β,g∈G,λg

T(β, g, λg) (6)

T(β, g, λg) = || y − xβ||2 + λg|Eg|, (7)
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where G is the set of all possible graphs, λg is a penalty term and |Eg| is the number

of edges in graph G. The following pseudocode is the algorithm used by Adlahmani

and Dai [1] to find the optimal graph that best fits the data:

Algorithm 1 Pseudocode of the GLSE graph selection

1: Start graph g = (P, E), which can be an empty (or a given decomposable) graph such that

n > maxC∈C |C | .

2: Generate all possible graphs, gi , such that there is only one edge difference between gi and the

current graph g. All such gi are decomposable and n > maxC∈C |C |.

3: Find the graph g∗
i and the associated β̂ such that g∗

i minimises the target function T(.) (given in

(7)).

4: Go to step 2 with the selected graph g∗
i and iterate until the best one is found.

5: Output g and β̂.

It is worth noting that step 2 of Algorithm 1 can be improved significantly via

parallel computation.

5 Simulation Study

The aims of this simulation study are to investigate the performance of GLSE in

constructing a saturated optimal portfolio compared to ridge. The graph structure for

the covariates used in generating the dataset under this simulation study is presented

in Fig. 1.

This simulation involves a total of n = 48 observations corresponding to p = 60

variables derived from multivariate normal distribution, with mean 0.01 and variance

covariance matrix ", where 36 observations are used for the in-sample period through

estimating the portfolio’s weight and performance (Sharpe ratios, expected returns

and risk), and the remaining observations are used to find the performance of the

portfolio for the out-of-sample period. The true weight of the portfolio w is derived

based on the true covariance matrix ".

Table 1 gives the means of 500 simulated data for the in-and-out-of-sample port-

folio’s Sharpe ratios, expected returns and risk. It shows that out of the 500 simulated

data, the GLSE yields higher means of the portfolio’s Sharpe ratio and lower risk

than the ridge does for the out-of-sample period. However, for the in-sample period,

the ridge gives higher means of the portfolio’s expected returns than the GLSE does.

It should be noted that the ridge portfolio’s risk is very high compared to this under

the GLSE. In addition, the in-sample portfolio’s Sharpe ratio is negative for the ridge

but positive for the GLSE, which is desirable in finance.

The computational burden for the proposed algorithm is not too heavy with modern

parallel computing technology. The computational times for one run of the above
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Fig. 1 Graph structure for covariates under the simulation study

Table 1 The in-and-out-of-sample portfolio’s Sharpe ratios, expected returns and risk from the

simulated data

Ridge GLSE

In sample Out of sample In sample Out of sample

Sharpe ratio −0.007 0.005 0.733 0.570

Expected returns 0.149 0.030 0.127 0.107

Portfolio’s risk 1.282 1.236 0.526 0.516
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Table 2 Portfolio size and in- and out-of sample portfolio’s Sharpe ratios, expected returns and

risk find by the ridge and GLSE

Portfolio size Methods Sharpe ratio Expected

returns

Portfolio’s

risk

150 stocks (in sample) Ridge 0.719 0.097 0.134

GLSE 2.023 0.061 0.030

150 stocks (out of sample) Ridge −0.074 −0.010 0.135

GLSE 0.117 0.015 0.130

200 stocks (in sample) Ridge 0.792 0.056 0.071

GLSE 0.963 0.046 0.047

200 stocks (out of sample) Ridge 0.150 0.013 0.086

GLSE 0.224 0.015 0.068

generated datasets for both serial and parallel computing are considered. It is noted

that on a machine with 8 GB of memory and 3.60 GHz processor, the time taken

is approximately 20 min. When the parallel processing was used, with 5 cores, the

computational time reduced to approximately 2 min.

6 Data Analysis

Monthly returns of 875 stocks listed on the New York Stock Exchange (NYSE) cov-

ering the period from 02/12/2007 to 02/12/2017 are downloaded from Datastream.

Out of these stocks, 150 and 200 stocks are selected at random. Then, ridge and

GLSE are applied to construct two portfolios for the selected stocks. The in-sample

period for the above constructed portfolios is from 02/12/2007 to 01/12/2016. The

out-of-sample period, on the other hand, is from 02/12/2016 to 01/12/2017. For ridge,

cross validation is used for obtaining the penalty parameter. The in-and-out-of sam-

ple average returns, risk and Sharpe ratio are used to evaluate the performance of the

obtained portfolios. The results are shown in Table 2 and they reveal that the GLSE

method performs better than ridge in term of average returns, risk and the Sharpe

ratio of portfolios for both in-and-out-of-sample periods.

7 Conclusion

The unbiased GLSE method was used in this paper to construct a saturated optimal

portfolio in high-dimensional data (n < p). The results of applying this method were

compared to those of ridge and they showed that GLSE outperforms ridge in terms of

its ability to reduce the portfolio’s risk and increase its expected returns, consequently

maximising the Sharpe ratio. While both ridge and GLSE have practical implications
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in the world of finance in that they both lead to a non-sparse portfolio with diversified

assets, the GLSE overcomes ridge’s shortcoming where the weights of low-risk and

high return assets may be reduced due to its biasedness. Due to its unbiasedness,

GLSE thus maintains the higher weights of low-risk and high return assets, which,

as a result, minimises the chances of risk increase and income reduction in the

portfolio.
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Change of Measure Applications in
Nonparametric Statistics

Mayer Alvo

Abstract Neyman [7] was the first to propose a change in measure in the context of

goodness of fit problems. This provided an alternative density to the one for the null

hypothesis. Hoeffding introduced a change of measure formula for the ranks of the

observed data which led to obtaining locally most powerful rank tests. In this paper,

we review these methods and propose a new approach which leads on the one hand

to new derivations of existing statistics. On the other hand, we exploit these methods

to obtain Bayesian applications for ranking data.

Keywords Ranks · Change of measure · Bayesian methods

Mathematics Subject Classification (2010) 62F07 · 62G86 · 62H11

1 Introduction

In a landmark paper, [7] considered the nonparametric goodness of fit problem and

introduced the notion of smooth tests of fit by proposing a parametric family of

alternative densities to the null hypothesis. In this article, we describe a number of

applications of this change of measure. Hence, we obtain a new derivation of the

well-known Friedman statistic as the locally most powerful test in an embedded

family of distributions.

2 Smooth Models

Suppose that the probability mass function of a discrete k-dimensional random vector

X is given by
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π
�

x j ;θ
�

= exp
�

θ�x j − K (θ)
�

p j , j = 1, . . . , m, (1)

where x j is the j th value of X and p =
�

p j

��
denotes the vector of probabilities

when θ = θ0. Here K (θ) is a normalizing constant for which

�

j

π
�

x j ;θ
�

= 1.

We see that the model in (1) prescribes a change of measure from the null to the

alternative hypothesis. Let T = [xi , . . . , xm] be the k × m matrix of possible vector

values of X . Then under the distribution specified by p,

� ≡ Cov p (X) = E p

�

(X − E [X]) (X − E [X])�
�

(2)

= T (diag ( p)) T � − (T p) (T p)� , (3)

where the expectations are with respect to the model (1). This particular situation

arises often when dealing with the nonparametric randomized block design. Define

π (θ) = (π (x1;θ) , . . . ,π (xm;θ))�

and suppose that we would like to test

H0 : θ = 0 vs H1 : θ �= 0.

Letting N denote a multinomial random vector with parameters (n,π (θ)), we see

that the log likelihood as a function of θ is, apart from a constant, proportional to

m
�

j=1

n j log
�

π
�

x j ;θ
��

=
m
�

j=1

n j

�

θ�x j − K (θ)
�

= θ�

⎛

¿

m
�

j=1

n j x j

À

⎠ − nK (θ).

The score vector under the null hypothesis is then given by

U (θ; X) =
m
�

j=1

N j

#

1

π j (θ)

∂π j (θ)

∂θ

"

= T (N − n p) .

Under the null hypothesis,

E [U (θ; X)] = 0,
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and the score statistic is given by

1

n

�

T (N − n p)
��

�
−1

�

T (N − n p)
�

= 1

n
(N − n p)�

�

T �
�

−1T
�

(N − n p)
L−→ χ2

r ,

(4)

where r = rank
�

T �
�

−1T
�

.

In the one-sample ranking problem whereby a group of judges are each asked to

rank a set of t objects in accordance with some criterion, let P =
�

ν j , j = 1, . . . , t !
�

be the space of all t ! permutations of the integers 1, 2, . . . , t and let the probability

mass distribution defined on P be given by

p = (p1, . . . , pt !) ,

where p j = Pr
�

ν j

�

. Conceptually, each judge selects a ranking ν in accordance

with the probability mass distribution p. In order to test the null hypothesis that each

of the rankings are selected with equal probability, that is,

H0 : p = p0 vs H1 : p �= p0, (5)

where p0 = 1
t !1, define a k-dimensional vector score function X (ν) on the space P

and following (1), let its smooth probability mass function be given as

π(x j ;θ) = exp
�

θ�x j − K (θ)
� 1

t ! , j = 1, . . . , t ! (6)

where θ is a t-dimensional vector, K (θ) is a normalizing constant and x j is a t-

dimensional score vector to be specified in (8). Since

t !
�

j=1

π
�

x j ;θ
�

= 1

it can be seen that K (0) = 0 and hence the hypotheses in (5) are equivalent to testing

H0 : θ = 0 vs H1 : θ �= 0. (7)

It follows that the log likelihood function is proportional to

l (θ) ∼ n
�

θ�η̂ − K (θ)
�

,

where

η̂ =

⎡

£

t !
�

j=1

x j p̂nj

¤

⎦ , p̂nj = n j

n
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and n j represents the number of observed occurrences of the ranking ν j . The Rao

score statistic evaluated at θ = 0 is

U (θ; X) = n
∂

∂θ

�

θ�η̂ − K (0)
�

= n

�

η̂ − ∂

∂θ
K (0)

�

,

whereas the information matrix is

I(θ) = −n

�

∂2

∂θ2
K (0)

�

.

The test then rejects the null hypothesis whenever

n2

�

η̂ − ∂

∂θ
K (0)

��
I−1 (0)

�

η̂ − ∂

∂θ
K (0)

�

> χ2
f (α) ,

where χ2
f (α) is the upper 100(1 − α) % critical value of a chi square distribution

with f = rank(I (θ)) degrees of freedom. We note that the test just obtained is the

locally most powerful test of H0.

Specializing this test statistic to the Spearman score function of adjusted ranks

x j =
#

ν j (1) − t + 1

2
, . . . , ν j (t) − t + 1

2

"�
, j = 1, . . . , t !, (8)

we can show that the Rao score statistic is the well-known Friedman test [5].

W = 12n

t (t + 1)

t
�

i=1

�

R̄i − t + 1

2

�2

, (9)

where R̄i is the average of the ranks assigned to the i th object.

2.1 The Two-Sample Ranking Problem

The approach just described can be used to deal with the two-sample ranking problem

assuming again the Spearman score function. Let X1, X2 be two independent random

vectors whose distributions as in the one sample case are expressed for simplicity as

π
�

x j ;θl

�

= exp
�

θ�
l x j − K (θl)

�

pl ( j) , j = 1, . . . , t !, l = 1, 2,
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where θl = (θl1, . . . , θlt )
� represents the vector of parameters for population l. We

are interested in testing

H0 : θ1 = θ2 vs H1 : θ1 �= θ2.

The probability distribution {pl ( j)} represents an unspecified null situation. Define

p̂l =
#

nl1

nl

, . . . ,
nlt !
nl

"�
,

where ni j represents the number of occurrences of the ranking ν j in sample l.

Also, for l = 1, 2, set
�

j ni j ≡ nl , γ = θ1 − θ2 and

θl = m + blγ,

where

m = n1θ1 + n2θ2

n1 + n2

, b1 = n2,

n1 + n2

, b2 = − n1

n1 + n2

.

Let �l be the covariance matrix of X l under the null hypothesis defined as

�l = �l − pl p�
l ,

where �l = diag (pl (1) , . . . , pl (t !)) and pl = (pl (1) , . . . , pl (t !))�. The loga-

rithm of the likelihood L as a function of (m,γ) is proportional to

log L (m,γ) ∼
2

�

l=1

t !
�

j=1

nl j

�

(m + blγ)� x j − K (θl)
�

.

In order to test

H0 : θ1 = θ2 vs H1 : θ1 �= θ2

we calculate the Rao score test statistic which is given by

n
�

T S p̂1 − T S p̂2

��
D̂
�

T S p̂1 − T S p̂2

�

. (10)

It can be shown to have asymptotically a χ2
f whenever nl/n → λl > 0 as n → ∞,

where n = n1 + n2. Here D̂ is the Moore–Penrose inverse of T S�̂T �
S and �̂ is a

consistent estimator of � = �1

λ1
+ �2

λ2
and f is the rank of D̂, as required.
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2.2 The Use of Penalized Likelihood

In the previous sections, it was possible to derive test statistics for the one and

two-sample ranking problems by means of the change of measure paradigm. This

paradigm may be exploited to obtain new results for the ranking problems. Specifi-

cally, we consider a negative penalized likelihood function defined to be the negative

log likelihood function subject to a constraint on the parameters which is then mini-

mized with respect to the parameter. This approach yields further insight into ranking

problems.

For the one-sample ranking problem, let

Λ(θ, c) = −θ�

⎡

£

t !
�

j=1

n j x j

¤

⎦ + nK (θ) + λ

# t
�

i=1

θ2
i − c

"

(11)

represent the penalizing function for some prescribed values of the constant c. We

shall assume for simplicity that
�

�x j

�

� = 1. When t is large (say t ≥ 10), the compu-

tation of the exact value of the normalizing constant K (θ) involves a summation of

t ! terms. [6] noted the resemblance of (6) to the continuous von Mises-Fisher density

f (x;θ) = "θ" t−3
2

2
t−3

2 t !I t−3
2

("θ")"( t−1
2

)
exp

�

θ�x
�

,

where "θ" is the norm of θ and x is on the unit sphere and Iυ(z) is the modified

Bessel function of the first kind given by

Iυ(z) =
∞
�

k=0

1

"(k + 1)"(υ + k + 1)

� z

2

�2k+ν

.

This seems to suggest the approximation of the constant K (θ) by

exp (−K (θ)) ≈ 1

t ! · "θ" t−3
2

2
t−3

2 I t−3
2

("θ")"( t−1
2

)
.

In [1], penalized likelihood was used in ranking situations to obtain further insight

into the differences between groups of rankers.

3 Bayesian Models for Ranking Data

The fact that the model in (1) is itself parametric in nature leads one to consider

an extension to Bayesian considerations. Let R = (R(1), . . . , R(t))� be a ranking t

items, labeled 1, . . . , t and define the standardized rankings as
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y =
#

R − t + 1

2
1

"

/

�

t (t2 − 1)

12
,

where y is the t × 1 vector with " y" ≡ √
y� y = 1. We consider the following more

general ranking model:

π( y|κ,θ) = C(κ,θ) exp
�

κθ� y
�

,

where the parameter θ is a t × 1 vector with "θ" = 1, parameter κ ≥ 0, and C(κ,θ)

is the normalizing constant. This model has a close connection to the distance-based

models considered in [3]. Here, θ is a real-valued vector, representing a consensus

view of the relative preference of the items from the individuals. Since both "θ" = 1

and " y" = 1, the term θ� y can be seen as cos φ where φ is the angle between the

consensus score vector θ and the observation y. The probability of observing a rank-

ing is proportional to the cosine of the angle from the consensus score vector. The

parameter κ can be viewed as a concentration parameter. For small κ, the distribution

of rankings will appear close to a uniform whereas for larger values of κ, the distri-

bution of rankings will be more concentrated around the consensus score vector. We

call this new model an angle-based ranking model.

To compute the normalizing constant C(κ,θ), let Pt be the set of all possible

permutations of the integers 1, . . . , t . Then

(C(κ,θ))−1 =
�

y∈P

exp
�

κθT y
�

. (12)

Notice that the summation is over the t ! elements in P . When t is large, say greater

than 15, the exact calculation of the normalizing constant is prohibitive. Using the fact

that the set of t ! permutations lie on a sphere in (t − 1)-space, our model resembles

the continuous von Mises-Fisher distribution, abbreviated as vM F(x|m,κ), which is

defined on a (p − 1) unit sphere with mean direction m and concentration parameter

κ:

p(x|κ, m) = Vp(κ) exp(κm�x),

where

Vp(κ) = κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

,

and Ia(κ) is the modified Bessel function of the first kind with order a. Consequently,

we may approximate the sum in (12) by an integral over the sphere:

C(κ,θ) " Ct (κ) = κ
t−3

2

2
t−3

2 t !I t−3
2

(κ)"( t−1
2

)
,
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where "(.) is the gamma function. In ([9], it is shown that this approximation is

very accurate for values of κ ranging from 0.01 to 2 and t ranging from 4 to 11.

Moreover, the error drops rapidly as t increases. Note that this approximation allows

us to approximate the first and second derivatives of log C which can facilitate our

computation in what follows.

3.1 Maximum Likelihood Estimation (MLE) of Our Model

Let Y =
�

y1, . . . , yN

�

be a random sample of N standardized rankings drawn from

p( y|κ,θ). The log likelihood of (κ,θ) is then given by

l(κ,θ) = n log Ct (κ) +
n
�

i=1

κθ� yi . (13)

Maximizing (13) subject to "θ" = 1 and κ ≥ 0, we find that the maximum likelihood

estimator of θ is given by θ̂M L E =
�N

i=1 yi
�

�

�

�N
i=1 yi

�

�

�

, and κ̂ is the solution of

At (κ) ≡ −C
�
t (κ)

Ct (κ)
=

I t−1
2

(κ)

I t−3
2

(κ)
=

�

�

�

�N
i=1 yi

�

�

�

N
≡ r. (14)

A simple approximation to the solution of (14) following [4] is given by

κ̂M L E = r(t − 1 − r2)

1 − r2
.

A more precise approximation can be obtained from a few iterations of Newton’s

method. Using the method suggested by [8], starting from an initial value κ0, we can

recursively update κ by iteration:

κi+1 = κi − At (κi ) − r

1 − At (κi )2 − t−2
κi

At (κi )
, i = 0, 1, 2, . . . .

3.2 One-Sample Bayesian Method with Conjugate Prior

Taking a Bayesian approach, we consider the following conjugate prior for (κ,θ) as

p(κ,θ) ∝ [Ct (κ)]ν0 exp
�

β0κm�
0θ
�

, (15)
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where"m0" = 1,ν0,β0 ≥ 0. Given y, the posterior density of (κ,θ) can be expressed

by

p(α,θ| y) ∝ exp
�

βκm�θ
�

Vt (βκ) · [Ct (κ)]N+ν0

Vt (βκ)
,

where m =
�

β0m0 +
�N

i=1 yi

�

β−1,β =
�

�

�
β0m0 +

�N
i=1 yi

�

�

�
. The posterior density

can be factored as

p(κ, θ| y) = p(θ|κ, y)p(κ| y), (16)

where p(θ|κ, y) ∼ vM F(θ|m,βκ) and

p(κ| y) ∝ [Ct (κ)]N+ν0

Vt (βκ)
=

κ
t−3

2
(υ0+N ) I t−2

2
(βκ)

�

I t−3
2

(κ)

�ν0+N

(βκ)
t−2

2

.

The normalizing constant for p(κ| y) is not available in closed form. For reasons

explained in [9], we approximate the posterior distribution using the method of

variational inference (abbreviated VI from here on). Variational inference provides

a deterministic approximation to an intractable posterior distribution through opti-

mization. We first adopt a joint vMF- Gamma distribution as the prior for (κ,θ):

p(κ,θ) = p(θ|κ)p(κ)

= vM F(θ|m0,β0κ) Gamma(κ|a0, b0),

where Gamma(κ|a0, b0) is the Gamma density function with shape parameter a0

and rate parameter b0 (i.e., mean equal to a0

b0
), and p(θ|κ) = vM F(θ|m0,β0κ). The

choice of Gamma(κ|a0, b0) for p(κ) is motivated by the fact that for large values

of κ, p(κ) in (15) tends to take the shape of a Gamma density. In fact, for large

values of κ, I t−3
2

(κ) " eκ
√

2πκ
, and hence p(κ) becomes the Gamma density with

shape (ν0 − 1) t−2
2

+ 1 and rate ν0 − β0:

p(κ) ∝ [Ct (κ)]ν0

Vt (β0κ)
∝ κ(ν0−1) t−2

2 exp(−(ν0 − β0)κ).

Using the variational inference framework, [9] showed that the optimal posterior

distribution of θ conditional on κ is a von Mises-Fisher distribution vM F(θ|m,κβ)

where

β =
�

�

�

�

�

β0m0 +
N
�

i=1

yi

�

�

�

�

�

and m =
�

β0m0 +
N
�

i=1

yi

�

β−1.

The optimal posterior distribution of κ is a Gamma(κ|a, b) with shape a and rate

b with
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a = a0 + N

#

t − 3

2

"

+ βκ̄

�

∂

∂βκ
ln I t−2

2
(βκ̄)

�

, (17)

b = b0 + N
∂

∂κ
I t−3

2
(κ̄) + β0

�

∂

∂β0κ
ln I t−2

2
(β0κ̄)

�

. (18)

Finally, the posterior mode κ̄ can be obtained from the previous iteration as

κ̄ =
�

a−1
b

if a > 1,
a
b

otherwise.
(19)

3.3 Two-Sample Bayesian Method with Conjugate Prior

Let Y i =
�

yi1, . . . , yi Ni

�

for i = 1, 2, be two independent random samples of stan-

dardized rankings each drawn, respectively, from p( yi |κi ,θi ). Taking a Bayesian

approach, we assume that conditional on κ, there are independent von Mises conju-

gate priors, respectively, for (θ1,θ2) as

p(θi |κ) ∝ [Ct (κ)]νi0 exp
�

βi0κmT
i0θi

�

,

where "mi0" = 1, νi0,βi0 ≥ 0. We shall be interested in computing the Bayes factor

when considering two models. Under model 1, denoted M1, θ1 = θ2 whereas under

model 2, denoted M2, equality is not assumed. The Bayes factor comparing the two

models is defined to be

B21 =
�

p( y1|κ,θ1)p( y2|κ,θ2)p(θ1|κ)p(θ2|κ)dθ1dθ2dκ
�

p( y1|κ,θ)p( y2|κ,θ)p(θ|κ)dθdκ

=
� ��

p( y1|κ,θ1)p(θ1|κ)dθ1

� ��

p( y2|κ,θ2)p(θ2|κ)dθ2

�

dκ
�

p( y1|κ,θ)p( y2|κ,θ)p(θ|κ)dθdκ
.

The Bayes factor enables us to compute the posterior odds of model 2 to model 1. We

fist deal with the denominator in B21. Under M1, we assume a joint von Mises-Fisher

prior on θ and a Gamma prior on κ :

p (θ,κ) = vM F (θ|m0,β0κ) G (κ|a0, b0) .

Hence,

�

p( y1|κ,θ)p( y2|κ,θ)p(θ|κ)dθdκ =
�

C N
t (κ) exp

�

βκθT m
�

Vt (β0κ) G (κ|a0, b0) dθdκ

=
�

C N
t (κ) Vt (β0κ) V −1

t (βκ) G (κ|a0, b0) dκ,
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where N = N1 + N2 and

m =

⎡

£β0m0 +
2

�

i=1

Ni
�

j=1

yi j

¤

⎦β−1,β =" m " .

Now,

�

C N
t (κ) Vt (β0κ) V −1

t (βκ) G (κ|a0, b0) dκ = C

#

β0

β

"
t−2

2
�

⎡

⎢

⎢

£

κ
a0+N

�

t−3
2

�

−1
e−b0κ I� t−2

2

� (βκ)

I� t−2
2

� (β0κ) I N
�

t−3
2

� (κ)

¤

⎥

⎥

⎦

dκ

≈ C

#

β0

β

"
t−2

2
�

κa−1e−bκdκ,

where in the last step, we used the method of variational inference as an approxima-

tion, with

C = b
a0

0

" (a0)

#

2N( t−3
2 ) (t !)N "N

#

t − 1

2

""−1

a1 = a0 + N

#

t − 3

2

"

+ βκ̄

�

∂

∂βκ
ln I t−2

2
(βκ̄)

�

,

b1 = b0 + N
∂

∂κ
I t−3

2
(κ̄) + β0

�

∂

∂β0κ
ln I t−2

2
(β0κ̄)

�

and the posterior mode κ̄ is

κ̄ =
�

a1−1
b1

if a1 > 1,
a1

b1
otherwise.

It follows that the denominator of B21 is

C

#

β0

β

"
t−2

2 " (a1)

b
a1

1

.

For the numerator, we shall assume that conditional on κ, there are independent

von Mises conjugate priors, respectively, for θ1,θ2 given by

p(θi |κ) ∝ [Ct (κ)] exp
�

β0κmT
0 θi

�

, i = 1, 2

where "m0" = 1, β0 ≥ 0. Hence,
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� ��

p( y1|κ,θ1)p(θ1|κ)dθ1

� ��

p( y2|κ,θ2)p(θ2|κ)dθ2

�

dκ

=
�

C N
t (κ) exp

�

β1κθ1
T m1

�

exp
�

β2κθ2
T m2

�

V 2
t (β0κ) G (κ|a0, b0) dθ1dθ2dκ

=
�

C N
t (κ) V −1

t (β1κ) V −1
t (β2κ) V 2

t (β0κ) G (κ|a0, b0) dκ

= C

#

β0

β1

"
t−2

2
#

β0

β2

"
t−2

2
�

⎡

£

κa0+N( t−3
2 )−1e−b0κ I( t−2

2 ) (β1κ) I( t−2
2 ) (β2κ)

I 2

( t−2
2 )

(β0κ) I N

( t−3
2 )

(κ)

¤

⎦ dκ

= C

#

β0

β1

"
t−2

2
#

β0

β2

"
t−2

2
�

κa2−1e−b2κdκ

where for i = 1, 2,

mi =

⎡

£β0m0 +
Ni
�

j=1

yi j

¤

⎦β−1
i =" mi "

a2 = a0 + N

#

t − 3

2

"

+
�

i

βi κ̄

�

∂

∂βiκ
ln I t−2

2
(βi κ̄)

�

b2 = b0 + N
∂

∂κ
ln I t−3

2
(κ̄) + 2β0

�

∂

∂β0κ
ln I t−2

2
(β0κ̄)

�

and the posterior mode κ̄ is given recursively:

κ̄ =
�

a2−1
b2

if a2 > 1,
a2

b2
otherwise.

It follows that the numerator of the Bayes factor is

C

#

β0

β1

"
t−2

2
#

β0

β2

"
t−2

2 " (a1)

b
a1

1

.

The Bayes factor is then given by the ratio
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B21 =

�

β0

β

�
t−2

2 "(a1)

b
a1
1

�

β0

β1

�
t−2

2
�

β0

β2

�
t−2

2 "(a2)

b
a2
2

=
#

β1β2

ββ0

"
t−2

2 " (a1) b
a2

2

" (a2) b
a1

1

.

4 Conclusion

In this article, we have considered a few applications of the change of measure

paradigm. In particular, it was possible to obtain a new derivation of the Friedman

statistic. As well, extensions to the Bayesian models for ranking data were considered.

Further applications as, for example, to the sign and Wilcoxon tests are found in [2].
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Choosing Between Weekly and Monthly
Volatility Drivers Within a Double
Asymmetric GARCH-MIDAS Model

Alessandra Amendola, Vincenzo Candila, and Giampiero M. Gallo

Abstract Volatility in financial markets has both low- and high-frequency com-

ponents which determine its dynamic evolution. Previous modelling efforts in the

GARCH context (e.g. the Spline-GARCH) were aimed at estimating the low-

frequency component as a smooth function of time around which short-term dynam-

ics evolves. Alternatively, recent literature has introduced the possibility of consider-

ing data sampled at different frequencies to estimate the influence of macro-variables

on volatility. In this paper, we extend a recently developed model, here labelled Dou-

ble Asymmetric GARCH-MIDAS model, where a market volatility variable (in our

context, VIX) is inserted as a daily lagged variable, and monthly variations repre-

sent an additional channel through which market volatility can influence individual

stocks. We want to convey the idea that such variations (separately) affect the short-

and long-run components, possibly having a separate impact according to their sign.

Keywords Volatility · Asymmetry · GARCH-MIDAS · Forecasting

1 Introduction

Volatility modelling has been extensively studied: more than 30 years have gone by

since the seminal contributions by [9, 14]. As they have about 25 K citations each

(and some pertinent papers do not even mention them), it is clear that GARCH-type

models are the standard among academicians and practitioners alike. These models
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Fig. 1 S&P 500 Index and its realized volatility

build upon stylized facts of persistence in the conditional second moments (volatility

clustering), an analysis made easier by the direct measurement of volatility, starting

from the availability of ultra-high-frequency data (cf. [7]). Looking directly at the

series of the Standard and Poor’s (S&P) 500 Index and of its realized volatility, as

illustrated in Fig. 1, one encounters two of such stylized facts in need of adequate

modelling: the first is that volatility has a slow-moving/state-dependent average local

level of volatility to be accounted for, and hence its dynamic evolution is driven by

two components: a high-frequency and a low-frequency one. Another is that peaks

of volatility are recorded in correspondence with streaks of downturns in the index,

a sign of well-documented asymmetry in the dynamics.

Various suggestions exist in the literature to model the first of these two stylized

facts: in a Markov Switching approach, GARCH parameters are state-dependent

([10, 13, 19], among others). The resulting high-frequency dynamics varies across

states and evolves around a constant average level of volatility within states as a low-

frequency component. In other contributions, the two components are additive; [12,

15] specify a model in which higher persistence is an identifying condition for the

long-run component. The most popular GARCH specification is one in which long-

and short-run components combine multiplicatively with the error term. Amado et

al. [4] survey the contributions in this field: the common feature is that long run is

a term which smoothly amplifies or dampens the short-run GARCH dynamics. The

long-run term can be a deterministic function of time as in the Spline GARCH [16];

a logistic function of a forcing variable as in the Smooth Transition approach ([1–3],

for instance); an exponential function of a one-sided filter of past values of a variable

sampled at a lower frequency than the daily series of interest, as in the GARCH-

MIDAS of [17]. In this paper, we take a modification of this latter model, called the

Double Asymmetric GARCH-MIDAS (DAGM) introduced by [5], where a rate of
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change at a low frequency is allowed to have differentiated effects according to its

sign, determining a local trend around which an asymmetric GARCH that describes

the short-run dynamics. A market volatility variable (in our context, we choose the

VIX index which is based on implied volatilities from at-the-money option prices)

is inserted as a daily lagged variable, and monthly variations represent an additional

channel through which market volatility can influence individual stocks.

The issue at stake in this empirically motivated paper is how this information

about market-based volatility can help in shaping the MIDAS-GARCH dynamics.

The idea we are pursuing is to illustrate

1. how a predetermined daily variable (in lagged levels) adds some significant

influence to the short-run component (an asymmetric GARCH in the form of

the GJR [18] model—this would be the first asymmetry considered); and, most

importantly,

2. how the same variable observed at a lower frequency (in lagged first differences)

can determine a useful combination (in the MIDAS sense seen in detail below)

for the low-frequency component in the slowly moving level of local average

volatility. In particular, it is of interest to explore what frequency (weekly or

monthly), works best in this context, and what horizon is informative. In so

doing, we maintain that positive changes (an increase in volatility) and negative

ones should be treated differently in the model (this is the second asymmetry

considered).

The results show that in characterizing the volatility dynamics, our model with

monthly data and six months of lagged information works best, together with the

contribution of the lagged VIX in the short-run component. Out-of-sample, the model

behaves well, with a performance which is dependent on the sub-period considered.

The rest of the paper is organized as follows: Sect. 2 addresses the empirical

question, illustrating first how the DAGM works and then we report the results of an

application of various GARCH, GARCH-MIDAS and DAGM models on the S&P

500 volatility, both in- and out-of-sample perspectives. Finally, Sect. 3 concludes.

2 Modelling Volatility with the DAGM Model

Let us focus on the GARCH-MIDAS model, here synthetically labelled GM: the

paper by [17] defines GARCH dynamics in the presence of mixed frequency vari-

ables. The short-run component varies with the same frequency as the dependent

variable while the long-run component filters the lower frequency macro-Variable(s)

(MV) observations. Recent contributions on (univariate) GARCH-MIDAS model

are [6, 8, 11].

The paper by [5] proposes a DAGM where asymmetry in the short run is captured

by a GJR-type [18] reaction to the sign of past returns, and positive and negative MV

values have different impacts on the long-run.
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2.1 The DAGM Framework

The DAGM-X model is defined as

ri,t =
√

τt × gi,tεi,t , with i = 1, . . . , Nt , (1)

where

• ri,t represents the log-return for day i of the period t ;

• Nt is the number of days for period t , with t = 1, . . . , T ;

• εi,t |�i−1,t ∼ N (0, 1), where �i−1,t denotes the information set up to day i − 1 of

period t ;

• gi,t follows a unit-mean reverting GARCH(1,1) process (short-run component);

• τt provides the slow-moving average level of volatility (long-run component).

The short-run component of the DAGM-X is given by

gi,t = (1 − ³ − ´ − µ /2) +
(

³ + µ · 1(ri−1,t <0)

)

(

ri−1,t

)2

τt

+ ´gi−1,t + zVi−1,t ,

(2)

where 1(.) is an indicator function and Vi,t is an additional, positive volatility deter-

minant, observed daily, whose importance on gi,t is given by z. In order to assure the

positivity of gi,t , we impose the constraint z ≥ 0. In absence of Vi,t , the DAGM-X

model becomes the DAGM specification.

The long-run component of the DAGM-X and DAGM is defined as

τt = exp

(

m + θ+

K
∑

k=1

δk(ω)+ X t−k1(X t−k≥0) + θ−

K
∑

k=1

δk(ω)− X t−k1(X t−k<0)

)

,

(3)

where
• m plays the role of an intercept;

• θ+, θ− represent the asymmetric responses to the one-sided filter;

• δk(ω)+ and δk(ω)− are suitable functions weighing the past K realizations of the

additional stationary variable X t . As in the related literature, we opt for the Beta

function, that is

δk(ω) =
(k/K )ω1−1(1 − k/K )ω2−1

∑K
j=1( j/K )ω1−1(1 − j/K )ω2−1

. (4)

Given that we are only interested in the case of larger weights put on the most recent

observations, we set ω1 = 1 and ω2 ≥ 1. Note that the Beta function represented in

(4) is readily applicable for both the GM and the DAGM. In this latter case, it is

sufficient to replace δk(ω) with δk(ω)+ and δk(ω)−.

Thus, the short-run component includes a term related to negative returns (“bad

news” increasing volatility, the well-known leverage effect) and potentially a term
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associated with an additional MV observed with the same frequency of the dependent

variable. The long-run component avoids positive and negative compensations within

the one-sided filter, separating the positive MV variations from the negative ones.

Typically, MVs can only be observed at low frequency, but here we move out of

the classic MV framework where observations are available only at low frequency.

Thus we take a variable which is observable daily, but can be sampled at lower

frequencies, e.g. weekly or monthly. We take the DAGM to the empirical evaluation

of how different frequencies of observations in the MV may change the results both

in estimation and forecasting. Besides that, we include the same variable at high

frequency in the short-run component (“–X” specifications).

Assuming a conditional normal distribution for the error term εi,t allows to apply

the standard statistical inference (for details on the asymptotic properties of the

GARCH-MIDAS class of models, see [22]) according to the maximization of the

following log-likelihood:

ln L = −
1

2

T
∑

t=1

[

Nt
∑

i=1

[

log(2π) + log(gi,tτt ) +

(

ri,t

)2

gi,tτt

]]

. (5)

2.2 The Role of VIX in the S&P 500 Volatility Dynamics

The returns of interest are daily log-differences of the S&P 500 Index (also examined

on a different sample and context in [5]), annualized on a sample period: 7 January

2000–7 September 2018 (number of daily observations: 4686, collected from Yahoo

Finance).

The MV in this paper is VIX (an implied volatility-based index built on the same

index, cf. [23]) which in our setup will appear: (i) lagged daily as a predetermined

variable in the short-run component gi of the GARCH-X; (ii) lagged variations—

end-of-month or end-of-week (with various choices of K ) in the long-run component.

All the observations concerning VIX have been collected from the Thomson Reuters

Eikon provider. The distance between the estimated volatility, labelled as ĥi , and

the chosen volatility proxy, the realized volatility at five minutes, labelled as σi

and collected from the realized library of the Oxford-Man Institute, are investigated

through three loss functions1: QLIKE, Root Mean Squared Error (RMSE) and Mean

Absolute Errors (MAE), defined as follows:

1For ease of notation and because we are only interested in daily estimates, here the suffix t

identifying the period at lower frequency has been suppressed.
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QLIKE : E
(

σi/ĥi + log(ĥi )

)

;

RMSE :

√

E

(

(

σi − ĥi

)2
)

;

MAE : E
(

|σi − ĥi |
)

.

(6)

2.2.1 Estimation and Diagnostics

The estimation and diagnostics results are shown in Table 1, where we report the

coefficients with their standard errors in parenthesis and their significance. GARCH

is the standard (1, 1) model; the GJR allows for an asymmetric response to the

lagged negative returns; the GARCH-X and GJR-GARCH-X and DAGM-X contain

an extra predetermined variable, the lagged daily VIX. The GM and DAGM are built

on a one-sided filter for the monthly VIX, while in the DAGM-W we consider the

weekly VIX. The last six months of VIX have been used in GM, DAGM, DAGM-X,

and DAGM-W, i.e. K = 6 and Kweek = 24. The choice of the adopted MIDAS lags

derives from some preliminary estimations aiming at finding the best values accord-

ing to the Bayesian information criterion (BIC). The number of “∗” indicates the

significance (10%, 5%, 1%, respectively) of the estimated coefficients heteroscedas-

ticity and autocorrelation consistent ([21], HAC) standard errors in parenthesis). LBl

and LMl report the p-value of the Ljung-Box and ARCH-LM tests on the squared

standardized residuals at lag l, respectively. RMSE is in percentage terms.

A few comments are in order: the GARCH models (first four columns) exhibit

customary results, with the possible surprise of the non-significance of the lagged

VIX in the X specifications. The GM has non-significant coefficient on the one-

sided filter and the wrong sign: as a matter of fact, the information criteria and the

QLIKE signal a worse fit of this model, relative to the standard models. When we

introduce our DAGM, the signs of the impact coefficients θ+ and θ− are the right ones

(positive, negative, respectively), and significant. The information criteria and the

QLIKE report a marked improvement over the models previously considered, with

the best model being the DAGM-X model where the significant coefficients on the

low-frequency component are, besides the constant, those pertaining to the positive

changes (inducing an increase in volatility). Generally, the residual diagnostics show

a good fit of the models. In particular, almost all the models fail to reject the null

hypotheses of the Ljung-Box and ARCH-LM tests, independently of the order of lags

considered. The only model whose p-values are below the significance level of 5%

is the DAGM-X, for l = 12, for both the Ljung-Box and ARCH-LM tests. Despite

this, the conclusion is that the DAGM-X provides the most convincing performance

with VIX contributing to a marked improvement over other models. The result can

be appraised graphically as in Fig. 2 where we show the close proximity of the fitted

values to the realized volatility.
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Table 1 DAGM and GARCH estimates

GARCH GARCH–

X

GJR GJR–X GM DAGM DAGM–X DAGM–

W

³ 0.105*** 0.116*** 0.001 0.001 0.001 0.001 0.001 0.001

(0.013) (0.019) (0.01) (0.011) (0.011) (0.01) (0.014) (0.011)

´ 0.884*** 0.876*** 0.889*** 0.878*** 0.94*** 0.874*** 0.852*** 0.884***

(0.015) (0.018) (0.015) (0.02) (0.013) (0.015) (0.018) (0.015)

µ 0.192*** 0.225*** 0.11*** 0.194*** 0.198*** 0.19***

(0.023) (0.037) (0.023) (0.022) (0.022) (0.023)

z 0.117 0.165 0.257***

(0.091) (0.104) (0.039)

m 5.169*** 4.956*** 0.686*** 5.123***

(0.315) (0.192) (0.121) (0.205)

θ −0.004

(0.005)

ω 1.36

(1.385)

θ+ 0.164*** 0.101*** 0.096***

(0.042) (0.027) (0.028)

ω+
2 1.372*** 1.681*** 13.876***

(0.368) (0.546) (0.693)

θ− −0.192*** −0.078 −0.431***

(0.065) (0.07) (0.11)

ω−
2 1.017 1.124 1.455***

(0.883) (0.765) (0.492)

BIC 37586.899 37590.534 37393.477 37394.136 37546.527 37404.797 37367.454 37397.298

QLIKE −3.867 −3.865 −3.876 −3.873 −3.882 −3.882 −3.882 −3.879

RMSE 0.418 0.433 0.395 0.418 0.402 0.376 0.364 0.382

LB12 0.274 0.388 0.329 0.123 0.506 0.129 0.048 0.186

LB24 0.322 0.361 0.518 0.239 0.416 0.384 0.229 0.384

LB36 0.362 0.383 0.626 0.37 0.278 0.474 0.37 0.482

LM12 0.26 0.381 0.311 0.092 0.526 0.118 0.037 0.17

LM24 0.318 0.349 0.485 0.159 0.41 0.366 0.203 0.345

LM36 0.411 0.391 0.614 0.253 0.366 0.482 0.371 0.479

Notes Annualized scale. Sample period: 7 January 2000–7 September 2018. Number of daily obser-

vations: 4686. Ticker: S&P 500. Comparison of the DAGM with other GARCH models. Model

definitions and comments in the text. HAC standard errors in parentheses. ∗, ∗∗ and ∗∗∗ denote

significance at the 10%, 5% and 1% levels, respectively
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Fig. 2 Realized and DAGM-X volatilities. Notes The figure plots the DAGM-X volatility (solid

black line) and the S&P 500 realized volatility (dashed grey line). Shaded areas represent NBER

recession periods. Annualized scale

2.2.2 Forecasting

Further insights can be had moving to an out-of-sample exercise where we estimate

the model over a 10-year period and project one-step ahead for one year and then

move forward the estimation and forecasting window. The results are summarized

in Fig. 3 where we report the presence in a Model Confidence Set as proposed by

[20]. The results (at ³ = 10%) show that while the DAGM-X has a satisfactory

performance, at the same time the standard GARCH or GJR models enter the set.

3 Wrapping Up

The slow-moving feature of conditional volatility can be addressed within a Double

Asymmetric GARCH-MIDAS framework [5] where the low-frequency variable here

is a volatility measure (variations in VIX). The main novelty in this approach is that

the same variable can be inserted as a forcing variable (-X in levels) in the short-

run component, and we can explore which frequency is the most suitable for the

long-run component (in first differences). The fitting capabilities of this approach

are comforting, with monthly movements in volatility providing the best in-sample

results. In out-of-sample forecasting, though, the model is less satisfactory, in that it

gives a performance very similar to a standard GARCH model.
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GARCH GARCH−X GJR GJR−GARCH−X GM DAGM DAGM−X DAGM−W

2010
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Fig. 3 MCS composition. Notes The figure plots the composition of the Model Confidence Set

(MCS). For different loss functions, dark (QLIKE), medium-dark (MSE) and light (MAE) shades

of grey indicate that a given model is included in the MCS, at a significance level of ³ = 0.1.
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Goodness-of-fit Test for the Baseline

Hazard Rate

A. Anfriani, C. Butucea, E. Gerardin, T. Jeantheau, and U. Lecleire

Abstract We provide a nonparametric test procedure for the baseline hazard func-

tion in the generalized Cox model in presence of fixed given covariates. The test

statistic is given by an optimal estimator of the quadratic functional of the same

function. Our test procedure attains the rate n−4α/(4α+1) over Besov classes of func-

tions B2,∞
α (L), α, L > 0, which is known to be minimax optimal in the context of

testing the intensity function of a Poisson processes.

Keywords Baseline hazard rate · Cox model · Goodness-of-fit test · Quadratic

functionals · Separation rates

1 Introduction

Let us consider the generalized Cox model defined, for a vector of covariates Z ∈ R
d ,

λ(t, Z) = h(t) · eg(Z), (1)
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where h : [0, τ ] → [0,+∞[ is called the baseline hazard rate function and g : R
d →

R. The particular case where g(Z) = β� Z is a linear function which is known as

the Cox model.

A lot of attention was devoted to the estimation of both functions h and g.

We distinguish methods based on the partial log-likelihood—[1, 8] have obtained

nonasymptotic oracle inequalities for g, methods based on maximization of the penal-

ized total likelihood—[3, 9], and kernel methods for estimating h—[4].

Less attention was given to the nonparametric testing of the generalized Cox

model. In the case of covariate-free Poisson processes, [6] gave minimax and sharp

constants for testing the goodness-of-fit H0 : λ = λ0 of the intensity function λ on [0,

1]. In this setup, the intensity λ is supposed to belong to a Sobolev class of functions

and the separation from the null hypothesis is measured in L2 norm, �λ − λ0�2.

Fromont et al. [2] proposed nonasymptotic adaptive tests of homogeneity, i.e., H0 :
λ = I[0,1].

In this paper, we want to estimate a quadratic functional of the baseline hazard rate

function h and construct a goodness-of-fit test for h based on that functional. More

precisely, given h0 a square integrable function on [0, τ ], that is, h0 in L2 = L2[0, τ ],
we want to test from our observations that

H0 : h ≡ h0, against

H1(h0,"n) : h ∈ F such that

τ
"

0

(h − h0)
2(t)dt ≥ C · "n, (2)

with C, "n > 0 depending on the parameters of nonparametric class of Besov

smooth functions F to be defined. Let us denote the quadratic functional

D(h) =
τ

"

0

h2(t)dt, for h ∈ L2.

Thus, the separation from the null hypothesis H0 is measured by D(h − h0). An

estimator of this quadratic functional provides the test statistic for testing H0 : h ≡ h0

against H1 in (2). This is now a standard approach in nonparametric testing, as it

provides faster rates of testing than the plug-in of an estimator of h, and than the

testing in pointwise or sup-norm semi-norms.

We assume that the function g is supposed to be known and proceeds conditionally

on the sample of covariates Z1, . . . , Zn .

First, we describe an estimator of the quadratic functional
� τ

0
h2(t)dt and study

its behavior in Proposition 3. Next, we modify it in order to produce a test statistic

and a test whose probabilities of error are controlled in Theorem 1. We note that the

behavior of our procedures is of the same order asymptotically as in the covariate-free

case. We, therefore, deduce that our procedures are optimal in the minimax sense.
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In practice, we can estimate the quadratic functional on [0, max1≤i≤n X i ]. We can

show that

P(τ ≤ max
1≤i≤n

X i ) = 1 − (1 − P(T ≥ τ) · P(C ≥ τ))n

tends to 1 as n → ∞, for any fixed τ > 0.

More challenging problems involve to consider unknown function g. However, in

the Cox model g(Z) = β� Z or the generalized Cox model, we can proceed numeri-

cally by estimating g using the partial likelihood in presence of an unknown baseline

hazard rate. It is interesting but beyond the scope of this paper to study the theoretical

impact of plugging the (parametric or nonparametric) estimators of g.

Notation We observe (X i , Z i , δi ), i = 1, . . . , n over the time interval T = [0, τ ],
for n independent individuals. In our notation, X i is the censored survival time,

that is, X i = Ti ∧ Ci , where Ti is a continuously distributed random time when a

failure occurs and Ci is a continuously distributed censoring time. We also observe

the failure indicator δi = I (Ti < Ci ), which takes the value 1 if a failure occurred

and 0 when the censoring occurred. In our setup, the censored survival times are

modeled conditionally on the covariates Z i = (Z1
i , . . . , Zd

i ), a d-dimensional vector.

We assume that the failure times Ti are independent of the censoring times Ci ,

conditionally on the covariates Z i , i = 1, . . . , n.

Our observations allow us to build a marked Poisson process Ni (t) = I (X i ≤
t, δi = 1). On our probability space (�,A, P) we define the filtration

Ft = σ {Ni (s), Z i , 0 ≤ s ≤ t, i = 1, . . . , n}. (3)

We assume that the counting process Ni (t) satisfies

dNi (t) = λ(t, Z i )dt + dξi (t), 0 ≤ t ≤ τ, i = 1, . . . , n, (4)

where ξi is a martingale process on [0, τ ], see [7]. Let us denote it by d�i (t), the

random measure λ(t, Z i )dt . We use generic random variables (X, Z , δ) having the

same distribution as our sample, and processes N (t), �(t), and ξ(t) verifying (4).

Here, we consider that the hazard rate satisfies a generalized Cox model (1). Thus,

d�(t) = λ(t, Z)dt = h(t)eg(Z)dt.

From now on, we shall consider that the design Z i is fixed and known.

2 Estimation

In this section, the aim is to describe the nonparametric estimation of the functional

D(h). In order to do this, it is now established in the literature that a plug-in of the best

estimator of h is not the best solution for our problem. Instead, we proceed by making
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an L2 projection on a proper orthogonal basis, express the quadratic functional in

terms of the coefficients of the projection and finally estimate it.

Coefficients model Let φ : [0, τ ] → R be square integrable and let us denote it by

N [φ] =
τ

"

0

φ(t)dN (t), ξ [φ] =
τ

"

0

φ(t)dξ(t) and �[φ] =
τ

"

0

φ(t)d�(t)

, where N (t) and ξ(t) are the marked point process and the martingale process

verifying (4), and �(t) is given in (1).

Proposition 1 Let φ, ψ be in L2. The random variables Ni [φ] for i = 1, . . . , n are

independent and have conditional moments (given Z i ):

E(Ni [φ]) =
τ

"

0

φ(t)E[λ(t, Z i )]dt = eg(Zi )

τ
"

0

φ(t)h(t)dt,

E[(Ni [φ])2] = eg(Z i )

τ
"

0

φ2(t)h(t)dt + e22 g(Zi )

⎛

¿

τ
"

0

φ(t)h(t)dt

À

⎠

2

Var(Ni [φ]) = eg(Z i )

τ
"

0

φ2(t)h(t)dt

. Moreover,

E(Ni [φ] · Ni [ψ]) = eg(Z i )

τ
"

0

φ(t)ψ(t)h(t)dt

+e22 g(Zi )

⎛

¿

τ
"

0

φ(t)h(t)dt

À

⎠

⎛

¿

τ
"

0

ψ(t)h(t)dt

À

⎠

Cov(Ni [φ], Ni [ψ]) = Cov(ξ [φ], ξ [ψ]) = eg(Z i )

τ
"

0

φ(t)ψ(t)h(t)dt.

.

Moreover, it is obvious from the previous result that if φ and ψ have disjoint

supports then the random variables Ni [φ] and Ni [ψ] are uncorrelated.

We introduce {φ j }M
j=1 a family of M orthonormal functions of L2[0, τ ], which

have disjoint supports and the corresponding coefficients of h for j = {1, . . . , M}
are given by
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θ j =
τ

"

0

φ j (t)h(t)dt

. We project the point process Ni (t), 0 ≤ t ≤ τ on these functions to get the random

variables

Ni [φ j ] = �i [φ j ] + ξi [φ j ], j ∈ {1, . . . , M}, (5)

where �i [φ j ] := eg(Zi )
τ
�

0

φ j (t)h(t)dt . We call (5) the sequence model associated to

(4). Random variables ξi [φ j ], for j ∈ {1, . . . , M} are centered, but correlated with

the same correlation structure as Ni [φ j ], j = {1, . . . , M} as seen in Proposition 1.

The coefficients θ j , j ∈ {1, . . . , M} are estimated by

θ̂ j = 1

n

n
�

i=1

e−g(Z i )Ni [φ j ]. (6)

Proposition 2 The estimator θ̂ j , j ∈ {1, . . . , M} defined in (6), is such that

E[θ̂ j ] = θ j , V ar(θ̂ j ) =
�φ2

j , h�
n

· 1

n

n
�

i=1

e−g(Z i ), for all j ∈ {1, . . . , M}

and

Cov(θ̂ j , θ̂�) = �φ jφ�, h�
n

· 1

n

n
�

i=1

e−g(Z i ), for all j �= � ∈ {1, . . . , M}

Note that due to our choice of the functions φ j , j from 1 to M ,

Cov(θ̂ j , θ̂�) = 0, for all j �= � in {1, . . . , M}

Indeed, �φ jφ�, h� is equal to zero if j �= � since φ j and φ� have disjoint support.

Proof Since the Ni [φ j ] are independent and the e−g(Z i ) fixed, the Proposition 1 gives

E[θ̂ j ] = 1

n

n
�

i=1

�φ j , h� = θ j .

Then for the variance
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V ar(θ̂ j ) = V ar

�

1

n

n
�

i=1

Ni [φ j ] · e−g(Z i )

�

= 1

n2

n
�

i=1

V ar(Ni [φ j ]) · e−2g(Zi )

= 1

n2

n
�

i=1

(φ2
j , h� · e−g(Z i ) =

�φ2
j , h�
n

· 1

n

n
�

i=1

e−g(Z i );

and, if j �= �, for the covariance :

Cov(θ̂ j , θ̂�) = 1

n2

n
�

i �=k
i,k=1

e−g(Z i )−g(Zk )Cov(Ni [φ j ], Nk[φ�])

= 1

n2

n
�

i=1

e−2g(Zi )Cov(Ni [φ j ], Nk[φ�]) = �φ jφ�, h�
n

· 1

n

n
�

i=1

e−g(Z i ).

Construction of the estimator We approximate h by hM(t) =
�M

j=1 θ jφ j (t),

with t ∈ [0, τ ] and D(h) :=
τ
�

0

h2 by
�M

j=1 θ2
j . We propose to estimate the quadratic

functional D(h) by the U-statistic of order 2:

D̂n =
M

�

j=1

1

n(n − 1)

n
�

i �=k
i,k=1

Ni [φ j ]e−g(Z i ) · Nk[φ j ]e−g(Zk ), (7)

where M grows larger with n → ∞.

Proposition 3 The estimator D̂n in (7) of the quadratical functional D(h) is such

that

E[D̂n] =
M

�

j=1

θ2
j ,

and has variance

V ar [D̂n] = 2

n2(n − 1)2

n
�

i �=k
i,k=1

e−g(Zi )e−g(Zk ) ·
M

�

j=1

�φ2
j , h�2 + 4

n2

M
�

j=1

θ2
j �φ2

j , h� ·
n

�

i=1

e−g(Zi ).

Proof First, let us consider the expected value of the estimator

E[D̂n] =
M

�

j=1

1

n(n − 1)

n
�

i �=k
i,k=1

E
�

Ni [φ j ]e−g(Z i ) · Nk[φ j ]e−g(Zk )
�

.

The random variables Ni [φ j ] and Nk[φ j ] are independent, for i �= k. Thus,
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E[D̂n] =
M

�

j=1

1

n(n − 1)

n
�

i �=k
i,k=1

E
�

Ni [φ j ]e−g(Z i )
�

· E
�

Nk[φ j ]e−g(Zk )
�

=
M

�

j=1

θ2
j .

For the variance, let us decompose the sum of indices in two parts starting with the

centered expression of D̂n

D̂n − E[D̂n] =
M

�

j=1

1

n(n − 1)

n
�

i �=k
i,k=1

(Ni [φ j ]e−g(Z i ) · Nk[φ j ]e−g(Zk ) − θ2
j )

=
M

�

j=1

1

n(n − 1)

n
�

i �=k
i,k=1

(Ni [φ j ]e−g(Z i ) − θ j )(Nk[φ j ]e−g(Zk ) − θ j )

+
M

�

j=1

2

n

n
�

i=1

(Ni [φ j ]e−g(Z i ) − θ j ) · θ j =: T1 + T2, say.

We note that T1 and T2 are uncorrelated. Indeed, for any i �= k or i �= �, we have

E[(Ni [φ j ] · e−g(Z i ) − θ j )(Nk[φ j ] · e−g(Z i ) − θ j )(N�[φ j ]e−g(Z i ) − θ�)] = 0,

since at least one term of these three centered terms is independent from the other

two. Hence, we can work on the variance of T1 and T2 separately. For T2

V ar(T2) = 4

n2

n
�

i=1

E

⎡

£

⎛

¿

M
�

j=1

(Ni [φ j ]e−g(Z i ) − θ j )θ j

À

⎠

2¤

⎦ .

We use the Proposition 1 to get further on

4

n2

n
�

i=1

⎛

¿

M
�

j=1

E[(Ni [φ j ]e−g(Z i ) − θ j )
2θ2

j ] +
M

�

j �=�

θ jθ�e−2g(Zi )Cov(Ni [φ j ], Ni [φ�])

À

⎠

= 4

n2

n
�

i=1

⎛

¿

M
�

j=1

θ2
j V ar(Ni [φ j ])e−2g(Zi ) +

M
�

j �=�

θ jθ�e−2g(Zi )eg(Zi )
#

φ jφ�, h
#

À

⎠

= 4

n2

n
�

i=1

e−g(Z i )

⎛

¿

M
�

j=1

θ2
j

#

φ2
j , h

#

+
M

�

j �=�

θ jθ�

#

φ jφ�, h
#

À

⎠

= 4

n

M
�

j=1

θ2
j �φ2

j , h� · 1

n

n
�

i=1

e−g(Z i ). (8)
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Now, let us bound from above the variance of T1. Let us denote it by U i
j = Ni [φ j ] ·

e−g(Z i ). Then V ar(T1) = U/(n2(n − 1)2), with

U = E

⎡

⎢

⎢

£

⎛

⎜

⎜

¿

n
�

i1 �=k1
i1,k1=1

M
�

j1=1

(U
i1
j1

− θ j1)(U
k1
j1

− θ j1)

À

⎟

⎟

⎠

⎛

⎜

⎜

¿

n
�

i2 �=k2
i2,k2=1

M
�

j2=1

(U
i2
j2

− θ j2 )(U
k2
j2

− θ j2 )

À

⎟

⎟

⎠

¤

⎥

⎥

⎦

=
M

�

j1, j2=1

n
�

i1 �=k1
i1,k1=1

n
�

i2 �=k2
i2,k2=1

E
#

(U
i1
j1

− θ j1)(U
k1
j1

− θ j1)(U
i2
j2

− θ j2 )(U
k2
j2

− θ j2 )
#

. (9)

The terms in the previous sum are null except when (i1, k1) is equal to either (i2, k2)

or to (k2, i2), thus

V ar(T1) = 2

n2(n − 1)2

M
�

j1, j2=1

n
�

i �=k
i,k=1

E
#

(U i
j1

− θ j1 )(U
i
j2

− θ j2 )
#

E
#

(U k
j1

− θ j1 )(U
k
j2

− θ j2 )
#

and the previous expected value can be written as

e−2g(Zi )−2g(Zk )Cov(Ni [φ j1], Ni [φ j2 ])Cov(Nk[φ j1], Nk[φ j2 ]).

Thus,

V ar(T1) = 2

n2(n − 1)2

M
�

j=1

n
�

i �=k
i,k=1

e−g(Z i )e−g(Zk )
#

φ2
j , h

#2

= 2

n2(n − 1)2

n
�

i �=k
i,k=1

e−g(Z i )e−g(Zk ) ·
M

�

j=1

�φ2
j , h�2. (10)

Finally, putting (10) and (8) together, we get the theorem.

3 Goodness-of-Fit Test

In this section, we focus on the nonparametric test. Recall the test problem

H0 : h ≡ h0 against the alternative in (2).

From now on, we assume that for all n and i = 1, . . . , n there exist C1 and C1 > 0

such that C1 ≤ e−g(Z i ) ≤ C1.

We consider that F = F2,∞
α (L) a Besov ellipsoid with α, L > 0. Functions h

belonging to the Besov ellipsoid can be characterized by their coefficients on a

wavelet basis with some properties (smoothness, moments, etc.), see [5]. We use
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as orthonormal basis, a DB2N wavelet basis with resolution level J such that 2J ∼
n2/(4α+1). For n large enough, these functions will have disjoint supports.

The separation between h0 under the null hypothesis H0 and h under H1 is mea-

sured by D(h − h0) :=
� τ

0
(h − h0)

2. Let us denote by θ0
j =

� τ

0
φ j h0, j ≥ 1, the

coefficients of the hazard rate function h0 under H0. The functional D(h − h0) is

approximated by

DM(h − h0) :=
M

�

j=1

(θ j − θ0
j )

2.

The test statistic is the U-statistic of order 2 that is an estimator of DM(h − h0)

D̂0
n =

M
�

j=1

1

n(n − 1)

n
�

i �=k
i,k=1

(Ni [φ j ]e−g(Z i ) − θ0
j ) · (Nk[φ j ]e−g(Zk ) − θ0

j ), (11)

for some M = Mn of the same order as 2J . The test procedure is

"n = I (D̂0
n ≥ rn), for some rn > 0.

The test statistic D̂0
n in (11) has the moments E(D̂0

n) =
�M

j=1(θ j − θ0
j )

2, and

V ar [D̂0
n] = 2

n2(n − 1)2

n
�

i �=k
i,k=1

e−g(Z i )−g(Zk )

M
�

j=1

�φ2
j , h�2

+4

n

M
�

j=1

(θ j − θ0
j )

2�φ2
j , h� · 1

n

n
�

i=1

e−g(Z i ).

Indeed, this is an easy consequence of Proposition 3. Moreover, using the assumption

that C1 ≤ e−g(Z) ≤ C1 for all i from 1 to n, we bound by

V ar [D̂0
n] ≤ 2

n(n − 1)
C

2

1

M
�

j=1

�φ2
j , h�2 + 4

n

M
�

j=1

(θ j − θ0
j )

2�φ2
j , h� · C1.

Since {φ j }M
j=1 is an orthonormal basis, we obtain the following bound of the projection

�φ2
j , h� < �h�∞ and we finally get

V ar [D̂0
n] ≤ 4�h�∞C1

n

n
�

j=1

(θ j − θ0
j )

2 + 2�h�2
∞C

2

1 · M

n(n − 1)
. (12)

The following theorem gives upper bounds for the testing risk.
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Theorem 1 The testing procedure "n based on D̂0
n in (11) with M = �c · n

2
4α+1 �,

"n,α = n
−4α
4α+1 , rn = r · n

−4α
4α+1 , C2 ≥ 2(L + L0) large enough and convenient choices

of r > 0 and c > 0 is such that there exists γ ∈ (0, 1) giving

P0("n = 1) + sup
h∈H1(h0,"n,α)

Ph("n = 0) < γ.

Proof For the type I error probability, we use the Chebyshev inequality

P0("n = 1) =P0(D̂0
n ≥ rn) ≤ V ar(D̂0

n)

r2
n

≤

⎛

¿

4�h�∞C1

n

n
�

j=1

(θ j − θ0
j )

2 + 2�h�2
∞C

2

1 · M

n(n − 1)

À

⎠

1

r2
n

.

Then, using H0 we have that θ j − θ0
j = 0 for all j = 1, . . . , M , thus

P0("n = 1) ≤2�h�2
∞C

2

1 · M

n(n − 1)r2
n

≤ 2�h�2
∞C

2

1 · c · n
α

4α+1

r · n
−8α

4α+1
+2

.

For convenient choices of c and r we get

P0("n = 1) ≤2�h�2
∞C

2

1 · c/r ≤ γ

2
.

For the type II error probability, let us first note that

D(h − h0) − Eh[D̂0
n] =

∞
�

j=M+1

(θ j − θ0
j )

2 ≤ 2(L0 + L)

M2α
.

Then under the alternative hypothesis we use the Chebyshev’s inequality and (12):

Ph("n = 0) ≤P(Eh(D̂0
n) − D̂0

n > C2"n,α − 2(L0 + L)M−2α − rn)

≤ V ar(D̂0
n)

�

C2 · "n,α − 2(L0 + L)M−2α − rn

�2
.

If 4�h�∞C1

n
DM(h − h0) ≤ 2�h�∞C

2

1

n(n−1)
M , then we bound from above

Ph("n = 0) ≤ 4�h�∞C
2

1 M/n(n − 1)
�

C2 · "n,α − 2(L0 + L)M−2α − rn

�2
≤ γ

2
, sssss
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for C2 large enough. If 4�h�∞C1

n
DM(h − h0) >

2�h�∞C
2

1

n(n−1)
M this implies that DM(h −

h0) > M ·C1

2(n−1)
. Let us recall that Eh(D̂0

n) = DM(h − h0) and write

Ph("n = 0) =Ph(D̂0
n < rn) = Ph

⎛

¿

Eh(D̂0
n) − D̂0

n
�

V ar(D̂0
n)

>
DM(h − h0) − rn

�

V ar(D̂0
n)

À

⎠

Note that M/2n ∼ c · n
−4α+1
4α+1 � rn ∼ r · n

−4α
4α+1 , so D(h − h0) ≥ 2rn for n large

enough. This gives

DM (h − h0) − rn
�

V ar(D̂0
n)

≥ DM (h − h0)/2
�

2 · 4�h�∞C2 DM (h − h0)n−1
≥

√
DM (h − h0) · n

2
√

C3

≥
�

M · C1

2
√

2C3

and thus

Ph("n = 0) ≤Ph

�

Zn >

�

M · C1

2
√

2C3

�

where we denoted it by Zn the standardized random variable −D̂0
n . Now let us apply

the Chebyshev inequality and that DM(h − h0) is uniformly bounded to get

Ph("n = 0) ≤ V ar(Zn)

M

8C3

C1

≤ 8C3

C1

n− 2
4α+1 → 0, as n tends to infinity.

References

1. Bradic, J., Song, R.: Structured estimation for the nonparametric Cox model. Electron. J. Stat.

9, 492–534 (2015)

2. Fromont, M., Laurent, B., Reynaud-Bouret, P.: Adaptive tests of homogeneity for a Poisson

process. Ann. Inst. H. Poincaré Proba. Stat. 47, 176–213 (2011)

3. Guilloux, A., Lemler, S., Tupin, M.-L.: Adaptive estimation of the baseline hazard function in

the Cox model by model selection, with high-dimensional covariates. J. Stat. Planning Inf. 171,

38–62 (2016)

4. Guilloux, A., Lemler, S., Tupin, M.-L.: Adaptive kernel estimation of the baseline function in

the Cox model with high-dimensional covariates. J. Multivar. Anal. 148, 141–159 (2016)

5. Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.B.: Wavelets, Approximations, and

Statistical Applications. Lecture Notes in Statistics, vol. 129, Springer, New York (1998)

6. Ingster, Yu., Kutoyants, YuA: Nonparametric hypothesis testing for intensity of the Poisson

process. Math. Meth. Stat. 16, 217–245 (2007)

7. Karr, A.F.: Point Processes and their Statistical Inference. Marcel Dekker, Inc. (1991)

8. Kong, S., Nan, B.: Non-asymptotic oracle inequalities for the high-dimensional Cox regression

via Lasso. Stat. Sinica 24, 25–42 (2014)

9. Lemler, S.: Oracle inequalities for the Lasso in the high-dimensional Aalen multiplicative inten-

sity model. Ann. Inst. H. Poincaré Proba. Stat. 52, 981–1008 (2016)



Permutation Tests for Multivariate

Stratified Data: Synchronized or

Unsynchronized Permutations?

Rosa Arboretti, Eleonora Carrozzo, and Luigi Salmaso

Abstract In the present work, we adopt a method based on permutation tests aimed

at facing stratified experiments. The method consists in computing permutation tests

separately for each strata and then combining the results. We know that by perform-

ing simultaneously permutation tests (synchronized) in different strata, we maintain

the underlying dependence structure and we can properly adopt the nonparametric

combination of dependent tests procedure. But when strata have different sample

sizes, performing the same permutations is not allowed. On the other hand, if units

in different strata can be assumed independent we can think to perform permutation

tests independently (unsynchronized) for each strata, and then combining the result-

ing p-values. In this work, we show that when strata are independent we can adopt

equivalently both synchronized and unsynchronized permutations.

Keywords Permutation tests · Conditional inference · Multivariate testing ·
Resampling methods

1 Introduction

The deal with stratified (pseudo-) experiments happens quite often in different fields

of research. The most typical application examples not only refer to clinical trials, but

also industrial problems, social sciences, or demographic studies present a variety

of situations in which stratified analysis is required. Literature on stratified experi-

ment is wide and covers different fields (see, e.g., [4–8]). Recently Arboretti et al.
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[1] presented a permutation stratified test in a univariate framework based on the

nonparametric combination (NPC) methodology [9]. The idea at the basis of this

NPC-based procedure is to perform separately although simultaneously different

permutation tests, one for each stratum and then suitably combine the results. It is

worth noting that a stratified problem may also be of multivariate nature. In this case,

in order to properly apply the NPC methodology, we should also take into account

the possible dependence among variables.

For the sake of clarity, let us consider a practical example. Suppose, to be interested

in evaluating which school among two high schools (say A and B) with different

scholarship programs, allows to have more chance to face the entrance exam of a

specific University. Suppose also that the entrance exam consists of both written and

oral tests. Furthermore, students who attend to entrance exam can choose between

two degree courses (say S1 and S2).

Schools A and B randomly select a sample of, respectively, n A and nB students

and simulate the entrance exam. Let us now consider the two following experiments:

(1) all students selected from each school perform the tests (written and oral) for

both degree courses. (2) half of the students selected from each school performs the

test (written and oral) for the degree course S1 and the other half performs the test

(written and oral) for the degree course S2. Tables 1 and 2 show an example of data

structure for the two experiments.

Both experiments (1) and (2) are multivariate because for each student we record

the score obtained for written and oral test. The two experiments are stratified

because the different degree courses may influence the scores obtained. The dif-

ference between two experiments is that in (1) for each school the statistical units

in different strata are the same, whereas in (2) we have different units for different

strata in each school.

Formalizing X i js = µ + δ js + εi js , where X i js are the multivariate responses, μ is

the general mean, δ js is the effect of the j-th treatment in the s-th stratum, and εi jk

are experimental errors, with zero mean from an unknown distribution F js , with

j ∈ {A, B}, s = 1, . . . , S, where S is the number of strata and i = 1, . . . , n js . We

are interested in the following system of hypotheses:

Table 1 Example of data structure for experiment (1)

School Id student Written (S1) Oral (S1) Written (S2) Oral (S2)

A 1 87 85 80 78

2 82 85 80 78

. . . . . . . . . . . . . . .

n A 88 90 85 85

B 1 74 80 80 80

2 68 74 70 75

. . . . . . . . . . . . . . .

nB 77 85 75 78
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Table 2 Example of data structure for experiment (2)

School Id student Degree course Written Oral

A 1 S1 87 85

. . . . . . . . . . . .
n A

2
S1 88 90

n A

2
+ 1 S2 80 78

. . . . . . . . . . . .

n A S2 85 85

B 1 S1 74 80

. . . . . . . . . . . .
nB

2
S1 77 85

nB

2
+ 1 S2 80 80

. . . . . . . . . . . .

nB S2 75 78

⎧

⎪

«

⎪

¬

H G
0 : δAs = δBs for all s

H G
1 : δAs

(>)

�=
(<)

δBs for at least one s.
(1)

In our example δ js = (δ
(Written)
js , δ

(Oral)
js ), j ∈ {A, B}, s ∈ {S1, S2} denotes the multi-

variate treatment effect in group j and in stratum s.

If we are in case (1) and we want to solve the problem following the NPC-based

procedure, when we perform separately permutation tests we must take into consider-

ation that students in different strata are the same and that for each student correspond

two responses. In a permutation framework, this is easily obtainable by permuting

the entire rows of Table 1. Let us refer to this type of permutations with the term

synchronized permutations to emphasize that different tests are simultaneously per-

formed for each stratum and variable. In case (2), when the stratum size in each group

is the same it is possible to perform synchronized permutations too. But if different

strata in the same group have different sizes this is not allowed. In our example, this

may happen if the number of students from the same school who perform the exam

for S1 and S2 differs. In this paper we wonder if performing independent permuta-

tion tests for each stratum, assuming independent strata, affect the results. In this

situation, the permutations are performed independently in each stratum but simulta-

neously for all variables that can be correlated. We refer to this type of permutations

with the term unsynchronized permutations. In the following sections, we introduce

the NPC-based procedure for stratified problems and through a simulation study we

investigate the differences between synchronized and unsynchronized permutations

in case of independent strata. Finally, we will show a real-application example.
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2 An Algorithm for NPC-based Stratified Tests

In this section, we introduce the NPC-based procedure for multivariate stratified test.

For an overview on NPC, its properties, and applications see [2, 3], [9, Chap. 4], [10].

The NPC procedure consists of breaking the problem (1) down into S sub-hypotheses,

one for each stratum, i.e,

⎧

⎪

«

⎪

¬

H0(s) : δA(s) = δB(s)

H1(s) : δA(s)

(>)

�=
(<)

δB(s)

(2)

Let us denote the K -variate vector of n js observations in group j , in stratum s with

X js = (X1( js), . . . , Xn js ( js)), j ∈ {A, B}, s = 1, . . . , S.

Furthermore, let Xs = XAs

�

XBs of size Ns = n As + nBs denotes the overall

sample in stratum s. The steps to achieve the global result are the following:

1 for s = 1, . . . , S

1.1 On Xs compute a vector of suitable test statistics obtaining

Ts = (T (1)
s , . . . , T (K )

s ).

1.2 On X∗
s obtained after a random rows permutation of Xs , compute the related

vector of permuted test statistics.

1.3 Independently repeat step 1.2 a number R of times, with R large enough

(i.e., generally R " 1000). The result estimates the multivariate permutation

distribution of the test statistic Ts , denoted by

T∗
s = (T ∗(1)

s , . . . , T ∗(K )
s ),

where T ∗(k)
s = (T ∗1(k)

s , . . . , T ∗R(k)
s ), k = 1, . . . , K .

1.4 Estimate the vector of p-value statistic:

λs = (λ(1)
s , . . . , λ(K )

s ),

where λ(k)
s =

�R
r=1 I(T ∗r(k)

s ≥ T (k)
s )/(R + 1), k = 1, . . . , K .

1.5 Compute the empirical significance level function:

λ∗
s = (λ∗(1)

s , . . . , λ∗(K )
s ),

where λ∗(k)
s = (λ∗1(k)

s , . . . , λ∗R(k)
s ) with λ∗r(k)

s =
�R

h=1 I(T ∗h(k)
s ≥ T ∗r(k)

s )/

(R + 1), r = 1, . . . , R, k = 1, . . . , K .

2 Through a suitable combination function �(·), for each variable combine the p-

values statistic related to different strata, obtaining
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T• =
 

T (1)
· , . . . , T (K )

·

 

,

where for a generic variable k is T (k)
· = �(λ

(k)
1 , . . . , λ(k)

s ) and

T∗
• =

 

T ∗(1)
· , . . . , T ∗(K )

·

 

,

where for a generic variable k is T ∗(k)
· = �(λ

∗(k)
1 , . . . , λ∗(k)

s ).

3 Compute the combined p-value statistic as

λ• = (λ(1)
· , . . . , λ(K )

· ),

where λ(k)
· =

�R
r=1 I(T ∗r(k)

· ≥ T (k)
· )/(R + 1) and the related empirical signifi-

cance level function.

λ∗
• = (λ∗(1)

· , . . . , λ∗(K )
· )

where λ∗(k)
· =

�R
h=1 I(T ∗h(k)

· ≥ T ∗r(k)
· )/(R + 1).

4 Combine the p-value statistics related to all variables, obtaining

T = �(λ(1)
· , . . . , λ(K )

· )

and the related simulated distribution:

T ∗ = �(λ∗(1)
· , . . . , λ∗(K )

· ).

5 Compute the global p-value as λGlob =
�R

r=1 I(T ∗r ≥ T )/(R + 1) and reject the

null hypothesis (1) if λGlob ≤ α.

In order to complete the algorithm, let us cite some possible test statistics T and

combining function �. At step 1.1, generic test statistics T that can be used are the

difference of means

TDM(s) =
1

n As

n As
�

i=1

X i As −
1

nBs

nBs
�

i=1

X i Bs

if X js is continuous or the Anderson–Darling test statistics

TAD(s) =

υ−1
�

h=1

Mh As[Mh(•s)(N − Mh(•s))]

if X js is categorical with υ categories, where Mh•s = Mh As + Mh Bs , Mh As , and

Mh Bs are the cumulative frequencies of the category h in stratum s of group A and

B, respectively.

For what concern combining function in points 2 and 4, common choices are
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• the Fisher omnibus combining function defined as ψF = −2 ·
�ν

i (log λi );

• the Liptak combining function defined as ψL =
�ν

i �−1(1 − λi );

• the Tippett combining function defined as ψT = maxν
i=1(1 − λi )

where ν represents the number of partial aspects to be combined.

Note that if we cannot assume the independence of the strata, all test statistics

have to be computed on the same permutations (synchronized), that is, the random

permutations obtained at points 1.2–1.3 must be the same for each s = 1, . . . , S so as

to preserve the underlying unknown dependence structure. What we are interested to

assess in next section is if, in case of independent strata, performing unsynchronized

instead of synchronized permutations has an effect on the procedure.

3 Synchronized and Unsynchronized Permutations

In this section, we show the results of a simulation study in which NPC-based strat-

ified test is used adopting both synchronized and unsynchronized permutations. In

order to assess if the type of permutations affect the analysis it is sufficient a simple

case:

• Two treatments A and B;

• S = 2 strata;

• K = 3 variables correlated (ρ12 = ρ13 = ρ23 = 0.4) and uncorrelated;

• ns A = ns B = 20 ∀s = 1, 2.

As generating data, we considered Normal distribution and Student’s t with 3 degrees

of freedom. Furthermore, we considered cases in which treatment had the same

effect on across all strata and cases with different treatment effect across strata that

mimics a situation with a stratum by treatment interaction. Figures 1 and 2 show some

examples of interaction plots of generated samples used in the simulation study. Plots

in Fig. 1 represent a situation with treatment effect constant across strata. The first

plot represents a situation under the null hypothesis (no treatment effect), whereas

the second plot is under the alternative. Figure 2 represents a situation with treatment

effect interacting with strata.

Results of the simulation study are in the following figures. Figures 3 and 4 show

the rejection rates on 1000 simulations of the NPC-based stratified test based on

1000 permutations, when treatment effect is constant across strata, with independent

and correlated variables with Normal and Student’s t with 3 degrees of freedom

distribution, respectively. In this case, the treatment effect δ (on group B) is the same

in each stratum. Note that the two power curves of tests based on synchronized and

unsynchronized are perfectly overlapped, and under the null hypothesis (δ = 0) the

significance α-level is respected.
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Fig. 1 Interaction plots of some simulated samples with treatment effect constant across strata

Fig. 2 Interaction plots of

one simulated sample with

treatment effect varying

across strata

Figures 5 and 6 show the rejection rates on 1000 simulations of the NPC-based

stratified test based on 1000 permutations, when treatment effect varies across strata,

with variables independent and correlated for Normal and Student’s t distribution,

respectively. In this case, we show the treatment effect (on group B) in stratum 1 (δ1)

and in stratum 2 (δ2).

We already performed a simulation with unbalanced stratum size in each group

and results are consistent with the balanced case, so that we do not report the corre-

sponding results. From all these results we can conclude that, in case of independent

strata, we can use alternatively both synchronized and unsynchronized permutations

strategy. In particular, when we have balanced cases, i.e., strata in the same group

have equal size, for computational reasons synchronized permutations are preferable.

On the other hand, when we have the presence of unbalanced strata, e.g., because

of data missed completely at random, we can equivalently perform the NPC-based

stratified test using unsynchronized permutations.
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Fig. 3 Rejection rates of NPC-based stratified test when treatment effect is constant across strata,

with variables independent (left) and correlated (right), with Normal distributed data

Fig. 4 Rejection rates of NPC-based stratified test when treatment effect is constant across strata,

with variables independent (left) and correlated (right), with Student’s t distributed data

Fig. 5 Rejection rates of NPC-based stratified test when treatment effect varies across strata with

variables independent (left) and correlated (right), with Normal distributed data

4 An Example Application

The school of Engineering of the University of Padova (Italy) promoted the anal-

ysis of a huge database related to several information on the career of students.

The objective was multifold. One of these objectives was to understand if the type of

high school from which students come has an impact on the success in the University

entrance exam and on the number of university credits reached at the end of the first

academic year. In particular, it was of interest to compare schools with a scientific
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Fig. 6 Rejection rates of NPC-based stratified test when treatment effect varies across strata, with

variables independent (left) and correlated (right), with Student’s t distributed data

Table 3 Example of strata sizes of the example

School DC1 DC2 DC3 . . . DC12

A 62 106 25 . . . 40

B 46 211 17 . . . 107

Table 4 P-values of partial comparisons H1 : δk
As > δk

Bs , k ∈ (Score, CFU) and s ∈

(DC1, DC2, . . . , DC12)

DC1 DC2 DC3 . . . DC12

Score 0.0002 < 0.0001 0.540 . . . 0.0045

CFU 0.0001 < 0.0001 0.820 . . . 0.0007

Table 5 Combined p-values of the comparisons H1 : δk
A· > δk

B·, k ∈ (Score, CFU)

Score < 0.0001

CFU < 0.0001

curriculum (A) with schools with a technical curriculum (B). For this reason, the

score at the entrance exam and the number of university credits at the end of the first

academic year have been recovered from the database (K = 2). Since the School

of Engineering has S = 12 different degree courses (DC), we considered them as a

stratification factor. Table 3 shows an example of the (unbalanced) strata sizes. The

NPC-based stratified test has been applied to these data considering a one-sided alter-

native hypotheses H1 : δk
As > δk

Bs , k ∈ (Score, CFU) and s ∈ (DC1, DC2, . . . , DC12)

obtaining a global p-value λGlob < 0.0001. Furthermore, with the NPC procedure,

we can investigate all partial aspects as shown in Tables 4 and 5.

What we can see from the analysis is that students with a scientific curriculum

look to have better possibilities to face the first year of Engineering at the University

of Padova with respect to students with a technical curriculum.
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An Extension of the DgLARS Method to
High-Dimensional Relative Risk
Regression Models

Luigi Augugliaro, Ernst C. Wit, and Angelo M. Mineo

Abstract In recent years, clinical studies, where patients are routinely screened for

many genomic features, are becoming more common. The general aim of such studies

is to find genomic signatures useful for treatment decisions and the development of

new treatments. However, genomic data are typically noisy and high dimensional,

not rarely outstripping the number of patients included in the study. For this reason,

sparse estimators are usually used in the study of high-dimensional survival data. In

this paper, we propose an extension of the differential geometric least angle regression

method to high-dimensional relative risk regression models.

Keywords dgLARS · Gene expression data · High-dimensional data · Relative

risk regression models · Sparsity · Survival analysis

1 Introduction

In recent years, clinical studies, where patients are routinely screened for many

genomic features, are becoming more common. In principle, this holds the promise

of being able to find genomic signatures for a particular disease. In particular, cancer

survival is thought to be closely linked to the genomic constitution of the tumour.

Discovering such signatures will be useful in the diagnosis of the patient, may be

used for treatment decisions and, perhaps, even for the development of new treat-

ments. However, genomic data are typically noisy and high dimensional, not rarely

outstripping the number of patients included in the study. For this reason, sparse

estimators are usually used in the study of high-dimensional survival data.
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In the past two decades, sparse inference has been dominated by methods that

penalize the likelihood by functions of the parameters that happen to induce solutions

with many zero estimates. The Lasso [22], elastic net [24] and the SCAD [6] penalties

are only a few examples of such penalties that, depending on a tuning parameter,

conveniently shrink estimates to zeros. In [23], the Lasso penalty is applied to the

Cox proportional hazards model. Although the Lasso penalty induces sparsity, and

it is well known to suffer from a possible inconsistent selection of variables.

In this paper, we will approach sparsity directly from a likelihood point of view.

The angle between the covariates and the tangent residual vector within the likeli-

hood manifold provides a direct and scale-invariant way to assess the importance of

the individual covariates. The idea is similar to the least angle regression approach

proposed by [5]. However, rather than using it as a computational device for obtain-

ing Lasso solutions, we view the method in its own right as in [1]. Moreover, the

method extends directly the Cox proportional hazard model. In fact, we will focus

on general relative risk regression models.

2 Relative Risk Regression Models

Let T be the (absolutely) continuous random variable associated with the survival

time and let f (t) be the corresponding probability density function. The hazard

function specifies the instantaneous rate at which failures occur for subjects that are

surviving at time t and it is formally defined as λ(t) = f (t)/{1 −
∫ t

0
f (s)ds}.

As proposed in [21], we assume that a p-dimensional vector of predictors, possibly

time-dependent, say x(t) = (x1(t), . . . , x p(t))
�, can influence the hazard function

by the following model:

λ(t; x) = λ0(t)ψ(x(t);β), (1)

where β ∈ B ⊆ Rp is a p-dimensional vector of regression coefficients, λ0(t) is the

base line hazard function at time t , which is left unspecified, and ψ : Rp ×Rp → R

is a differentiable function, called the relative risk function, such that ψ(x(t);β) > 0,

for each β ∈ B. Model (1) extends the classical Cox regression model [4], and allows

us to work with applications in which the exponential form of the relative risk function

is not the best choice [12]. Table 1 reports some of the most used relative risk functions

(see [10] for more details).

Table 1 Some used relative risk regression functions

Exponential Linear Logit Excess

ψ(x(t); β) exp{β�x(t)} 1 + β�x(t) log[1 +

exp{β�x(t)}]

∏p
m=1{1 +

xm(t)βm}
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Suppose that n observations are available and let ti be the i th observed failure time.

Furthermore, assume that we have k uncensored and untied failure times and let D be

the set of indices for which the corresponding failure time is observed; the remaining

failure times are right censored. Denote with R(t) the risk set, i.e. the set of indices

corresponding to the subjects who have not failed and are still under observation just

prior to time t , under the assumption of independent censoring, inference about the

β can be carried out by the partial likelihood function

L p(β) =
∏

i∈D

ψ(xi (ti );β)
∑

j∈R(ti )
ψ(x j (ti );β)

. (2)

When the number of predictors exceeds the sample size, a direct maximization of

the partial likelihood (2) is not possible. In the next sections, we shall explain how

to use the differential geometrical structure of the relative risk regression model to

study its sparse structure.

3 DgLARS Method for Relative Risk Regression Models

3.1 Differential Geometrical Structure of a Relative Risk

Regression Model

In this section, we study the differential geometrical structure of the relative risk

regression model. To do this, we follow the approach proposed in [20], i.e. we relate

the partial likelihood (2) with the likelihood function of a logistic regression model

for matched case-control studies. The interested reader is also refereed to [16].

Consider an index i ∈ D and let Y i = (Yih)h∈R(ti ) be a multinomial random vari-

able with cell probabilities π i = (πih)h∈R(ti ) ∈ �i . Assuming that the random vec-

tors Y i are independent, the joint probability density function is an element of the

set S =
{
∏

i∈D

∏

h∈R(ti )
π

yih

ih : (π i )i∈D ∈
⊗

i∈D �i

}

, called the ambient space. We

would like to underline that our differential geometric constructions are invariant to

the chosen parameterization, which means that S can be equivalently defined by the

canonical parameter vector and this will not change the results. In this paper, we

prefer to use the mean value parameter vector to specify our differential geometrical

description because this will make the relationship with the partial likelihood (2)

clearer. If we let

Eβ(Yih) = πih(β) =
ψ(xh(ti );β)

∑

j∈R(ti )
ψ(x j (ti );β)

,

and we assume that for each i ∈ D, the observed yih is equal to one if h is

equal to i and zero otherwise, it is easy to see that the partial likelihood (2) is
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formally equivalent to the likelihood function associated with the model space

M =
{
∏

i∈D

∏

h∈R(ti )
{πih(β)}yih : β ∈ B

}

.

From a geometric point of view, the set M can be seen as a differentiable manifold

embedded in S, which plays the role of ambient space. To complete the differential

geometric framework needed to extend the dgLARS method to the relative risk

regression models, we have to introduce the notion of tangent space and equip it

with a suitable inner product. This can be done using the approach proposed in [17].

Let �(β) =
∑

i∈D

∑

h∈R(ti )
Yih log πih(β) be the log-likelihood function associ-

ated to the model space M and ∂m�(β) = ∂�(β)/∂βm . The tangent space of M

at the model point
∏

i∈D

∏

h∈R(i){πih(β)}yih , denoted by Tβ M , is defined as the

linear vector space spanned by the p elements of the score vectors, formally,

Tβ M = span{∂1�(β), . . . , ∂p�(β)}. In the same way, the tangent space of S at the

model point
∏

i∈D

∏

h∈R(i){πih(β)}yih , denoted by Tβ S, is defined as the linear vector

space spanned by the random variables ∂ih�(β) = ∂�(β)/∂πih . Applying the chain

rule, we can see that any tangent vector vβ =
∑p

m=1 vm∂m�(β) belonging to Tβ M

can be written as

vβ =

p
∑

m=1

vm∂m�(β) =
∑

i∈D

∑

h∈R(i)

{ p
∑

m=1

vm
∂πih(β)

∂βm

}

∂ih�(β) =
∑

i∈D

∑

h∈R(i)

wih∂ih�(β),

which shows that Tβ M is a linear subvector space of Tβ S.

Finally, to define the notion of angle between two given tangent vectors belonging

to Tβ M , say vβ =
∑p

m=1 vm∂m�(β) and wβ =
∑p

n=1 wn∂n�(β), we shall use the

information metric [17], in other words, the inner product between vβ and wβ is

defined as

�vβ;wβ�β = Eβ(vβwβ) =

p
∑

m,n=1

Eβ{∂m�(β)∂n�(β)}vmwn = v� I (β)w, (3)

where v = (v1, . . . , vp)
�, w = (w1, . . . , wp)

� and I (β) is the Fisher information

matrix evaluated at β. As observed in [11], the matrix I (β) is not exactly equal to

the Fisher information matrix of the relative risk regression model; however, it has

the same asymptotic properties for inference. Finally, to complete our differential

geometric framework, we need to introduce the notion of tangent residual vector rβ =
∑

i∈D

∑

h∈R(i) rih(β)∂ih�(β), where rih(β) = yih − πih(β), which is an element of

Tβ S and can be used to measure the difference between a model in M and the observed

survival data.

As shown in [1], the inner product (3) and the residual vector rβ can be used

to obtain a differential geometric characterization of the classical signed Rao score

test statistic for the mth regression coefficient. Formally, denoted by ru
m(β) the mth

signed Rao score test statistic, we can show that

ru
m(β) = I −1/2

mm (β)∂m�(β) = cos{ρm(β)}�rβ�β, (4)
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where �rβ�2
β =

∑

i∈D

∑

h,k∈R(i) Eβ{∂ih�(β)∂ik�(β)}rih(β)rik(β) and Imm(β) is the

mth diagonal element of I (β). The quantityρm(β) is a generalization of the Euclidean

notion of angle between the mth predictor and the tangent residual vector rβ , and it is

a natural and invariant quantity by means of measuring the strength of the relationship

between the mth predictor and the observed data. As we shall show in the next section,

characterization (4) establishes the theoretical foundation of the proposed method.

3.2 The Extension of the DgLARS Method

As formalized in [3], dgLARS is a method for constructing a path of solutions,

indexed by a positive parameter γ , where the nonzero estimates of each solution

can be defined as follows. For any dataset, there exists with probability one a finite

decreasing sequence of transition points, denoted by {γ ( j)}, such that for any γ ∈

(γ ( j); γ ( j−1)) the subvector of nonzero estimates, denoted by β̂ A(γ ), is defined as

solution of the following nonlinear equations

rh(β̂ A(γ )) − shγ = 0, ∀ h ∈ A, (5)

where A = {h : β̂h(γ ) "= 0} is called active set and sh = sign(rh(β̂ A(γ ))). Further-

more, for any k /∈ A we have that |rk(β̂(γ ))| < γ . At each transition point we have

a change in the active set.

Formally, γ ( j) is an inclusion transition point if exists a k /∈ A such that the

following condition is satisfied:

|rk(β̂ A(γ ( j)))| = γ ( j). (6)

In this case, the active set is updated adding the index k, i.e. the kth predictor is

included in the current relative risk model. To gain more insight about the geometrical

foundation of the condition (6), let h be an index belonging to A. Then, using equa-

tion (5) at the inclusion transition point, we have the identity |rh(β̂ A(γ (i)))| = γ (i).

Combining this identity with the inclusion condition (6) we have that, at γ (i), there

is a k /∈ A such that |rk(β̂ A(γ ( j)))| = |rh(β̂ A(γ ( j)))|, for any h ∈ A. Finally, using

characterization (4), we can conclude that condition (6) is equivalent to

cos{ρk(β̂ A(γ ( j)))} = cos{ρh(β̂ A(γ ( j)))}, (7)

for each h ∈ A and k /∈ A. Condition (7) is called generalized equiangularity condi-

tion [1] because it is a genuine generalization of the equiangularity condition pro-

posed in [5] to define the least angle regression method.

γ ( j) is an exclusion transition point if exists a h ∈ A such that the following

condition is satisfied:

sign(rh(β̂ A(γ ( j)))) "= sh . (8)
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In this case, the active set is updated removing the index h and the corresponding

predictor is removed from the relative risk regression model. The exclusion condi-

tion (8) is inherited from the exclusion condition of the lasso estimator. See Sect. 5

in [5] for more details.

Given the previous definition, the path of solutions defined by the dgLARS method

can be constructed in the following way. Since we are working with a class of regres-

sion models without intercept term, the starting point of the dgLARS curve is the

zero vector this means that, at the starting point, the p predictors are ranked using the

signed Rao score test statistics evaluated at zero. Suppose that h = arg maxm |ru
m(0)|,

then A = {h}, γ (1) = |ru
h (0)| and the first part of the dgLARS curve is implicitly

defined by the nonlinear equation ru
h {β̂h(γ )} − shγ = 0. The proposed method traces

the first part of the dgLARS curve reducing γ until we find the transition point γ (2)

corresponding to the inclusion of a new index in the active set, in other words, there

exists a predictor, say the kth, satisfying condition (6), then k is included in A and

the new part of the dgLARS curve is implicitly defined by the system with nonlinear

equations:
{

ru
h (β̂ A(γ )) − shγ = 0,

ru
k (β̂ A(γ )) − skγ = 0,

where β̂ A(γ ) = (β̂h(γ ), β̂k(γ ))�. The second part is computed reducing γ and solv-

ing the previous system until we find the transition point γ (3). At this point, if con-

dition (6) occurs a new index is included in A otherwise condition (8) occurs and an

index is removed from A. In the first case, the previous system is updated adding a

new nonlinear equation while, in the second case, a nonlinear equation is removed.

The curve is traced as previously described until parameter γ is equal to some fixed

value that can be zero, if the sample size is large enough, or some positive value,

if we are working in a high-dimensional setting. Table 2 reports the pseudocode of

the developed algorithm to compute the dgLARS curve for a relative risk regression

model.

Table 2 Pseudocode of the dgLARS algorithm for a relative risk regression model

Step Description

0. Let ru
m(β) be the Rao score statistic associated with the partial likelihood.

1. Let γ (1) = maxm |ru
m(0)| and initialize the active set A = arg maxm |ru

m(0)|

2. Repeat the following steps

3. Trace the segment of the dgLARS curve reducing γ and solving the system

ru
h {β̂ A(γ )} − shγ = 0, h ∈ A

4. Until γ is equal to the next transition point

5. If condition (6) is met then include the new index in A

6. Else (condition (8) is met) remove the index from A

7. Until γ reaches some small positive value
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From a computational point of view, the entire dgLARS curve can be computed

using the predictor-corrector algorithm proposed in [1]; for more details about this

algorithm, the interested reader is referred to [2, 3, 14].

4 Simulation Studies: Comparison with Other Variable

Selection Methods

In this section, we compare the proposed method with three popular variable selection

methods: the coordinate descent method [19], named CoxNet; the predictor-corrector

method [13], named CoxPath; and the gradient ascent algorithm [9], named Cox-

Pen. These methods are implemented in the R packages glmnet, glmpath and

penalized, respectively. Since these methods have only been implemented for

Cox regression model, our comparison will focus on this kind of relative risk regres-

sion model. In the following of this section, dgLARS method applied to the Cox

regression model is referred to as the dgCox model.

The simulation study is based on the following setting. First, we simulated 100

datasets from a Cox regression model where the survival times ti (i = 1, . . . , n) fol-

low exponential distributions with parameter λi = exp(x�
i β), and xi is sampled from

a p-variate normal distribution N(0, �); the entries of � are fixed to corr(Xm, Xn) =

ρ|m−n| with ρ ∈ {0.3, 0.6, 0.9}. The censorship is randomly assigned to the survival

times with probability π ∈ {0.2, 0.4}. The number of predictors is equal to 100

and the sample size is equal to 50 and 150. The first value is used to evaluate the

behaviour of the methods in a high-dimensional setting. Finally, we set βm = 0.2 for

m = 1, . . . , s, where s ∈ {5, 10}; the remaining parameters are equal to zero.

In order to study the global behaviour of each method, we use the following

approach. First, we fitted the models using a sequence of 50 values for the tuning

parameter; then, for each fitted model, we computed the false and true positive rate.

These quantities are used to compute the ROC curve. A method is declared globally

preferable, in the sense that it overcomes the other competitors for any value of the

tuning parameter, if its ROC curve is above the others. Table 3 reports some summary

measures: for each scenario, we compute the average area under the curve (AUC), the

average false positive rate (FPR) and the average true positive rate (TPR). In scenarios

where ρ = 0.3, CoxNet, CoxPath, and CoxPen exhibit a similar performance, having

overlapping curves for both levels of censoring, whereas dgCox method appears to

be consistently better with the largest AUC. A similar performance of the methods

has been also observed for the other combinations of ρ and π values. In scenarios

where the correlation among neighbouring predictors is high (ρ = 0.9), the dgCox

method is clearly the superior approach for all levels of censoring.
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Table 3 Comparison between the considered variable selection models. For each scenario, the

variable selection models are evaluated using the average area under the curve (AUC), the average

false positive rate (FPR) and the average true positive rate (TPR). First and second part of the table

are refereed to the simulation study with sample size equal to 50 and 150, respectively

s 5 10

ρ 0.3 0.6 0.9 0.3 0.6 0.9

π 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

dgCOX AUC 0.78 0.70 0.82 0.76 0.78 0.74 0.74 0.71 0.80 0.75 0.77 0.77

FPR 0.19 0.21 0.16 0.19 0.11 0.13 0.18 0.20 0.14 0.17 0.09 0.10

TPR 0.54 0.48 0.63 0.57 0.53 0.51 0.48 0.48 0.56 0.52 0.52 0.49

CoxNet AUC 0.72 0.68 0.79 0.71 0.73 0.68 0.71 0.69 0.75 0.70 0.75 0.69

FPR 0.30 0.27 0.27 0.25 0.21 0.21 0.29 0.26 0.25 0.23 0.18 0.18

TPR 0.57 0.53 0.63 0.54 0.50 0.46 0.45 0.53 0.56 0.51 0.47 0.45

CoxPath AUC 0.72 0.68 0.78 0.71 0.73 0.68 0.71 0.69 0.76 0.70 0.74 0.68

FPR 0.24 0.22 0.23 0.21 0.20 0.19 0.23 0.21 0.21 0.20 0.19 0.18

TPR 0.57 0.50 0.65 0.54 0.52 0.47 0.54 0.50 0.58 0.52 0.49 0.47

CoxPen AUC 0.71 0.69 0.76 0.70 0.72 0.66 0.71 0.68 0.74 0.69 0.75 0.69

FPR 0.12 0.11 0.09 0.09 0.04 0.05 0.10 0.10 0.08 0.08 0.04 0.04

TPR 0.42 0.36 0.48 0.41 0.41 0.36 0.37 0.34 0.40 0.35 0.36 0.32

dgCOX AUC 0.90 0.85 0.90 0.89 0.83 0.80 0.90 0.83 0.90 0.87 0.85 0.80

FPR 0.33 0.22 0.26 0.27 0.14 0.14 0.32 0.22 0.25 0.27 0.12 0.13

TPR 0.79 0.69 0.77 0.76 0.65 0.61 0.76 0.65 0.75 0.75 0.64 0.58

CoxNet AUC 0.88 0.83 0.87 0.84 0.76 0.72 0.88 0.81 0.88 0.84 0.78 0.71

FPR 0.32 0.36 0.34 0.31 0.39 0.32 0.30 0.36 0.35 0.31 0.38 0.30

TPR 0.88 0.89 0.85 0.86 0.81 0.79 0.85 0.88 0.81 0.88 0.79 0.76

CoxPath AUC 0.68 0.83 0.87 0.85 0.77 0.73 0.88 0.81 0.88 0.84 0.77 0.72

FPR 0.30 0.29 0.28 0.28 0.26 0.26 0.28 0.30 0.27 0.28 0.25 0.25

TPR 0.82 0.75 0.81 0.77 0.67 0.62 0.79 0.73 0.79 0.77 0.67 0.59

CoxPen AUC 0.87 0.83 0.86 0.84 0.76 0.72 0.88 0.81 0.88 0.83 0.78 0.72

FPR 0.16 0.17 0.11 0.12 0.05 0.05 0.15 0.17 0.09 0.12 0.04 0.04

TPR 0.82 0.57 0.62 0.59 0.50 0.48 0.56 0.55 0.56 0.59 0.47 0.42

5 Finding Genetic Signatures in Cancer Survival

In this section, we test the predictive power of the proposed method in two recent

studies. In particular, we focus on the identification of genes involved in the regulation

of prostate cancer [18] and ovarian cancer [8]. The setup of the two studies was

similar. In the patient, cancer was detected and treated. When treatment was complete

a follow-up started. In all cases, the expression of several genes was measured in the

affected tissue together with the survival times of the patients, which may be censored

if the patients were alive when they left the study. Although other socio-economical
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Table 4 Description of the studied datasets and summary of the main results

Dataset Sample size n. uncensored p n. selected

genes

p-value

Prostate 61 24 162 24 0.033

Ovarian 103 57 306 43 0.004

variables, such as age, sex, and so on, are available, our analysis only focuses on the

impact of the gene expression levels on the patients’ survival.

Table 4 contains a brief description of the two datasets used in this section. In each

case, the number of predictors is larger than the number of patients. In genomics, it

is common to assume that just a moderate number of genes affect the phenotype of

interest. To identify such genes in this survival context, we estimate a Cox regression

model using the dgLARS method. We randomly select a training sample that contains

the 60% of the patients and we save the remaining data to test the models. We

calculate the paths of solutions in the two cases and we select the optimal number

of components by means of the G I C criterion. For the prostate and ovarian studies,

we find gene profiles consisting of, respectively, 24 and 43 genes.

In order to illustrate the prediction performance of the dgLARS method, we

classify the test patients into a low-risk group and a high-risk group by splitting the test

sample into two subsets of equal size according to the estimated individual predicted

excess risk. To test the group separation, we use a non-parametric modification of

the Gehan–Wilcoxon test [15]. For the two studies, the difference between the low-

and high-risk groups is significant at the traditional 0.05 significance level.

6 Conclusions

In this paper, we have proposed an extension of the differential geometric least angle

regression method to relative risk regression models using the relationship existing

between the partial likelihood function and a specific generalized linear model. The

advantage of this approach is that the estimates are invariant to arbitrary changes

in the measurement scales of the predictors. Unlike SCAD or �1 sparse regression

methods, no prior rescaling of the predictors is needed. The proposed method can be

used for a large class of survival models, the so-called relative risk models. We have

code for the Cox proportional hazards model and the excess relative risk model.
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A Kernel Goodness-of-fit Test for

Maximum Likelihood Density Estimates

of Normal Mixtures

Dimitrios Bagkavos and Prakash N. Patil

Abstract This article contributes a methodological advance so as to help practition-

ers decide in selecting between parametric and nonparametric estimates for mixtures

of normal distributions. In order to facilitate the decision, a goodness-of-fit test based

on the integrated square error difference between the classical kernel density and the

maximum likelihood estimates is introduced. Its asymptotic distribution under the

null is quantified analytically and a hypothesis test is then developed so as to help

practitioners choose between the two estimation options. The article concludes with

an example which exhibits the operational characteristics of the procedure.

Keywords Goodness-of-fit · Normal mixtures · Kernel smoothing

1 Introduction

The choice between parametric and nonparametric density estimates is a topic fre-

quently encountered by practitioners. The parametric (maximum likelihood, ML)

approach is a natural first choice under strong evidence about the underlying den-

sity. However, estimation of normal mixture densities with unknown number of

mixture components can become very complicated. Specifically, misidentification

of the number of components greatly impairs the performance of the ML estimate

and acts incrementally to the usual convergence issues of this technique, e.g., [11].

A robust nonparametric alternative, immune to the above problems is the classical

kernel density estimate (kde).

The purpose of this work is to investigate under which circumstances one would

prefer to employ the ML or the kde. A goodness-of-fit test is introduced based on the
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Integrated Squared Error (ISE) which measures the distance between the true curve

and the proposed parametric model. Section 2 introduces the necessary notation

and formulates the goodness-of-fit test. Its asymptotic distribution is discussed in

Sect. 3 together with the associated criteria for acceptance or rejection of the null.

An example is provided in Sect. 4. All proofs are deferred to the last Section.

2 Setup and Notation

Let φ denote the standard normal density and φσ (x) = σ−1φ(xσ−1) its scaled ver-

sion. Let µ = (μ1, . . . , μk) where for each μi ∈ µ, −∞ < μi < +∞ and σ =
(σ1, . . . , σk) where each σi > 0. Let also w = (w1, w2, . . . , wk) be a vector of posi-

tive parameters summing to one. The finite positive integer k denotes the number of

mixing components. Then,

f (x;µ, σ, w) =
k

�

l=1

wlφσl
(x − μl) (1)

is a normal mixture density with location parameter µ, scale parameter σ , and mixing

parameter w. The number of mixing components k is estimated prior and separately

to estimation of (µ, σ, w). Thus it is considered as a fixed constant in the process of

ML estimation. Popular estimation methods for k include clustering as in [14] or by

multimodality hypothesis testing as in [6] among many others. Regarding µ, σ, w,

these are considered to belong to the parameter space � defined by

� =
�

µ, σ , w :
k

�

i=1

wi = 1, wi ≥ 0, μi ∈ R, σi ≥ 0 for i = 1, . . . , k

"

.

The analysis herein assumes that all estimates are based on a random sample

X1, X2, . . . , Xn from f (x;µ, σ, w). The parametric MLE is denoted by

f̂ (x; µ̂, σ̂ , ŵ) =
k

�

l=1

ŵlφσ̂l
(x − μ̂l), (2)

where (µ̂, σ̂ , ŵ) denote the estimates of (µ, σ, w) resulting by maximization of

l(µ, σ, w) =
n

�

i=1

log

§

¨

©

k
�

j=1

wlφσl
(Xi − μl)

«

¬

­

, (3)

subject to (µ, σ, w) ∈ �. Direct estimation of the density parameters by maximum

likelihood is frequently problematic as (3) is not bounded on the parameter space,
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see [3]. In spite of this, statistical theory guarantees that one local maximizer of the

likelihood exists at least for small number of mixtures, e.g., [8] for k = 2. More-

over this maximizer is strongly consistent and asymptotically efficient. Several local

maximizers can exist for a given sample, and the other major maximum likelihood

difficulty is in determining when the correct one has been found. Obviously all these

issues, i.e., correct estimation of k, existence and identification of an optimal solution

for (3), result in the ML estimation process to perform frequently poorly in practice.

A natural alternative is the classical kernel estimate of the underlying density which

is given by

f̂ (x; h) = (nh)−1

n
�

i=1

K
�

(x − Xi)h
−1

�

, (4)

where h called bandwidth controls the amount of smoothing applied to the estimate

and K , called kernel, is a real function integrating to 1. Attention here is restricted

to second-order kernels as from [10], and it is known that using higher order kernels

bears little improvement for moderate sample sizes. In estimating f (x;µ, σ, w) by

f̂ (x; h), especially when K = φ, the MISE of the estimate can be quantified explicitly.

The purpose of this research is to develop a goodness-of-fit test for

H0 : f (x) = f (x;µ, σ, w) vs H1 : f (x) �= f (x;µ, σ, w).

Its construction is based on the integrated square error of f (x; µ̃, σ̃ , w̃) given by

In =
�

�

f (x) − f (x; µ̃, σ̃ , w̃)
�2

dx,

where {µ, σ, w} = {µ̃, σ̃ , w̃} under H0. Estimation of f (x) by a kernel estimate and

f (x; µ̃, σ̃ , w̃) by f̂ (x; µ̂, σ̂ , ŵ) yields the estimate, În of In, defined by

În =
�

�

f̂ (x; h) − f (x; µ̂, σ̂ , ŵ)

�2

dx

≡
�

f̂ 2(x; µ̂, σ̂ , ŵ) dx − 2

�

f̂ (x; µ̂, σ̂ , ŵ)f̂ (x; h) dx +
�

f̂ 2(x; h) dx. (5)

For K = φ by Corollary 5.2 in [1],

�

f̂ 2(x; µ̂, σ̂ , ŵ) dx =
k

�

l=1

k
�

r=1

ŵl ŵrφ
(σ̂2

l
+σ̂2

r )
1
2
(μ̂l − μ̂r). (6)

�

f̂ 2(x; h) dx =
�

�

(nh)−1
n

�

i=1

φ(x − Xi)

"2

dx = (nh)−2
n

�

i=1

n
�

j=1

φ√
2
(Xi − Xj). (7)

Similarly,
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�

f̂ (x; µ̂, σ̂ , ŵ)f̂ (x; h) dx = (nh)−1

n
�

i=1

k
�

l=1

φ
(σ̂ 2

l +1)
1
2
(Xi − μl). (8)

Using (6), (7), and (8) back to (5) gives

În =
k

�

l=1

k
�

r=1

ŵlŵrφ
(σ̂ 2

l +σ̂ 2
r )

1
2
(μ̂l − μ̂r) − 2(nh)−1

n
�

i=1

k
�

l=1

φ
(σ̂ 2

l +1)
1
2
(Xi − μ̂l)

+ (nh)−2

n
�

i=1

n
�

j=1

φ√
2(Xi − Xj), (9)

which is an equivalent expression for În that does not require integration.

3 Distribution of În Under the Null

This section establishes the null distribution of the test statistic In. First, the following

assumptions are introduced,

1. h → 0 and nh2 → +∞ as n → +∞.

2. The density f (x;µ, σ, w) and its parametric estimate f̂ (x; µ̂, σ̂ , ŵ) are bounded,

and their first two derivatives exist and are bounded and uniformly continuous

on the real line.

3. Let s be any of the estimated vectors µ, σ, w and let ŝ denote its estimate. Then,

there exists a s∗ such that s → s∗ almost surely and

s − s∗ = n−1A(s∗)
n

�

i=1

D log f (Xi; s∗) + op(n
−1/2)

where D log f (Xi; s∗) is a vector of the first derivatives of log f (Xi; s∗) with

respect to sj and evaluated at s∗
j while

A(s∗) = E

�

∂2 log f (Xi; s∗)

∂sj∂s"
j

"

"

"

s=s∗

"

.

Theorem 1 Under assumptions 1–3 and under the null hypothesis,

d(n)

�

În − c(n)

�

→

§

⎪

⎪

¨

⎪

⎪

©

(σ 2
1 − σ 2

30)
1
2 Z if nh5 → ∞

21/2σ2Z if nh5 → 0
#

λ
1
2 (σ 2

1 − σ 2
30)λ

4
5 + 2λ− 1

5 σ 2
2

�
1
2

Z if nh5 → λ

(10)
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with 0 < λ < +∞,

c(n) = 1

nh

1

2
√

π
+ h4

4

�

k
�

l=1

k
�

r=1

wlwrφ
(4)

(σ 2
l +σ 2

r )
1
2

(μl − μr)

"

+ o(h4)

σ 2
1 =

�

{f ""(x)}2f (x) dx −
��

f ""(x)f (x) dx

�2

= Var{f ""(x)}

σ 2
2 = 1

2
√

2π

k
�

l=1

k
�

r=1

wlwrφ
(σ 2

l +σ 2
r )

1
2
(μl − μr)

σ 2
30 = σ 2

30(µ, σ, w) =
��

D"f0(x,µ, σ, w)f ""(x) dx

�

A(µ, σ, w)−1

×
��

Df0(x,µ, σ, w)f ""(x) dx

�

and

d(n) =

§

⎪

¨

⎪

©

nh1/2 if nh5 → 0

n1/2h−2 if nh5 → +∞
n9/10 if nh5 → λ �= 0.

Thus, in testing H0 against H1 with significance level α we have

În/

�

Var(În) → N (0, 1),

where

Var(În) =

§

⎪

¨

⎪

©

σ 2
1 − σ 2

30 if nh5 → ∞
(21/2σ2)

2 if nh5 → 0

λ
1
2 (σ 2

1 − σ 2
30)λ

4
5 + 2λ− 1

5 σ 2
2 if nh5 → λ.

Consequently, the test suggests rejection of H0 when

În

#

Var(În)

�−1/2

> zα,

where zα is the standard normal quantile at level α. Of course rejection of H0 advises

for using a kernel estimate instead of (2) for estimation of the underlying density.

4 An Example

As an illustrative example, the Galaxies data of [14] are used. The data represent

velocities in km/sec of 82 galaxies from 6 well-separated conic sections of an unfilled
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survey of the Corona Borealis region. Multimodality in such surveys is evidence for

voids and superclusters in the far universe.

The hypothesis that k = 6 is also verified by the multimodality test of [6] and thus

it is adopted in the present example as well. Figure 1 contains the ML (solid line) and

kernel (dashed red line) estimates after scaling the data by 1000. The null hypothesis

of goodness-of-fit of the ML estimate was tested at 5% significance level, using as

variance the third component of the variance expression. The test procedure gives

În

#

Var(În)

�−1/2

= 1.98 > z0.95 = 1.64

and therefore suggests rejection of the null. This is also supported by Fig. 1 where it is

seen that two distinctive patterns around x = 18 and x = 24 (and one less distinctive at

around x = 28) are masked by the ML estimate. On the contrary, the fixed bandwidth

estimate f̂ (x; h) implemented with the Sheather–Jones bandwidth can detect the

change in the pattern of the density. It is worth noting that the variable bandwidth

estimate f̃ (x) has also been tested with the specific data set and found to perform

very similarly to f̂ (x; h).

5 Proof of Theorem 1

Write
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Fig. 1 Variable bandwidth and ML estimates for the Galaxies data
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În =
�

#

f̂ (x; µ̂, σ̂ , ŵ) − f̂ (x; h)

�2

dx

=
�

#

f̂ (x;µ, σ, w) − f (x;µ, σ, w) + f (x;µ, σ, w) − f̂ (x; h)

�2

dx

=
�

#

f̂ (x; h) − f (x;µ, σ, w)

�2

dx

− 2

�

#

f̂ (x; h) − f (x;µ, σ, w)

� #

f̂ (x; µ̂, σ̂ , ŵ) − f (x;µ, σ, w)

�

dx

+
�

#

f̂ (x; µ̂, σ̂ , ŵ) − f (x;µ, σ, w)

�2

dx

≡ I1 − 2I2 + I3. (11)

Now, under H0,

I3 =
�

#

f̂ (x; µ̂, σ̂ , ŵ) − f (x;µ, σ, w)

�2

dx

=
� � k

�

i=1

wi

2σ 3
i

�

(x − μi)
2 − (x − μ̂i)

2

�

(1 + op(n
−1))

�2

dx = op(n
−1), (12)

since under the null the parameters of the normal converge to the true values. Also,

I2 =
�

#

f̂ (x; h) − f (x;µ, σ, w)

� #

f̂ (x; µ̂, σ̂ , ŵ) − f (x;µ, σ, w)

�

dx

=
�

#

f̂ (x; h) − f (x;µ, σ, w)

� #

Ef̂ (x; µ̂, σ̂ , ŵ) − f (x;µ, σ, w)

�

dx + op(n
−1)

≡ J2 + op(n
−1). (13)

In (13), we used that under the null

sup
x

|f̂ (x; µ̂, σ̂ , ŵ) − Ef̂ (x; µ̂, σ̂ , ŵ)| = op(n
−1).

Thus, using (12) and (13) back to (11) yields the asymptotically equivalent expression

for In

În ≡ I1 − 2J2 + op(n
−1). (14)

Now,



74 D. Bagkavos and P. N. Patil

I1 =
�

#

f̂ (x; h) − Ef̂ (x; h) + Ef̂ (x; h) − f (x;µ, σ, w)

�2

dx

= (nh)−2

n
�

i=1

n
�

j=1

H (Xi, Xj) + h4

4
μ2(K)R(f "")

− 2

�

#

f̂ (x; h) − Ef̂ (x; h)

� #

Ef̂ (x; h) − f (x;µ, σ, w)

�

dx (15)

after using the squared bias expression of f̂ from [10], and

H (Xi, Xj) =
� �

K

�

x − Xi

h

�

− EK

�

x − Xi

h

���

K

�

x − Xj

h

�

− EK

�

x − Xj

h

��

dx.

Using the fact that K is a symmetric kernel and separating out the diagonal terms in

the double sum in (15) we can write

(nh)−2

n
�

i=1

n
�

j=1

H (Xi, Xj) = (nh)−2
��

1≤i<j≤n

H (Xi, Xj) + (nh)−1R(K). (16)

By (15) and (16),

I1n − h4

4
μ2(K)R(f "") − 1

nh
R(K) ≡ I1n − c(n) = (nh)−2

n
�

i=1

n
�

j=1

H (Xi, Xj) (17)

−2

�

#

f̂ (x; h) − Ef̂ (x; h)

� #

Ef̂ (x; h) − f (x;µ, σ, w)

�

dx. (18)

Combining (14) and (18) and rearranging yields

În − c(n) = (nh)−2
��

i<j

H (Xi, Xj) (19)

+2

�

"#

f̂ (x; h) − Ef̂ (x; h)

�

−
#

f̂ (x; µ̂, σ̂ , ŵ) − f (x;µ, σ, w)

�"

× (20)

#

Ef̂ (x; h) − f (x;µ, σ, w)

�

dx (21)

= 2(nh)−2
��

i<j

H (Xi, Xj) + 2k2h2n−1

n
�

i=1

Zi, (22)

where Zi is a term (see [5]) such that

h2n−1

n
�

i=1

Zi = Op(h
2n−1/2).
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Moreover, under the null and when nh5 → ∞, this term determines the limiting

distribution of the right-hand side of (22). Now, under the null, the fact that

√
nh−2

�

#

f̂ (x; h) − Ef̂ (x; h)

� #

Ef̂ (x; h) − f (x;µ, σ, w)

�

dx → k2σ1Z

is a standard result. Taking into account that d(n) = n1/2h−2 and by applying the

Lyapunov Central Limit Theorem yields

n1/2

n
�

i=1

Zi → N (0, σ 2
1 − σ 2

30)

which proves the first leg of (10). For proving the second leg, we have that under the

null and for nh5 → 0, d(n) = n
√

h. In this case

h2n−1

n
�

i=1

Zi = Op((nh5)1/2) = op(1).

Hence the limit distribution of d(n)(In − c(n)) has the same distribution as the first

term on the right-hand side of (22). By a direct application of Theorem 1 of [7]

and taking into account also the proof of Theorem 3.2 in [5], it is straightforward to

deduce that

n
√

h

§

¨

©

(nh)−2
��

1≤i<j≤n

H (Xi, Xj)

«

¬

­

→
√

2σ2Z

, and thus establish the middle part on the right-hand side of (10). For the remaining

part of (10), note that when nh5 → λ, d(n) = n9/10 and hence no term on the right-

hand side of (22) dominates the other since both are of the same order. Therefore, in

this case, the limiting distribution of d(n)(In − c(n)) is given by the sum of the limit

distribution of the two terms since, both terms are uncorrelated to each other.
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Robust Estimation of Sparse Signal with
Unknown Sparsity Cluster Value

Eduard Belitser, Nurzhan Nurushev, and Paulo Serra

Abstract In the signal+noise model, we assume that the signal has a more gen-

eral sparsity structure in the sense that the majority of signal coordinates are equal

to some value which is assumed to be unknown, contrary to the classical sparsity

context where one knows the sparsity cluster value (typically, zero by default). We

apply an empirical Bayes approach (linked to the penalization method) for inference

on the signal, possibly sparse in this more general sense. The resulting method is

robust in that we do not need to know the sparsity cluster value; in fact, the method

extracts as much generalized sparsity as there is in the underlying signal. However,

as compared to the case of known sparsity cluster value, the proposed robust method

cannot be reduced to thresholding procedure anymore. We propose two new proce-

dures: the empirical Bayes model averaging (EBMA) and empirical Bayes model

selection (EBMS) procedures, respectively. The former is procedure realized by an

MCMC algorithm based on the partial (mixed) normal–normal conjugacy build in

our modeling stage, and the latter is based on a new optimization algorithm of O(n2)-

complexity. We perform simulations to demonstrate how the proposed procedures

work and accommodate possible systematic error in the sparsity cluster value.
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1 Introduction

The principle of parsimony, known as Occam’s razor, is arguably one of the most

fundamental ideas that pervade science, and sparsity has become a popular paradigm

in statistical analyses, as a particular manifestation of the parsimony principle in the

context of modern statistics. Much of this popularity has been driven by the success

of frequentist (and Bayesian) methods utilizing the underlying sparsity structure of

the unknown parameter of interest.

In general, a sparse signal is a high-dimensional parameter which allows a parsi-

monious representation. In signal processing, this is typically expressed by assuming

that it contains only a small number of non-zero elements compared to its dimension.

The value zero of the sparsity cluster has the interpretation of being “insignificant”

for the corresponding coordinates. Any other value of the sparsity cluster can be

handled as well in the analysis (in fact, we can always reduce to zero by subtracting

that value) as long as this value is known a priori to the observer.

In the signal+noise setting, the best-studied problem is that of signal estimation,

and a variety of estimation methods and results are available in the literature: [1, 3–

8]. Thresholding strategies are particularly appealing, mainly because thresholding

automatically generates sparsity. In addition, the corresponding procedures generally

exhibit fast convergence properties. Moreover, thresholding processes the signal in a

coordinate-wise fashion, resulting in low complexity algorithms (typically of order

n), which are easy to implement in practice.

Many methods have Bayesian connections. For example, even some seemingly

non-Bayesian estimators can be obtained as certain quantities (like posterior mode

for penalized estimators) of the posterior distributions resulting from imposing some

specific priors on the parameter; cf. [1, 2, 4, 6, 8, 11]. A common Bayesian way

to model sparsity structure is by the two-group priors. Such a prior puts positive

mass on vector θ with some exact zero coordinates (zero group) and the remaining

coordinates (signal group) are drawn from a chosen distribution. As pointed out by [6]

(also by [8]), the prior distributions of non-zero coordinates should not have too light

tails; otherwise, one gets sub-optimal convergence rates (or even inconsistency). The

important Gaussian case is, for example, excluded, [6, 8] use therefore heavy-tailed

priors. On the other hand, in [4], it was shown that normal priors are still usable and

lead to strong local results (even for non-iid, non-normal models) if combined with

the empirical Bayes approach.

However, all these above-mentioned approaches are based on the essential

assumption that the sparsity cluster value is known to the observer (which is set

to zero by default). In this note, we relax these modeling assumptions by allowing

the sparsity cluster value to be an unknown constant, obtaining a robust formulation

of the estimation problem. This situation can occur when, for example, there is a

systematic error in the observations and sparsity coordinates get shifted by unknown

value (bias of systematic error), leading to what we call sparsity cluster with unknown

cluster value. It is clear that thresholding procedures are not going to be applicable

in this situation, so we need to deal with methodological and computational issues.
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We address the first aspect by applying an empirical Bayes approach, which delivers

two robust procedures: the empirical Bayes model averaging (EBMA) and empiri-

cal Bayes model selection (EBMS) procedures. As to the computational issue, the

former procedure is realized by an MCMC algorithm based on the partial (mixed)

normal–normal conjugacy in the model, and the latter is based on a new optimization

algorithm of O(n2)-complexity (cf. O(n)-complexity for typical thresholding proce-

dures). We perform simulations to demonstrate how the proposed procedures work

and accommodate possible systematic error in the sparsity cluster value.

2 Setting and Notation

Suppose we observe X = X (σ,n) = (X1, . . . , Xn):

Xi = θi + σξi, i ∈ [n] = {1, . . . , n}, (1)

where θ = (θ1, . . . , θn) ∈ Rn is an unknown high-dimensional parameter of interest,

ξi

ind∼ N (0, 1), σ > 0 is the known noise intensity. The goal is to make inference on

the parameter θ based on the data X . We exploit the empirical Bayes approach and

make a connection with the penalization method.

Denote the probability measure of X from the model (1) by Pθ = P
(σ,n)
θ , and

by Eθ the corresponding expectation. For notational simplicity, we often skip the

dependence on σ and n. Denote by 1E = 1{E} the indicator function of the event

E, and by |S| the cardinality of the set S. Let [n] = {1, . . . , n} and [n]0 = {0} ∪ [n]
for n ∈ N = {1, 2, . . .}. For I ⊆ [n], define I c = {i ∈ [n] : i /∈ I}. Let I = In = {I :
I ⊆ [n]} be the family of all subsets of [n] including the empty set. Through-

out, we assume the conventions that āI = 1
|I |

∑

i∈I ai,
∑

i∈∅
ai = 0,

∏

i∈∅
ai = 1,

∑b
a ai =

∑

afifb ai,
∑

i ai =
∑

i∈[n] ai,
∑

I aI =
∑

I∈I
aI for any ai, aI , a, b ∈ R and

0 log(c/0) = 0 (hence (c/0)0 = 1) for any c > 0. Let X 2
[1] g θ2

[2] g · · · g X 2
[n] be the

ordered values of X 2
1 , . . . , X 2

n , introduce also X 2
[0] = ∞.

Throughout, ϕ(x, μ, σ 2) will be the density of μ + σZ ∼ N (μ, σ 2) at point x,

where Z ∼ N (0, 1). By convention, N (μ, 0) = δμ denotes a Dirac measure at point

μ. Finally, let �x� denote the usual norm of x ∈ Rn.

3 Empirical Bayes Approach

First, we introduce a family of normal priors (similar to priors from [4]). Next,

by applying the empirical Bayes approach to the normal likelihood, we derive an

empirical Bayes posterior for the case of unknown sparsity cluster value, and use

this posterior in further inference on θ .
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3.1 Multivariate Normal Prior

To model a possible sparsity cluster of unknown cluster value in the parameter θ ,

the coordinates of θ can be split into two distinct groups of coordinates of θ : for

some I ∈ I , θI = (θi, i ∈ I) and θI c = (θi, i ∈ I c), so that θ = (θI , θI c). The group

θI c = (θi, i /∈ I) consists of coordinates that are all assumed to be (almost) equal to

some cluster value μc, and θI = (θi, i ∈ I) is the group of coordinates significantly

different from μc. To model sparsity with unknown sparsity cluster value, we propose

a prior on θ given I as follows:

πI =
⊗

i
N

(

μi(I), τ
2
i (I)

)

,

where μi(I) = μi1{i ∈ I} + μc1{i /∈ I}, τ 2
i (I) = σ 2Kn(I)1{i ∈ I}, Kn(I) = ( en

|I | −
1)1{I "= ∅}. The indicators in the above prior ensure the sparsity of the group I c.

The rather specific choice of Kn(I) is made for the sake of concise expressions in

later calculations, many other choices are actually possible. By using the normal

likelihood "(θ, X ) = (2πσ 2)−n/2 exp{−�X − θ�2/2σ 2}, the corresponding poste-

rior distribution for θ is readily obtained:

πI (ϑ |X ) =
⊗

i
N

(τ 2
i (I)Xi + σ 2μi(I)

τ 2
i (I) + σ 2

,
τ 2

i (I)σ 2

τ 2
i (I) + σ 2

)

. (2)

Next, introduce the prior λ on I . For κ > 0, draw a random set from I with

probabilities

λI = cκ,n exp
{

− κ|I | log( en
|I | )

}

= cκ,n(
en
|I | )

−κ|I |, I ∈ I ,

where cκ,n is the normalizing constant.

Remark 1 A logical choice for λI seems to be the uniform prior on I : λ̄I =
(

n

|I |
)−1

.

However, this prior is not monotone with respect to the cardinality |I |, whereas we

would like to penalize large cardinalities. As ( n
k
)k f

(

n

k

)

f ( en
k
)k for k ∈ [n]0, we take

the above defined prior λI as monotone (in |I |) proxy for λ̄I , with an extra parameter

κ to control the amount of penalization; κ = 1 corresponds to the prior λ̄I .

Combining the conditional prior πI with the prior λI gives the mixture prior on θ :

π =
∑

I λIπI . This leads to the marginal distribution of X : PX =
∑

I λI PX ,I , with

PX ,I =
⊗

i N
(

μi(I), σ
2 + τ 2

i (I)
)

, and the posterior of θ is

π(ϑ |X ) =
∑

I

πI (ϑ |X )π(I |X ), (3)
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where πI (ϑ |X ) is defined by (2) and the posterior π(I |X ) for I is

π(I |X ) = λI PX ,I

PX

=
λI

∏

i ϕ
(

Xi, μi(I), σ
2 + τ 2

i (I)
)

∑

J∈I
λJ

∏

i ϕ
(

Xi, μi(J ), σ 2 + τ 2
i (J )

) . (4)

3.2 Empirical Bayes Posterior

The parameters μi(I) are yet to be chosen in the prior. We choose μi(I) by

using empirical Bayes approach. The marginal likelihood PX is readily maxi-

mized with respect to μi(I): μ̂i(I) = Xi for i ∈ I and μ̂i(I) = X̄I c for i ∈ I c, where

X̄I c = 1
|I c|

∑

i∈I c Xi. We substitute μ̂ = (μ̂(I), I ∈ I ) instead of μ = (μ(I), I ∈ I )

in the expression (3) for π(ϑ |X ), obtaining the empirical Bayes posterior (called

empirical Bayes model averaging (EBMA) posterior)

π̃(ϑ |X ) =
∑

I

π̃I (ϑ |X )π̃(I |X ),

where the empirical Bayes conditional posterior (recall that N (μ, 0) = δμ)

π̃I (ϑ |X ) =
∏

i∈I

N
(

Xi,
Kn(I)σ

2

Kn(I)+1

)

⊗
∏

i∈I c

δX̄Ic

is obtained from (2) with μi(I) = μ̂i(I) = Xi1{i ∈ I} + X̄I c1{i ∈ I c}, and

π̃(I |X ) = λI PX ,I
∑

J∈I
λJ PX ,J

= λI

∏

i ϕ(Xi, μ̂i(I), σ
2 + τ 2

i (I))
∑

J∈I
λJ

∏

i ϕ(Xi, μ̂i(J ), σ 2 + τ 2
i (J ))

is the empirical Bayes posterior for I ∈ I , obtained from (4) with μi(I) = μ̂i(I). Let Ẽ

and ẼI be the expectations with respect to the measures π̃(ϑ |X ) and π̃I (ϑ |X ) respec-

tively. Then ẼI (ϑ |X ) = μ̂(I) = (Xi1{i ∈ I} + X̄I c1{i ∈ I c}, i ∈ [n]). Introduce the

EBMA mean estimator

θ̃EB = θ̃EB(κ, X ) = Ẽ(ϑ |X ) =
∑

I∈I

ẼI (ϑ |X )π̃(I |X ) =
∑

I∈I

μ̂(I)π̃(I |X ). (5)

Consider an alternative (“more Bayesian”) empirical Bayes posterior. First, derive

an empirical Bayes variable selector Î by maximizing π̃(I |X ) over I ∈ I (any max-
imizer will do) as follows:

Î =argmax
I∈I

π̃(I |X ) = argmax
I∈I

{

−
∑

i∈Ic

(Xi−X̄Ic )2

2σ2 − |I |
2 log(Kn(I) + 1) + log λI

}

= argmin
I∈I

{

∑

i∈Ic

(Xi − X̄Ic )2 + (2κ + 1)σ 2|I | log
(

en
|I |

)

}

. (6)
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Now plugging in Î into π̃I (ϑ |X ) yields another empirical Bayes posterior (called

empirical Bayes model selection (EBMS) posterior) and the corresponding EBMS

mean estimator for θ : with μ̂i(I) = (Xi1{i ∈ I} + X̄I c1{i ∈ I c}, i ∈ [n]),

π̂(ϑ |X ) = π̃Î (ϑ |X ), θ̂EB = Ê(ϑ |X ) = μ̂(Î) = (μ̂i(I), i ∈ [n]), (7)

where Ê denotes the expectation with respect to the measure π̂(ϑ |X ).

4 Known Sparsity Cluster Value: Thresholding Procedures

In the traditional sparsity setting, the sparsity cluster value is assumed to be known

and set to be zero without loss of generality. This case is well studied, various esti-

mators are proposed and studied in the literature, see [1, 4–8], and further references

therein. Many estimation procedures originate as penalized estimators minimizing

the criterion crit(X , θ) = �X − θ�2 + P(θ), for some appropriately chosen penalties

P(θ), or as (empirical) Bayes estimators according to appropriately chosen priors.

An extensive discussion on this can be found in [1].

Notice that whenever the penalty crit(X , θ) is of an "0-type, i.e., P(θ) = p(�θ�0)

for some function p and �θ�0 =
∑

i 1{θi "= 0}, the resulting penalized estimator is

a thresholding estimator θ̌i = Xi1
{

|Xi| g ť
}

, where ť = |X[ǩ]| and ǩ is the minimizer

of
∑n

i=k+1 X 2
[i] + p(k), k ∈ [n]0 (recall that ∞ = X 2

[0] > X 2
[1] g . . . g X 2

[n]). Thresh-

olding strategies are particularly appealing because thresholding automatically gen-

erates sparsity. Besides, thresholding procedures generally exhibit fast convergence

properties and process the signal in a coordinate-wise way, which results in low com-

plexity algorithms. There is a vast literature on this topic, see, e.g., [10] and further

references therein.

Remark 2 The Bayesian approach can be connected to the penalized estimation by

relating the penalties to the corresponding priors on θ . Penalties of "0-type can be

linked to Bayesian procedures involving priors on the number of non-zero entries of

θ , see [1].

Within the framework of the present paper, the case of the known sparsity cluster

value corresponds to taking μc = 0 in the prior πI . This leads to μ̂i(I) = 0 for i ∈ I c

in all the posterior quantities of Sect. 3.2, and the criterion (6) reduces to

Ǐ = argmin
I∈I

{

∑

i∈I c

X 2
i + Kσ 2|I | log

(

en
|I |

)

}

, K = 2κ + 1,

which is reminiscent of the penalization procedure from [5] (cf. also [1]), with the

penalty p(k) = Kσ 2k log( en
k
). Indeed, it can be easily seen that
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Ǐ =
{

i ∈ [n] : |Xi| g ť = |X[ǩ]|
}

, ǩ = arg min
k∈[n]0

{

n
∑

i=k+1

X 2
[i] + p(k)

}

, (8)

and the EBMS procedure yields the corresponding thresholding estimator θ̌HT =
θ̌HT (K, X ) = (θ̌HT

i , i ∈ [n]), with

θ̌HT
i = Xi1{i ∈ Ǐ} = Xi1{|Xi| g |X[ǩ]|}, i ∈ [n]. (9)

The penalty p(k) corresponds to the complete variable selection case in [5]. Recall

our rather specific choice of parameter Kn(I) in the prior πI resulting in this penalty.

As we mentioned, other choices of Kn(I) are also possible, which would lead to

other penalties. But the main term σ 2k log( en
k
) would always be present because of

the choice of prior λI . The optimality of this kind of penalties (and priors) is discussed

in [1, 4, 5]. In [1] it is concluded that essentially only such penalties lead to adaptive

penalized estimators over certain sparsity scales.

5 EBMA and EBMS Procedures for the Case of Unknown

Sparsity Cluster Value

Clearly, the thresholding approach relies very much on the fact that we know the

sparsity cluster value, zero by default. Assume now that there is a large (sparsity)

cluster of (almost) equal coordinates of θ , but its value is not known. Alternatively,

one can think of the so-called robust inference in the sense that there may be a

systematic error in the “known” sparsity cluster value zero and the true sparsity

cluster value may actually deviate from zero. Using a thresholding procedure in such

a situation would lead to a big cumulative error, because the sparsity cluster contains

most of the coordinates of the high-dimensional signal θ .

Recalling the empirical Bayes approach described in Sect. 3.2 for the case of

unknown sparsity cluster value, we immediately see that, unlike (8), the EBMS cri-

terion (6) cannot be reduced to a thresholding procedure. However, the corresponding

optimization problem is still feasible from a computational point of view. Indeed,

the criterion (6) reduces to

Î = argmin
I∈I

{

∑

i∈I c

(Xi − X̄I c)2 + Kσ 2|I | log
(

en
|I |

)

}

=
{

i ∈ [n] : Xi "= X[ĵ+t], t ∈ [k̂]
}

,

where K = 2κ + 1, X[1] g X[2] g . . . g X[n] are the ordered X1, . . . , Xn,

(k̂, ĵ) = argmin
k,j∈[n]0, k+jfn

{

j+k
∑

i=j+1

(X[i] − X̄jk)
2 + Kσ 2(n − k) log

(

en
n−k

)

}

, X̄jk = 1

k

k+j
∑

i=1+j

X[i].
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In this case, the EBMS method yields the robust (the sparsity cluster value is

unknown) version of EBMS estimator θ̂EB = θ̂EB(K, X ) = (θ̂EB
i , i ∈ [n]) with

θ̂EB
i = Xi1{Xi "= X[t+ĵ], t ∈ [k̂]} + X̄

ĵk̂
1{Xi = X[t+ĵ], t ∈ [k̂]}, i ∈ [n]. (10)

It is not so difficult to see that this procedure has the computational complexity of

order n2, which is of course worse than the procedure (8)–(9), but still computation-

ally feasible. This is demonstrated in the next section.

An alternative is to use the EBMA method. All posterior quantities involved in

the construction of the EBMA estimator θ̃EB given by (5) are explicit, and the major

issue is that the number of terms in (5) is exponential in the dimension so that direct

computation is not practically feasible for high dimensions. Therefore, in this case,

we have to resort to an MCMC procedure.

In the MCMC procedure, each element I in the support of π̃(I |X ) is encoded

(one-to-one) by a binary state vector s = (s1, . . . , sn) ∈ {0, 1}n. The correspondence

is that si = 1 if, and only if, i ∈ I and si = 0 if, and only if, i /∈ I . The proposal s�

flips simply one bit chosen uniformly at random from the current state s. This means

that we first select j uniformly at random on {1, . . . , n}, and then set s�
j = 1 − sj and

s�
i = si, i "= j. The chain moves from s to s� with probability α = min

{

1, π̃
(

{i ∈
[n] : s�

i = 1}|X
)

/π̃
(

{i ∈ [n] : si = 1}|X
)}

. The EBMA estimator θ̃EB from (5) is the

expectation of μ̂(I) with respect to the posterior π̃(I |X ). If I1, . . . , IM is a sample

drawn from π̃(I |X ), or indeed a sample produced by the MCMC procedure from

above, then we approximate the EBMA estimator as

θ̃EB = θ̃EB(κ, X ) ≈ 1

M

M
∑

i=1

μ̂(Ii). (11)

6 Comparative Simulation Study

In this section, we present a comparative simulation study for the cases of known

and unknown (or shifted) sparsity cluster value.

We generate observations according to the model (1) with ξi

ind∼ N (0, 1), σ = 1,

n = 500, where we use signals θ = (θ1, . . . , θn) of the form θ = (A1, . . . , Ap, δ, . . . ,

δ). The first p coordinates of θ are “significant,” the remaining n − p entries form the

sparsity cluster. We consider different “sparsity levels” p ∈ {25, 50, 100} and “signal

strengths”: Ai

ind∼ U [0, 2] (signal is undetectable, i.e., comparable to the noise); Ai

ind∼
U [2, 4] (signal is barely distinct from the noise); Ai

ind∼ U [4, 6] (signal is well distinct

from the noise). Next, we consider two situation: a) known sparsity cluster value

δ = 0; b) unknown sparsity cluster value which we set δ = −0.5 in the simulations.

The following estimators are considered: the projection oracle (PO) estima-

tor θ̂PO
i = Xi1{θi "= δ} + δ1{θi = δ}, i ∈ [n]; the empirical Bayes mean (EBMean)
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θ̂EBMean considered in [8] with a standard Laplace prior and realized in the R-package

EbayesThresh (see [9]); the classical universal hard-thresholding (UHT) (see

[7]) θ̂UHT
i = Xi1{|Xi| >

√
2 log n}, i ∈ [n]; the HT estimator θ̌HT defined by (9), the

EBMA estimator θ̃EB given by (5), and, finally, the EBMS estimator θ̂EB defined by

(10). Clearly, the PO procedure is not really an estimator as it uses oracle knowledge

of the active set I∗(θ) = {i ∈ [n] : θi "= δ} and the sparsity cluster value δ. Clearly,

the pseudo-estimator PO cannot be outperformed by any practical estimation proce-

dure. The performance of the pseudo-estimator PO is provided only for reference as

a benchmark of the ideal situation.

The estimators EBMean, UHT, and HT are all geared towards the known (zero)

sparsity cluster value, whereas our EBMA and EBMS estimators θ̃EB and θ̂EB can also

accommodate any unknown sparsity cluster value. To create more competition for our

procedures θ̃EB and θ̂EB in the case of unknown sparsity cluster value, we also provide

adjusted versions aEBMean, aUHT and aHT of the estimators θ̂ = θ̂ (X ), constructed

as follows: θ̂ �(X ) = θ̂ (X − X̄ 1n) + X̄ 1n, where 1n is an n-dimensional vector of

ones, X̄=
1
n

n
∑

i=1

Xi is the empirical mean of the sample X , and θ̂ is the corresponding

estimator (respectively, EBMean, UHT, and HT). In the case of unknown non-zero

sparsity cluster value, the adjusted versions are clearly biased and only competitive

for relatively small p and Ai’s. The adjusted versions of the estimators are expected

to perform worse (and they do so, as Table 2 shows) for larger values of p and Ai’s.

Each of our estimators θ̌HT (K, X ), θ̂EB(K, X ) and θ̃EB(κ, X ) depends on one

tuning parameter, K or κ. It is possible to choose the parameters K and κ from

the data via a cross-validation procedure, but this significantly increases the running

time for computing θ̂EB(K, X ), and especially θ̃EB(κ, X ). However, in the simulation

results for several various cases, the optimal K did not vary much and appeared to lie

mostly in the range [1.8, 3.2]. Moreover, the results were good for many choices of

K , the performance deteriorates significantly only when K gets close to 1 or becomes

too big. This actually agrees with the conclusions (about the penalty constants) from

[5]. In the simulations for the EBMS estimators θ̌HT (K, X ) and θ̂EB(K, X ), the choice

K = 2.5 appeared to be fairly good for all considered cases. When computing the

EBMA estimator θ̃EB(κ, X ), we took κ = 1 which is a natural choice in the light of

Remark 1. The EBMA procedure seemed to be even less sensitive to the choice of

parameter κ, again many choices are possible as long as κ is not too small (should

be larger than 0.7) and not too big. We let the chain burn in for 10000 iterations

and then collected 25000 states from the posterior. The final sample of states used to

approximate the EBMA estimator was obtained by keeping every 25-th state resulting

in M = 1000 in (11). This thinning was done to reduce the correlation between the

samples from the MCMC procedure.

Tables 1 and 2 contain estimates of the mean square errors MSE(θ̂ , θ) = Eθ�θ̂ −
θ�2 for the above-mentioned estimators θ̂ and choices of the signal θ . Tables 1

and 2 concern the cases of the known (δ = 0) and unknown (δ = −0.5) sparsity

cluster value, respectively. The MSE(θ̂ , θ) is evaluated by the average squared error
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Table 1 Estimated MSE’s for the case (a) of the known sparsity cluster value δ = 0

p 25 50 100

Ai U[0,2] U[2,4] U[4,6] U[0,2] U[2,4] U[4,6] U[0,2] U[2,4] U[4,6]

PO 25 25 25 50 50 50 99 99 99

EBMean 34 96 91 64 164 172 111 273 319

UHT 39 157 68 75 316 137 141 626 270

HT 37 127 62 72 194 123 138 300 233

EBMA 36 103 79 66 178 162 114 291 254

EBMS 42 132 64 73 204 124 121 313 233

Table 2 Estimated MSE’s for the case (b) of an unknown sparsity cluster value δ = −0.5

p 25 50 100

Ai U[0,2] U[2,4] U[4,6] U[0,2] U[2,4] U[4,6] U[0,2] U[2,4] U[4,6]

PO 25 25 25 50 50 50 99 99 99

EBMean 136 178 176 154 229 240 182 312 348

aEBMean 57 108 118 100 201 254 162 332 441

UHT 162 280 191 191 432 254 245 730 374

aUHT 69 174 96 129 380 285 224 811 916

HT 157 256 206 186 327 268 240 414 360

aHT 68 128 104 127 253 300 222 516 577

EBMA 66 97 79 122 176 161 201 281 251

EBMS 69 107 59 128 170 120 224 275 231

�MSE(θ̂ , θ) = 1
l

∑l
k=1 �θ̂ k − θ�2 of l estimates θ̂1, . . . , θ̂ l computed from l = 100

data vectors simulated independently from the model (1).

It is not surprising that the shrinkage estimators EBMean and EBMA perform

well for weak signals (cases Ai ∼ U[0, 2] and Ai ∼ U[2, 4]) in situation a) of known

(zero) sparsity cluster value, as one can see from Table 1. Table 2 is for situation b)

and is more interesting, it shows a clear advantage of the EBMA and EBMS methods

which take into account the unknown sparsity cluster value. Only for the cases with

undetectable signal (case Ai ∼ U[0, 2]), the adjusted shrinkage estimator aEBMean

is still competitive, as this case is very favorable for any shrinkage procedure and a

relatively small absolute shift value |δ|.
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Test for Sign Effect in Intertemporal
Choice Experiments: A Nonparametric
Solution

Stefano Bonnini and Isabel Maria Parra Oller

Abstract In order to prove the hypothesis of sign effect in intertemporal choice

experiments, the empirical studies described in the specialized literature apply uni-

variate tests (in most cases parametric t or F tests) even when multivariate inferential

procedures are more suitable according to the experimental data, the study design

and the goal of the analysis. Furthermore, the used tests do not take into account the

possible presence of confounding effects, very common in such kind of experimental

studies. In this paper, a multivariate nonparametric method to test for sign effect in

intertemporal choice is proposed. This method overcomes the mentioned limits of the

tests usually applied in previous studies. A case study related to a survey performed

at the University of Almeria (Spain) is presented. The methodological solution based

on the nonparametric test is described and the results of its application to the data

collected in the sample survey performed in Almeria are shown.

Keywords Intertemporal choice · Permutation test · Nonparametric

combination · Multivariate test · Confounding factors · Multistrata test

1 Introduction

Intertemporal choice problems concern the study of decision-making processes.

Specifically, these problems refer to the case of choices over time. When one won-

ders whether it is better to save money now in order to consume more in the future or

to consume today by giving up a greater future consumption, we are in the presence

of an intertemporal choice. The decision about how many years to be devoted to the

study, i.e., how much time of our life can be focused on (and how much money can
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be invested in) education, is also an intertemporal choice: is it better to have a salary

(or free time) today or invest money (time) in education and postpone the job market

entry, in order to have greater earnings in the future? Another typical example of

intertemporal choice is related to dietary habits: is it better to eat a good cake or a

dish of fried food now or to follow a healthier diet in order to have a better health

(and a longer life) in the future?

These problems are typical in Financial Economics, but quite common even in

other disciplines such as Neuroscience, Medicine, Marketing, Sport, Economic and

Industrial Policy, Fiscal Policy, Monetary Policy, Social and Welfare Policy, and

others. There is an extensive scientific literature on intertemporal choices in the

fields of Psychology and Behavioral Economics. In fact, the decision-making process

of individuals, when they make intertemporal choices, is almost always the same,

regardless of the specific context.

In this paper, from here on out, we consider the problem according to an economic

perspective. In this framework, people tend to prefer immediate gains or rewards and

to postpone losses or penalties.

For example, let us assume that the winner of 100e at the lottery has the possibility

of cashing in immediately the gain or postponing it for 1 year. If the winner accepts

to postpone the gain only if the amount received after 1 year is greater than 110e,

then the discount rate is 10% or equivalently 0.10. The gain will be not postponed if

the future amount is less than 110e and, in the case of future amount exactly equal

to 110e, the choice is indifferent. We can also say that 100e is the discounted value

(the current worth) of the future gain of 110e. Definitely, the discount rate is the

proportion (percentage) of the increase in value needed to compensate for 1-year

delay.

As a consequence, the winner accepts to postpone the gain for t = 2 years provided

that the amount received will be at least 110 × (1 + 0.1) = 100 × (1 + 0.1)2 =

121e. In general, he/she accepts to postpone the gain for t years if he/she will

receive at least (1 + 0.1)t × 100. Hence, the discounted value of a future gain x is

given by (1 + 0.1)−t x . The winner accepts the reduction of the amount up to the

discounted value in order to anticipate the gain today.

A similar reasoning applies to the case of losses (penalties, payment of fines,

etc.) because the choice is between a lower amount today or a greater amount in the

future. For example, with a discount rate equal to 0.10, the individual prefers to pay

the immediate amount 100 (or less), rather than the delayed amount 110 1 year later

or (1 + 0.1)t × 100 after t years. If the amount to be paid today is greater than 100,

then it is not worth anticipating the payment.

For an individual, the discount rate of gains could be not equal to the discount

rate of losses. Given the future amount x , in the case of awards, the discounted value

could be lower than in the case of fines. For example, the winner of a lottery could

consider the award of 110e after 1 year equivalent to 100e today (discount rate

equal to 0.10) but he/she could consider the payment of a 110 euro fine after 1 year

equivalent to the payment of 105e today (discount rate equal to 0.05). Therefore,

for a given time horizon, the reduction of the amount for which the anticipation of a

payment is accettable, is therefore lower than the reduction of the award for which it
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is preferable to cash in a gain today. This is what the specialized literature calls the

sign effect in intertemporal choice.

In order to prove the hypothesis of sign effect, the empirical studies reported in

the literature apply univariate tests (in most cases parametric t or F tests) even when

multivariate inferential procedures are more suitable according to the experimental

data, the study design and the goal of the analysis. Furthermore, the used tests do not

take into account the possible presence of confounding effects, very common in such

kind of experimental studies. In this paper, we propose a multivariate nonparametric

method to test for sign effect in intertemporal choice that overcomes the mentioned

limits of the most common tests. In Sect. 2 the theory of intertemporal choice and

the sign effect are formally presented. In order to describe the problem in a clearer

and more precise way, in Sect. 3, a case study related to a survey performed at the

University of Almeria (Spain) is presented. In Sect. 4, the statistical testing problem

is defined. Section 5 is dedicated to the description of the methodological solution

based on the nonparametric test. Section 5 includes the results of the application

of the nonparametric test to the empirical problem described in Sect. 3. Section 6

concerns the conclusions.

2 Intertemporal Choice and Sign Effect

The basic elements of the intertemporal choice are the following:

• It is a problem of allocation between two or more time points.

• There is a tradeoff between earlier pleasure and satisfaction and later wellbeing.

• Some subjective elements can affect the decision.

The first important scientific contribution to explain intertemporal choices is the

Discounting Utility model (DU model) proposed by Samuelson [1]. Let us imagine

the classic “consumption or savings” problem. Consider the case of a subject and

her/his decision about how to allocate her/his consumption over time, starting from

today (t = 0) and considering T different time points in the future (t = 1, 2, . . . , T ).

In other words, we are interested in the person’s comsumption profile over time

(c0, c1, . . . , cT ), where ct is the consumption value at time t , with t = 0, 1, . . . , T .

According to the DU model, the utility of a given consumption profile (c0, c1, . . . , cT )

is a linear combination of the utilities of the partial consumptions at different time

points and the weights are exponential with respect to time t . Hence, the greater

the time horizon represented by t , the lower the weight of the utility of ct , namely

the partial contribution of ct , to the global utility. Formally, the utility function of a

temporal consumption profile is

U (c0, c1, . . . , cT ) =

T
∑

t=0

ψt u(ct ) (1)
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where u(ct ) is the partial utility that derives from consuming ct at time t and ψt is the

weight of u(ct ) in the overall utility, with t = 0, 1, . . . , T . The weight ψt is called

discount factor. According to the exponential discounting approach, the discount

factor is given by

ψt = δt (2)

which δ ∈ [0, 1]. Thus, the weight of the utility of consuming ct at time t decreases

exponentially as t increases.

Let us use the identity function as utility function, i.e., u(ct ) = ct . If, for example,

ct represents the amount of gain (remuneration, reward,…) or loss (penalty, fine,…)

at time t and the discount rate is 0.10, the intertemporal choice consists in the decision

whether it is better the discounted value (1 + 0.10)−t ct now or ct t years later. For a

generic discount rate y, the choice is between (1 + y)−t ct now or ct at time t . Hence,

one way to represent the discount factor, in the exponential discounting framework

of the Samuelson’s DU model, is the following:

ψt =
1

(1 + y)t
(3)

where y is the discount rate and δ = 1
1+y

is the discount factor corresponding to

1-year delay (t = 1).

According to the classic DU model, y is assumed to be constant with respect to

the delay t , to the magnitude of the amount and to the sign (gain or loss). Some recent

studies have reported empirical evidence against these properties of y. In the current

debate emerging from the specialized literature, some new theories that deviate from

the hypothesis of constant discount rate are proposed (see [2–13]). These new theories

take the name of intertemporal choice anomalies. In particular, one of the anomalies,

usually called sign effect or gain–loss asymmetry is that losses are discounted less

than gains.

In order to estimate the discount rate and prove the sign effect and other anomalies

in intertemporal choice, behavioral experiments are performed. In these studies, a

sample of people is asked to make a series of choices concerning amounts of rewards

and/or penalties that can be received/paid at different time points. For example,

Green et al. [14] performed an experiment where 36 people from three different age

groups were asked to choose between a fixed reward, obtainable at time t , and an

immediate reward, reduced according to the individual discount rate. The experiment

was repeated for two different amounts of the fixed reward (magnitudes) and 8

different time horizons t (delays). To compare the discount rates related to the two

magnitudes, several univariate t-paired tests were performed within each age group

and for each time horizon. To test for the delay effect, t tests and F tests were

performed within each age group and for each amount. To test for the age effect,

an ANOVA for each magnitude and time horizon was performed. This statistical

approach is not suitable for the following reasons:
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• the application of several univariate tests on the effect of age doesn’t take into

account the multivariate nature of the problem and the dependence of the discount

rates of different magnitudes and time horizons

• the application of several univariate tests on the effect of magnitude doesn’t take

into account the multivariate nature of the problem with respect to time horizon

and the confounding effect of age

• the application of several univariate tests on the delay effect doesn’t take into

account the multivariate nature of the problem with respect to the amount and the

confounding role of age

• given the small sample sizes, the use of parametric tests that assume normality is

inappropriate.

A similar approach, based on the application of several univariate t-tests, to study

magnitude effect and sign effect, ignoring the multivariate nature of the problem

and the confounding effects of demographic characteristics such as age, gender and

income, is followed by McKerchar et al. [8].

Thus, a suitable method for testing intertemporal choice anomalies, in experiments

like those described, should be multivariate and multistrata. Furthermore, to ensure

robustness with respect to the family of distributions underlying the data, especially

for small samples, a nonparametric approach is preferable.

3 A Sample Survey

In 2016, some intertemporal choice experiments were conducted at the University

of Almeria. In one of these experiments, a sample of 36 students of the Faculty of

Economics was interviewed. These students were asked to take “delay decisions.”

An example of delay decision is:

“today you won 100e in the lottery and you can receive this award now or a different

amount in three months. What is the minimum amount to delay the receving of the

award?”.

In another experiment, a different sample of 18 students was asked to take expedite

decisions. An example of expedite decision is:

“today you won 100ein the lottery and you can receive this award in three months

or a different amount today. What is the minimum amount to expedite the receiving

of the award?”.

Hence, the set of 54 students involved in these experiments can be classified into

two categories according to the factor decision type: delay decision and expedite

decision.

Each subject filled two 6 × 4 tables, one for each scenario (1. Lottery payout;

2. Payment of a fine). Each table was used in order to communicate the wished

delayed/expedited value for six different time horizons t and four different award/fine

amounts. The six different time horizons are 3 months, 1 year, 3 years, 5 years,
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10 years, and 20 years. The four different amounts are 100e, 2,000e, 25,000e,

and 100,000e.

In order to test for the sign effect, two dependent samples defined according to

the scenario must be compared. Since each subject, for each scenario, provided 24

values (one for each time–amount combination), the problem is multivariate. In order

to take into account the dependence between the 24 different variables, a suitable

multivariate testing procedure should be applied. The complexity of the problem

is even greater if we consider that the data derive from two different experiments

characterized by different decision types. Thus, each decision type identifies a stratum

of homogeneous students and a suitable multistrata test should be considered for the

problem. The formal definition of the testing problem is presented in the following

section.

4 Multivariate Multistrata Test for Sign Effect

As mentioned above, each subject involved in a complex intertemporal choice exper-

iment like the one described in the previous section, filled 48 cells, e.g., two 6 × 4

tables. Indeed, for each subject, two scenarios, four amounts (in euros) and six time

horizons (in years) were considered. Let us denote the subject’s answer (in euros)

regarding a given decision type and a specific “scenario–amount–time horizon” com-

bination with x (d)
s (m, t), where

• s ∈ {A, F} denotes the scenario (A : award; F : fine)

• m ∈ {100, 2 000, 25 000, 100 000} denotes the amount in euros of the award or of

the fine

• t ∈ {0.25, 1, 3, 5, 10, 20} denotes the time horizon in years

• d ∈ {D, E} denotes the decision type (D : delay; E : expedite), i.e., the type of

experiment, that takes the role of stratification factor.

Consistently with the previous notations, let us denote the subject’s discount

rate regarding a given decision type and a specific “scenario–amount–time horizon”

combination with y(d)
s (m, t). According to (2), in the presence of delay decisions

(postponing payments, d = D), the discount rate is

y(D)
s (m, t) =

[

x (D)
s (m, t)

m

]1/t

− 1 (4)

while, the discount rate in case of expedite decisions (anticipating payments, d = E),

can be computed as follows:

y(E)
s (m, t) =

[

m

x
(E)
s (m, t)

]1/t

− 1. (5)
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According to the classic theory based on the Samuelson’s DU model, y(d)
s (m, t)

is a constant with respect to d, s, m, and t . In the case of sign effect, the discount rate

of awards is not equal to the discount rate of fines, ceteris paribus. Hence, a test for

sign effect is a two-sample test, where the discount rate of awards is compared to the

discount rate of fines. The problem is multivariate with respect to amount and time

horizon and multistrata with respect to the decision type. Thus, it is a multivariate

and multistrata test for repeated measures (or dependent samples). The problem’s

factor is the scenario and the alternative hypothesis is one sided. In the specialized

literature, the supporters of the sign effect believe that the direction of the effect

depends on the type of decision: in delay decisions, the discount rate of awards is

greater than the discount rate of fines; in expedite decisions, the opposite inequality

holds. The testing problem is therefore quite complex and can be broken down into

a set of sub-problems. Each sub-problem corresponds to a partial test.

Let y
(d)
s,1 (m, t), y

(d)
s,2 (m, t), . . . , y(d)

s,n (m, t) be the computed individual discount

rates and assume that the observed value y
(d)

s,i (m, t), regarding the subject i , is a deter-

mination of the random variable Y (d)
s (m, t), with i = 1, 2, . . . , n. The null hypothesis

of the test for sign effect is

H0 :
⋂

m

⋂

t

⋂

d

[

Y
(d)

A (m, t) =d Y
(d)

F (m, t)
]

. (6)

In the null hypothesis, the discount rate of awards and the discount rate of fines follow

the same distribution, and this is true for all the amounts, for all the time horizons

and for both the decision types.

Under the alternative hypothesis, for at least one combination “amount-time

horizon-decision type”, there is a sign effect. The sign effect, if present, is oppo-

site for delay and expedite decisions. Formally,

H1 :
⋃

m

⋃

t

{[

Y
(D)

A (m, t) >d Y
(D)

F (m, t)
]

⋃

[

Y
(E)

A (m, t) <d Y
(E)

F (m, t)
]}

, (7)

where >d and <d denote the classic situations of stochastic dominance (see [15–24]).

In short, the problem consists in a multivariate and multistrata stochastic dominance

for repeated measures.

5 Nonparametric Solution

According to the specialized literature, the statistical tests usually applied in intertem-

poral choice problems present some limits. First of all, they are univariate and do

not take into account the multivariate nature of the responses. Given that each inter-

viewee must answer several questions, the response variable is obviously multivari-

ate. The main difficulty of multivariate testing problems is to take into account the
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dependence structure of the marginal responses. Unless the independence between

variables, infrequent and not very plausible, is true, the multivariate density function

is not equal to the product of the marginal densities. The assumption of normality

simplifies the representation of the multivariate distribution, and it implies a linear

relationship between variables. But even in this case, pairwise correlation indices

must be estimated. When there are not conditions to assume independence or linear

dependence and normality, a parametric approach is very difficult if not impossible.

Furthermore, the inferential solutions proposed in the empirical literature on

intertemporal choices are not suitable for complex hypotheses such as stochastic

dominance and stochastic ordering. Moreover, they do not consider the possible

presence of confounding factors like decision type. Finally, these tests are not robust

with respect to the violation of the assumption about the underlying family of distri-

butions, especially for small sample sizes.

A suitable solution can be found within the family of combined permutation tests

[20]. This methodology follows a nonparametric approach because it is based on

the nonparametric combination of dependent permutation tests. Let us consider the

partial null hypothesis of (6)

H
(d)
0,m,t : Y

(d)

A (m, t) =d Y
(d)

F (m, t) (8)

and the partial alternative hypotheses of (7)

H
(D)
1,m,t : Y

(D)

A (m, t) >d Y
(D)

F (m, t) (9)

and

H
(E)
1,m,t : Y

(E)

A (m, t) <d Y
(E)

F (m, t). (10)

Let T
(d)

m,t be the test statistic for testing H
(d)
0,m,t versus H

(d)
1,m,t . Without loss of

generality, we can define the partial test statistics in such a way that the null hypothesis

is rejected in favor of the alternative when the test statistics take large values. Hence,

for delay decisions, a suitable partial test statistic is

T
(D)

m,t = ȳ
(D)

A (m, t) − ȳ
(D)

F (m, t) (11)

while, for expedite decisions, given that the direction of the alternative hypothesis is

the opposite, a suitable partial test statistic is

T
(E)

m,t = ȳ
(E)

F (m, t) − ȳ
(E)

A (m, t) (12)

where ȳ
(D)

A (m, t), ȳ
(D)

F (m, t), ȳ
(E)

F (m, t) and ȳ
(E)

A (m, t) are the observed sample

means of the subgroup discount rates.

For each partial problem, a permutation test for dependent samples is performed.

In order to take into account the dependence between the partial test statistics, the
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permutations applied for the computation of the null distribution should be the same

for all the partial tests. A suitable combining function is then necessary to compute

a univariate test statistic for the global multivariate problem and obtain a unique

p-value. Let T
(d)

m,t (0) be the observed value of the partial test statistic, B the number

of permutations and T
(d)

m,t (b) the value of the partial test statistic corresponding to the

bth permutation. The significance level function of T
(d)

m,t (b) is

λ
(d)
m,t (b) : P

[

T
(d)

m,t ≥ T
(d)

m,t (b)|H
(d)
0,m,t

]

, (13)

with b = 0, 1, 2, . . . , B and it is the proportion of values of the partial test statistic

greater than or equal to T
(d)

m,t (b) according to the null permutation distribution.

The combined test statistic for the global problem is obtained through the applica-

tion of a suitable function ψ(·). The combining function ψ(·) must be non-increasing

with respect to each argument λ
(d)
m,t . In the case of Tippett combining rule, the com-

bined test statistic is

Tcomb = maxm,t,d

[

1 − λ
(d)
m,t

]

, (14)

and the global p-value is the proportion of values greater than or equal to Tcomb(0)

in the set {Tcomb(0), Tcomb(1), . . . , Tcomb(B)}. Instead of considering all the possible

permutations of the exact test, for computational convenience, a random sample of

B permutations (CMC resampling) can be used to estimate the null distribution of

the test statistics.

In the case of significance of the global test, in order to attribute this result to

some partial tests, an adjustment of the partial p-values must be done for controlling

the Familywise Error Rate.

6 Case Study

The combined permutation test, with Tippett combination, was applied to the data

collected in the experiments done at the University of Almeria in 2016. A two-step

combination was performed. At the first step, the partial tests were combined with

respect to time horizon and amount. At the second step, the two resulting combined

tests were combined again to obtain the p-value of the overall test. B = 1000 CMC

resamplings were considered (Table 1).

The p-value of the global test on sign effect is equal to 0.0001, thus at α = 0.01

the null hypothesis that the scenario does not affect the discount rate is rejected in

favor of the alternative hypothesis of sign effect (strong significance). For controlling

the Familywise Error Rate and avoiding the type first error rate inflation due to the

multiplicity of the test, the Bonferroni–Holm method was applied. According to the

adjusted p-values of the partial tests, we have a strong significance of the sign effect

in the case of delay decisions (adjusted p = 0.0002). For expedite decisions, the sign



98 S. Bonnini and I. M. P. Oller

Table 1 Combined permutation test on sign effect

Hypothesis p Adjusted p

Delay decision

Discount rate of awards greater than discount rate of fines 0.0001 0.0002

Expedite decision

Discount rate of awards less than discount rate of fines 0.0726 0.0726

Global

Sign effect 0.0001

effect presents weak significance because the adjusted p = 0.0726 is greater than

0.01 but less than the significance level if α = 0.10.

7 Conclusions

The test for sign effect in intertemporal choice experiments needs the application of

suitable multivariate testing techniques. In such experiments, a multistrata and mul-

tivariate test must be applied. The very frequent practice in the literature of applying

univariate (very often parametric) tests is therefore wrong and makes untrustwor-

thy inferential conclusions. In this paper, the application of multiple tests based on

the permutation approach and the combination of Tippett is proposed. This solution

is suitable for the problem and overcomes the limits of the mentioned inadequate

parametric univariate tests.

The proposed multivariate permutation test is suitable for complex hypotheses,

takes into account the multivariate nature of the problem and the possible confounding

effects due to the presence of stratification factors (e.g., decision type) and does not

require the assumption that the underlying distribution is normal or belongs to a

known family of probability distributions. Furthermore, this test is consistent, exact

and unbiased. It is suitable even in the presence of small sample sizes and when the

number of marginal response variables is very large.

The application of this method to the data collected in the survey performed at the

University of Almeria in 2016, provides empirical evidence in favor of the hypothesis

of sign effect in intertemporal choice: the discount rate of gains seems to be greater

than the discount rate of losses for delay decisions, while the discount rate of gains

appears less than the discount rate of losses for expedite decisions. The latter property

is less evident than the former.
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Nonparametric First-Order Analysis
of Spatial and Spatio-Temporal Point
Processes

M. I. Borrajo, I. Fuentes-Santos, and W. González-Manteiga

Abstract First-order characteristics are essential functions in point processes rep-

resenting the distribution of events in the corresponding domain. For decades, the

inconsistency of the first-order kernel intensity estimator has been an obstacle to

perform inference in the point process context. In this work, we develop different

procedures to obtain consistent estimators of the first-order intensity function, and

we also propose bootstrap procedures to define effective bandwidth selectors. More-

over, these innovations are used in three testing problems: the goodness-of-fit of

an appealing model in the literature of point processes with covariates, the non-

parametric comparison of first-order intensity functions and a separability test for

spatio-temporal point process. We illustrate the above-mentioned procedures with

two wildfire data sets in Galicia (NW Spain) and in Canada.

1 Introduction

The main aim of point processes is to study the geometrical structure of patterns

formed by events that are distributed randomly in number and space. Particu-

larly, spatial point processes focus on events located in a planar bounded region

W ⊂ R
2, and spatio-temporal point processes determine the spatial location and

time of occurrence of events in a volume, W × T ⊂ R
2 × R

+, defined by a planar
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region and a temporal interval. If each event has associated any extra information in

the form of a measure, the process is named as marked, but if this extra information

exists over the whole observation region, then we are dealing with point processes

with covariates.

The analysis of any observed point pattern involves characterizing the spatial dis-

tribution of events (first-order characteristics) and interaction between them (second-

and higher order characteristics). In this paper, we are focused on the former which

has been addressed through parametric models, see Moller and Waagepetersen [19],

Bayesian methods, see Illian et al. [18], and nonparametric approaches, see Diggle

[11] and Baddeley et al. [2].

Diggle [10] proposed the first kernel intensity estimator, based on the structure

of the common kernel density estimator. The main drawback of Diggle’s proposal is

its lack of consistency, which has almost limited its use to exploratory analysis. Two

ideas have been introduced so far to overcome this problem: Cucala [9] introduced

the density of event locations and proved the consistency of his estimator, and Guan

[17], Baddeley et al. [1] introduced kernel estimators of the first-order intensity based

on covariates.

Considering all these approaches, this work addresses important developments in

first-order intensity inference: two consistent nonparametric estimators of the first-

order intensity, new bandwidth selectors, and different nonparametric tests based on

these estimators. This work is organized as follows: in Sect. 2, we use the two strate-

gies referred before to define consistent estimators of the first-order intensity func-

tion and we propose bootstrap bandwidth selectors for the two proposals. Section 3

introduces nonparametric tests developed to check for the effect of covariates on

the spatial distribution of an observed pattern, compare the intensity of two spatial

point processes, and test whether a spatio-temporal point process is separable, and

finally in Sect. 4, we illustrate the utility of the techniques introduced above through

application to the analysis of wildfire patterns in Galicia (NW Spain) and Canada.

2 First-Order Intensity Estimation

Let X be a spatial point process defined in a bounded region W ⊂ R
2. Let X1, . . . , X N

be a realization of the process with N the random variable counting the number

of events. The first-order intensity, from now on referred as intensity, is defined

following Diggle [11] as

λ(x) = lim
|dx |→0

E[N (dx)]

|dx |
,

where |dx | denotes the area of an infinitesimal region containing the point x ∈ R
2.

Diggle [10] proposed a kernel intensity estimator for one-dimensional point pro-

cesses, which has been extended to the plane as
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λ̂D
H (x) =

∑N
i=1 KH (x − X i )

pH (x)
, x ∈ W ⊂ R

2.

Here, H is a matrix of bandwidth parameters, KH (x) = |H |−1/2K
(

H−1/2x
)

, where

K is a two-dimensional kernel function, and pH =
∫

W
|H |−1/2K(H−1/2(x − y))dy

is an edge correction term.

This kernel estimator has been widely used during decades and mostly limited

to exploratory analysis due to its lack of consistency. This means that its mean

integrated squared error (MISE) does not tend to zero as the expected number of

events increases. To better understand this point, let us assume an infill structure

or increasing intensity asymptotic framework (see Diggle and Marron [12]), which

states that the expected number of events in the observation region W , tends to

infinity, and it is equivalent to the asymptotic framework in the classical kernel

density estimator. The kernel estimator uses local information around each point

to estimate the intensity. If the true intensity is continuous, local smoothing will

provide an asymptotically unbiased estimator. However, as the number of events in

an infinitesimal region increases, the variance of the estimate does not tend to zero

(See details in Fuentes-Santos et al. [14]), then the MISE does not tend to zero either,

leading to an inconsistent estimator.

Trying to overcome this lack of consistency, Cucala [9] introduced the concept of

“density of events locations” for one-dimensional point processes. He defined such

density as λ0(x) = λ(x)/m, where m =
∫

W
λ(x)dx is the expected number of events

lying on W . And, he proposed the following kernel estimator for λ0:

λ̂0,h(x) =
1

N

N
∑

i=1

Kh(x − X i )1{N �=0}, x ∈ R,

where Kh(·) = h−1 K (·/h), with K being a one-dimensional kernel function and h

a scalar bandwidth parameter. Here 1{} denotes the indicator function. Cucala [9]

proved the consistency of its kernel estimator for Poisson point processes under an

infill asymptotic framework. In a similar way, we need the Poisson assumption to

derive the asymptotic theory for the proposed estimators that will follow.

Following the philosophy of bivariate kernel density estimation, we define a kernel

estimator of the density of event locations in two dimensions with a bandwidth matrix:

λ̂0,H (x) =
λ̂H (x)

N
1{N �=0} = (pH (x)N )−1 |H |−1/2

N
∑

i=1

K
(

H−1/2 (x − X i )
)

1{N �=0},

(1)

where the bandwidth matrix, H , is symmetric and positive-definite and |H | denotes

the determinant of H . Fuentes-Santos et al. [14] developed a smooth bootstrap pro-

cedure to obtain a consistent estimator of the MISE, which is the basis for the plug-in

bandwidth selector proposed in the same work.
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Moving on to the framework of point processes with covariates, let Z : W ⊂

R
2 → R be a spatial continuous covariate that is exactly known in every point of

the region of interest W , and Z1, . . . , Z N the realization of the transformed process,

i.e, Z i = Z(X i ). In practice, following the indications of Baddeley et al. [1], this

covariate will commonly be known in enough amount of points spread over the

region, so the values for the rest of the points can be interpolated and it can be

assumed that these values are indeed the real ones.

Following Baddeley et al. [1], let’s assume that the intensity can be described

from the known covariate through the model:

λ(u) = ρ(Z(u)), u ∈ W ⊂ R
2, (2)

where ρ is an unknown function. As Z is known, the only target for intensity

estimation is the function ρ. To this purpose, it is considered the transformed

one-dimensional point process, Z(X), and established the theoretical relationship

between it and the original two-dimensional process X . It has been proved that if

X is a Poisson point process in W ⊂ R
2 with intensity function (2), then Z(X) is a

Poisson point process in R with intensity ρg� and with the same expected number

of events, where g� is the non-normalized version of the derivative of the spatial

cumulative distribution function, see Borrajo et al. [3] for details on this and the

extension to multidimensional covariates.

Previously, Guan [17] proposed a closely related kernel estimator that allowed for

a multidimensional covariate, Z = (Z1, . . . , Z p) : W ⊂ R
2 → R

p. This estimator

involves measuring the distance between two points by the euclidean distance through

their covariates values:

λ̂G
h (u) =

∑N
i=1 Kh(||Z(u) − Z(X i )||)

qh(u)
,

with qh(u) =
∫

W
Kh(||Z(u) − Z(s)||)ds is the edge correction term. Considering

the increasing domain asymptotic framework and adding also some suitable assump-

tions, Guan [17] proved the consistency of the estimator. He also addressed the band-

width selection problem by a simple, but computationally intense, cross-validation

method.

We need to introduce some definitions and additional notation. The spatial cumu-

lative distribution function of Z is defined as

G(z) =
1

|W |

∫

W

1{Z(u)≤z}du,

where |W | denotes the area of the region W ⊂ R
2. Let assume that G has a first

derivative g, for which we need Z to be differentiable with non-zero gradient, and

let denote by g�(·) = |W |g(·) and G�(·) = |W |G(·) the unnormalized versions. The

results detailed in Borrajo et al. [3] show that Z(X) is indeed a point process with

intensity ρg�.
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To derive our consistent kernel estimator, we follow Cucala [9] and use the rela-

tionship between the intensity and the density function. We define the density function

for this problem as the relative density of the transformed point process Z(X):

f (z) =
ρ(z)g�(z)

m
. (3)

Our idea is to construct a kernel estimate of f and then plug in it in the expression

(3), jointly with an appropriate estimate of m, and to derive an estimator of ρ. This

gives the estimator of the intensity λ through Eq. (2).

Following the pre-established notation, we define the following estimator of the

relative density f :

f̂h(z) = g�(z)
1

N

N
∑

i=1

1

g�(Z i )
Kh (z − Z i ) 1{N �=0}. (4)

Now we use (3) to define the final intensity estimator. To this goal, we need to

estimate m that recall is the expected number of events. For simplicity, we suggest

the sample size N as an estimator and hence derive our kernel intensity estimator

from f̂h as:

λ̂h(u) = ρ̂h(Z(u)) =
N f̂h(Z(u))

g�(Z(u))
=

N
∑

i=1

1

g�(Z i )
Kh (Z(u) − Z i ) . (5)

Remark that, for the particular estimates of the relative density and m, we propose

our final intensity estimator shares the same expression as Baddeley et al. [1]’s

estimator detailed in the previous section. However, our proposal benefits for being

conveniently constructed to guarantee the consistency, to facilitate the theoretical

developments and to allow consistent bootstrap methods. This construction also

allows intuitive multivariate extensions, including the time dimension, as is discussed

in Borrajo et al. [3].

In Borrajo et al. [3], a complete theoretical framework with all the details in terms

of mean squared error (MSE) and mean integrated squared error (MISE) is developed,

and the expression of an asymptotically optimal bandwidth parameter is also derived.

Bootstrap methodology for bandwidth selection

Nonparametric bootstrap procedures have been widely used in different contexts to

perform inference and calibrate the distribution of statistics in tests. The smooth

bootstrap procedure for point processes with and without covariates we propose is

based on the following works: Cao [7] for kernel density estimation and Cowling et

al. [8] for the intensity estimation of a Poisson point process.

Recall X1, . . . , Xn is a realization of the spatial point process X , Z1, . . . , Zn

the associated realization of the transformed univariate process; let f̂b be the den-
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sity estimator in (4) and ρ̂b the estimator derived from (3) and (4), where b

is a pilot bandwidth. Now, conditional on Z1, . . . , Zn , let N ∗ ∼ Poiss
(

m̂
)

with

m̂ :=
∫

R
ρ̂b(z)g

�(z)dz, generate n∗ a realization of this random variable N ∗ and

then draw Z∗
1 , . . . , Z∗

n∗ by sampling randomly with replacement n∗ times from the

distribution with density proportional to g�ρ̂b, i.e., f̃b = ρ̂b g�

m̂
.

Using this bootstrap, we have developed a data-driven bandwidth selection pro-

cedure for (4); moreover, in Borrajo et al. [3], a specifically designed rule-of-thumb

is defined and both selectors are compared with the existing competitors, which to

the extent of our knowledge is only the classical Silverman’s rule-of-thumb used in

Baddeley et al. [1].

3 Testing Problems

Testing first-order intensity model in inhomogeneous Poisson point processes with

covariates

In this section, we want to test a null hypothesis H0 : λ(x) = ρ(Z(x)) x ∈ W , versus

a general alternative in which the intensity function is not explained completely

through the covariate, for Poisson processes. The idea is to define a test statistic

based on a L2-distance between the classical kernel intensity estimator using only

location information and the appealing one using covariate information. To avoid the

problem of the lack of consistency, we are using the density of event location and

the null hypothesis can be equivalently rewritten as H0 : λ0(x) = ρ(Z(x))/m.

The procedure to construct the statistic isthat we first estimate the relative density

with the two-dimensional kernel estimator (1), and then we estimate it using (4).

We apply the L2-distance to obtain a statistic that measures the discrepancy between

them:

T1 =

∫

W

(

λ̂0,H (x) − ρ̂0,b(Z(x))

)2

dx, (6)

where ρ̂0,b(Z(x)) = ρ̂b(z)

N
1{N �=0} with ρ̂b(z) = f̂b(z)m/g�(z), with b ≡ b(m) a real

bandwidth parameter, see Borrajo et al. [3].

The asymptotic distribution of the statistic (6) under a suitable framework is

derived. However, in practice, this asymptotic distribution may not be the best way

to calibrate our test since the convergence rate is too slow. Our proposal is to use a

bootstrap procedure to perform the calibration, see Borrajo et al. [4] for details.

A complete simulation study including several scenarios and different sample

sizes has been carried out in Borrajo et al. [4], showing good values in terms of level

and power for this test, that to the extent of our knowledge has yet no competitors.

Nonparametric comparison of first-order intensity functions for Poisson processes

A common question in the analysis of spatial point processes is whether two types

of events have the same spatial structure.
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Let X1 and X2 be spatial patterns of type 1 and type 2 events in a spatial point

process X observed in W ⊂ R
2. We denote, respectively, by λ1(x) and λ2(x) the

first-order intensities, and by λ01(x), λ02(x) their densities of event locations. We

can extend the proposal of Duong et al. [13] for multivariate data to the spatial point

process framework and use a L2-distance to test the null hypothesis H0 : λ01(x) =

λ02(x) = λ0(x):

T2 =

∫

W

(

λ̂01 (x) − λ̂02(x)

)2

dx = ψ̂1 + ψ̂2 −
(

ψ̂12 + ψ̂21

)

(7)

where ψ̂i j and ψ̂i are kernel estimators ofψi j =
∫

W
λ0i (x) λ0 j (x) dx for i, j = 1, 2

and ψi =
∫

W
λ0i (x)2 dx .

Fuentes-Santos et al. [15] proved the asymptotic normality of the null distribution

of this statistic under some regularity conditions. Again, given that the convergence

to the asymptotic distribution is slow, we propose a bootstrap calibration, which good

performance was proved through a simulation study in that paper.

This same problem has been extended to the context of point processes with

covariates, see Borrajo et al. [5] for details.

Spatio-temporal separability test

Let S = {(X1, t1), . . . , (X N , tN )} be a realization of a spatio-temporal point process

observed on a bounded domain W × T ⊂ R
2 × R

+, the spatio-temporal intensity

function (STIF) is a natural extension of the first-order intensity function of a spatial

point process:

λ(x, t) = lim
|dx×dt |→0

{

E [N (dx, dt)]

|dx × dt |

}

, (8)

where N (dx, dt) represents the number of events in the volume dx × dt , dx is an

infinitesimal disc containing the location x , and dt is an infinitesimal interval around

time t .

One of the first steps in the analysis of any observed pattern is testing whether the

STIF is separable, i.e., whether it can be expressed as the product of its spatial and

temporal components: λ(x, t) = λ1(x)λ2(t). Under separability the ratio between

the spatio-temporal and spatial intensities, r(x, t) = log (λ(x, t)/λ1(x)), does not

depend on the spatial locations, x , for any t ∈ T . Considering this property, Fuentes-

Santos et al. [16] propose using a no-effect test that checks whether the log-ratio

function r(x, t) = λ(x, t)/λ(x) depends on the spatial locations.

To implement the test we first need an estimator of r(x, t). We propose using the

log-ratio of the kernel spatio-temporal and spatial intensities with diagonal bandwidth

matrices selected by least-squares cross-validation.

Once the log-ratio function has been estimated we have a regression prob-

lem where the log-ratio function evaluated at each event, Y = {Yi = ρ̂(X i , ti ), i =

1, . . . , n}, is a response variable that may depend on the spatial covariate X = {X i =

(X i1, X i2), i = 1, . . . , n} comprising the event locations, and we test for the effect
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of X on Y . Following Bowman and Azzalini [6], we shall discriminate between two

models:

H0 : E [Yi |X i ] = μ and H1 : E [Yi |X i ] = m(X i ).

We first estimate μ by the empirical mean, ŷ = n−1
∑n

i=1 Yi , and the unknown

smooth function, m(·), by kernel regression; then we compute the residual sum

of squares for the null, RSS0, and alternative, RSS1, models and we define the

generalized test:

T3 =
(RSS0 − RSS1) / (d f1 − d f0)

RSS1/d f1

, (9)

where d f0, d f1 denote the degrees of freedom for these residuals. Finally, we propose

using a permutation test as calibration procedure, see details in Fuentes-Santos et al.

[16].

4 Real Data Analysis

Wildfire is the most ubiquitous natural disturbance in the world and represents a

problem of considerable social and environmental importance. In this section, we

apply the methodology previously presented to two data sets: one consisting of

wildfires in Galicia (NW Spain) and the other in Canada. Both regions have a very

different background on wildfires. On one hand, Galicia is known to have a low risk

of wildfires due to meteorological conditions (it is a very green, rainy region with

low to moderate temperatures the whole year), but it has been suffering an extremely

high incidence due to arson fires, which have become a major environmental and

social problem in the region. On the other hand, Canadian wildfires are known to be

studied over decades from different perspectives and meteorological conditions are

supposed to be one of the key factors in the incidence.

Galician wildfire data

The first data set comprises the spatial locations and time of occurrence of arson and

natural wildfires registered in Galicia during 2006, see Fig. 1. Wildfire data can be

obtained through a request to the Wildfire Statistics Department at the Spanish Min-

istry of Agriculture, Fisheries and Food (https://www.mapa.gob.es/es/desarrollo-

rural/estadisticas/Incendios_default.aspx). We have applied kernel intensity estima-

tion and the tests introduced above to characterize the spatial distribution of fires,

check whether arson and natural fires have similar behavior and test whether the risk

of fire in a given location varies over time.

The kernel intensity estimators in Fig. 2 show that during 2006 the west coast

of Galicia registered high incidence of arson fires, where natural fires were more

frequent in the east and center of this region. The nonparametric comparison of

https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/Incendios_default.aspx
https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/Incendios_default.aspx
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Fig. 1 Spatial pattern of arson (left) and natural (center) wildfires, and temporal pattern (right) of

arson (red) and natural (blue) wildfires registered in Galicia during 2006

Fig. 2 Kernel intensity

estimator of arson (left) and

natural (right) wildfires

registered in Galicia during

2006 (different scale)

intensities confirmed that arson and natural wildfires had different intensities. The

F-test detected departure from separability in both wildfire patterns. Therefore the

spatial distribution of arson and natural wildfires varied over time and support the

need for nonseparable models to estimate their spatio-temporal intensity.

Canada wildfire data

Fire activity in Canada mostly relies on meteorological elements such as long periods

without rain and high temperatures. We want to study the influence of some of these

covariates in the distribution of the process generating the wildfires, particularly on

its first-order intensity.

The wildfire data set and also complete meteorological information from the

last decades is available at the Canadian Wildland Fire Information System website

(http://cwfis.cfs.nrcan.gc.ca/home). We analyze later the influence of meteorological

covariates on wildfires during June 2015 (a total number of 1841), see Fig. 3, focusing

in this paper our attention on the temperature. It is important to note that for inferential

purposes we have removed two regions (Northwest Territories and Nunavut, mostly

covered by ice layers) from the whole observation window (Canada) because there

are no fires registered on those iced regions.

In Fig. 4, we see the estimations resulting from using the classical kernel inten-

sity estimator, which does not use covariate information, by Diggle [10] and (4).

As expected the covariate information seems to be useful in this context because

the resulting estimate represents better the pattern. So this might indicate that the

temperature has an influence in the distribution of Canadian wildfires.

http://cwfis.cfs.nrcan.gc.ca/home


110 M. I. Borrajo et al.

Fig. 3 Wildfires in Canada during June 2015 (left) and third quartile of the temperature (in Celsius

degrees) registered in June 2015 in Canada, after a Gaussian smoothing with σ = 2 (right)
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Fig. 4 Estimation without covariate information (left), and estimations using temperature as the

covariate (right)

When we perform the goodness-of-fit test in (6) with this data set, we reject the

null hypothesis, so it seems that the temperature is not enough to explain the wildfire

distribution, which does not mean that it has o influence. An improvement in this

situation is defining indicators using several covariates or applying to those covariates

the multidimensional version of the test that is detailed in Borrajo et al. [4].
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Bayesian Nonparametric Prediction with

Multi-sample Data

Federico Camerlenghi, Antonio Lijoi, and Igor Prünster

Abstract In the present paper, we address the problem of prediction within the

setting of species sampling models. We consider d populations composed of dif-

ferent species with unknown proportions. Our goal is to predict specific features of

additional and unobserved samples from the d populations by adopting a Bayesian

nonparametric model. We focus on a broad class of hierarchical priors. These were

introduced and investigated in [1], where also an algorithm for drawing predictions is

devised, however, without any specific numerical illustration. The aim of this paper

is twofold: on the one hand, we provide an illustration with an actual implementation

of the algorithm of [1] and, on the other hand, we discuss its relevance with respect

to complex prediction problems with species sampling data.

Keywords Bayesian nonparametric · Hierarchical process · Pitman–Yor process ·
Prediction · Random measure · Species sampling

1 Introduction

A typical problem in statistics relies on forecasting future outcomes of a random

experiment, given a set of analogous observations from the past. This is known as the

problem of prediction and its importance has been emphasized in several contexts (see

for example, [6]). In the present paper, we will face this problem within the framework

of species sampling models. We will deal with a multiple-populations scenario,
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more precisely, we consider d populations of animals composed by different species

with unknown proportions and we suppose that the species are shared across the d

different populations. Assuming to be provided with a sample for each population,

one typically wants to predict the number of new species that will be discovered in

future sampling from the populations, the number of new species specific to each

population and not shared with the others, the number of shared species across

populations, etc.

In order to provide a clear mathematical formulation of the problem, we con-

sider a Polish space X equipped with its Borel σ -algebra, denoted as X , and a

common probability space (Ω,A ,P), where the data are defined. The j th obser-

vation from population i , denoted here as X i, j , is an X-valued random element

defined on the probability space (Ω,A ,P). The space X contains all the possible

labels of the species in the d populations, besides the variable X i, j can be inter-

preted as the species’ label of the j th animal from population i , for i = 1, . . . , d. In

the sequel, we will suppose to be provided with a sample Xni
:= (X i,1, . . . , X i,ni

)

of size ni for any i = 1, . . . , d. The whole sequence of observations is indicated

as X = (Xn1
, . . . , Xnd

). We further assume that the X i, j s are independent and dis-

tributed as pi :=
∑

k≥1 pi,kδx∗
k
, where pi,k denotes the proportion of species k in

population i and x∗
k is the corresponding species’ label. Since the composition of

any population is completely unknown, adopting a Bayesian viewpoint, we need

to define a nonparametric prior distribution for the pi s. A good nonparametric prior

should take into account the fact that the species’ labels are shared across the different

populations, but the proportions are not the same. Hence, we are looking for a vector

of dependent random probability measures ( p̃1, . . . , p̃d) sharing the same atoms.

Among the different Bayesian nonparametric models have been suggested in the

literature, one of the most used and known is undoubtedly the hierarchical Dirichlet

Process (HDP) defined in [13]. A first generalization of the HDP has been proposed

is the hierarchical Pitman–Yor Process (HPY), which allows for much more flexibil-

ity in terms of clustering. See [11] for the definition of Pitman–Yor process and [8,

14, 15] for the hierarchical framework. The distribution theory of these processes

have been recently studied in [1] within the more general framework of hierarchical

transformations of completely random measures (see Sect. 2). Summing up, we con-

sider an ideally infinite sequence of observations {(X i, j ) j≥1 : i = 1, . . . , d}, which

are defined on some probability space (Ω,A ,P) and taking values in the space of

species’ labels X equipped with its Borel σ -field X . We further assume that the

d sequences of observations are partially exchangeable [5], i.e., by the de Finetti

representation theorem they satisfy:

(X1, j1 , . . . , Xd, jd ) | ( p̃1, . . . , p̃d)
iid
∼ p̃1 × · · · × p̃d ( j1, . . . , jd) ∈ N

d

( p̃1, . . . , p̃d) ∼ Qd .
(1)

where ( p̃1, . . . , p̃d) is a vector of dependent random probability measures and Qd

is termed the de Finetti measure of the sequence. The specification of Qd , or equiv-

alently of the dependence structure across p̃1, . . . , p̃d , is a crucial problem in the
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Bayesian nonparametric literature. As mentioned before, here we employ hierar-

chies of priors to define the vector ( p̃1, . . . , p̃d): such a construction will be better

specified in the next section.

The rest of the paper is structured as follows. In Sect. 2, we briefly recall the

definition of Completely Random Measures (CRMs) which are employed to define a

general class of hierarchical processes ( p̃1, . . . , p̃d) that can be used in (1). Section 3

is devoted to the problem of prediction, some numerical illustrations are presented in

Sect. 3.1 to show the applicability of our results and their performance in simulated

scenarios. We conclude the paper with a brief discussion.

2 Hierarchical Processes Based on Completely Random

Measures

This section is devoted to the construction of vectors of dependent random probability

measures ( p̃1, . . . , p̃d), which can be used to model the prior opinion in (1). We define

a broad class of these vectors, relying on transformations of Completely Random

Measures (CRMs). We first recall some basics on CRMs, refer to [4] for a complete

account on the subject.

Let MX be the space of boundedly finite measures on (X,X ), i.e., m(A) < +∞

for any m ∈ MX and for any bounded set A ∈ X , equipped with the corresponding

Borel σ -algebra MX. A CRM is a random element µ̃ defined on some probability

space (Ω,A ,P) and taking values in (MX,MX), such that the random variables

µ̃(A1), . . . µ̃(Ak) are independent for any choice of disjoint Borel sets A1, . . . , Ak ∈

X and for any k ≥ 1. A nice representation theorem for CRMs has been provided

by Kingman [9], who proved that µ̃ can be written as the sum of three components:

(i) a fixed diffuse measure; (ii) an infinite sum of random jumps at fixed locations;

(iii) an infinite sum of random jumps at random locations. As most of the current

literature, we focus our attention on CRMs of type (iii), therefore represented as

µ̃ =
∑

i≥1 Ji δYi
. For the sake of simplicity, we further assume that (Ji )i≥1 and (Yi )i≥1

are independent sequences of random elements, leading us to consider the class of

homogeneous CRMs. Then, the law of such a µ̃ may be uniquely characterized

through the Laplace functional, which amounts to be

E[e−
∫

X
f (x)µ̃(dx)] = exp

{

−c

∫

X

∫ ∞

0

(1 − e−s f (x))ρ(s)ds P(dx)

}

,

where P is a probability on (X,X ), called base measure, c is a positive constant and

ρ : R+ → R
+ is a measurable function. In other words, the CRM µ̃ is a functional

of a Poisson process {(J j , Yi )}i≥1 on R
+ × X with non-bounded intensity function

given by ρ(s)dscP(dx). Noteworthy examples of CRMs are the gamma process,

obtained when ρ(s) = e−s/s, and the σ -stable process, which corresponds to the

choice ρ(s) = σ s−1−σ /Γ (1 − σ) for some σ ∈ (0, 1).
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Transformations of CRMs can be used to define broad classes of random proba-

bility measures, in the sequel, we will focus on two possible transformations leading

us to define Normalized Random Measures with Independent Increments and the

Pitman–Yor process. Besides, we will further define the corresponding hierarchical

structures.

2.1 Hierarchical Normalized CRMs

Let us first focus on random probability measures which are obtained as normalization

of a CRM µ̃ =
∑

i≥1 JiδYi
:

p̃ =
µ̃

µ̃(X)
=

∑

i≥1

Ji

J̄
δYi

, (2)

where J̄ :=
∑

i≥1 Ji = µ̃(X). In the sequel, we will write p̃ ∼ NRMI(c, ρ; P) to

denote the distribution of the so-called Normalized Random Measure with Indepen-

dent Increments (NRMI) p̃, as first introduced in [12]. Note that p̃ in (2) is well

defined if P(0 < µ̃(X) < ∞) = 1 is in force, see [12] for a discussion on such an

assumption and its relation with the Lévy intensity.

Being provided with d different random probability measures p̃1, . . . , p̃d , one

may enable dependence across them in the following hierarchical fashion:

p̃i | p̃0

iid
∼ NRMI(ci , ρi ; p̃0) i = 1, . . . , d

p̃0 ∼ NRMI(c0, ρ0; P0),
(3)

where P0 is a diffuse measure on (X,X ). In (3), the base measure referring to

each p̃i , for i = 1, . . . , d, is taken to be random and equals another NRMI p̃0:

such a construction allows for sharing of atoms across p̃1, . . . , p̃d . This vector of

hierarchical NRMIs may be used in (1) to define the de Finetti measure Qd .

2.2 Hierarchical Pitman–Yor Processes

A second relevant construction arises when p̃ is a random probability measure having

distribution obtained by a suitable transformation of the distribution of a CRM. In

particular, let Pσ be the probability distribution on (MX,MX) of a σ -stable CRM,

with σ ∈ (0, 1). For θ > 0 define Pσ,θ on (MX,MX) as absolutely continuous w.r.t.

Pσ and such that its Radon–Nikodym derivative is

dPσ,θ

dPσ

(m) =
Γ (θ/σ)

σ Γ (θ)
m−θ (X).
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The resulting random measure µ̃σ,θ with distribution Pσ,θ is not completely random,

but via normalization

p̃ =
µ̃σ,θ

µ̃σ,θ (X)
∼ PY(σ, θ; P)

we obtain the well-known Pitman–Yor (PY) process [11]. Correspondingly, we may

define a vector of hierarchical PY processes as in (3):

p̃ | p̃0
d
= PY(σ, θ; p̃0)

p̃0
d
= PY(σ0, θ0; P0)

(4)

with P0 being a non-atomic probability measure on (X,X ). The theoretical analysis

beyond this structure and the previous one (3) has been carried out in [1], see also

[2] for some applications and [3] for a discussion of the case d = 1 (exchangeable

hierarchical processes).

3 Prediction in Species Models

In the present section, we assume to be provided with a sample Xni
= (X i,1,

. . . , X i,ni
) of size ni for each i = 1, . . . , d, satisfying (1). The vector of random

probability measures ( p̃1, . . . , p̃d) in (4) are assumed to have a hierarchical struc-

ture, in particular we have considered hierarchies of PY processes to carry out the

numerical experiments of Sect. 3.1.

Our interest here consists in predicting specific features of additional and unob-

served samples from the d populations, which will be denoted by X (ni )
mi

:= (X i,ni +1,

. . . , X i,ni +mi
), as i = 1, . . . , d. For the sake of illustration, we consider an additional

sample of the same size m for each population, namely m = m1 = . . . = md . In

the following numerical experiments, we concentrate our attention on two statistics

which depend on the additional unobserved samples. The first one is the number

of hitherto unobserved species that will be discovered in further sampling, more

precisely we intend to forecast

K (ni )
m |X :=

ki,m
∑

r=1

1{X}c(X∗
i,r ), (5)

where X∗
i,1, . . . , X∗

i,ki,m
are the ki,m distinct values out of the i th additional sample

X (ni )
m and 1 denotes the indicator function. Another statistic that one could be inter-

ested to predict is the following

S
(ni )

m,i |X =

ki,m
∑

r=1

1{X}c(X∗
i,r )

∏

j �=i

1{X j,n j +1,...,X j,n j +m }c(X∗
i,r ). (6)
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S
(ni )

m,i counts the number of new and distinct observations in a future sample of size m

for the i th population, which are not shared with the other d − 1 additional samples

of size m.

The posterior distributions of K (ni )
m and S

(ni )

m,i are not available in closed form,

hence, one needs to resort to a simulation algorithm in order to estimate all these

quantities. To solve this issue, we apply the MCMC procedure developed in [1] (see

also [2]) to generate trajectories of additional samples and then estimate K (ni )
m and

S
(ni )

m,i on the basis of the MCMC runs.

3.1 Numerical Experiments

We consider four populations (d = 4), each one containing Ki = 3,000 different

species chosen at random from a pool of K = 4.000 total species. For each popu-

lation, we have chosen at random the labels of the species from the total pool of K

labels, and then we have assigned to them the Zipf distribution with parameter si .

More specifically, if j1, . . . , jKi
are the Ki species of population i , then we assign

to the kth label of population i (denoted as jk) a frequency proportional to 1/ksi ,

for k = 1, . . . , Ki and i = 1, . . . , 4. For the sake of illustration, we have chosen the

Zipf’s parameters as follows (s1, . . . , s4) = (1.1, 1.1, 1.2, 1.2) and we have gener-

ated a sample of size n = 200 for each population. We have run an MCMC sampler

for a total of 35,000 iterations and a burn-in period of 15,000 iterations to predict

the number of new species that will be observed in an additional sample of size m,

where m varies from 20 to 200. The red curve in Fig. 1 depicts the estimated number

of new species that will be observed in further sampling for the different populations,

obtained applying the MCMC procedure of [1, Sect. 6.1]. The black curve represents

the number of new species estimated with an oracle strategy, i.e., sampling from the

true distribution generating the data. We observe that the two curves are close in all

the four populations, leading us to conclude that our strategy is able to truly predict

the number of new species observed in additional sampling. Figure 2 compares the

prediction of S
(ni )

m,i obtained through the hierarchical PY (red curve) and through the

oracle strategy (black curve), each panel corresponds to a population. We observe an

accurate prediction of this statistic. It is remarkable to underline that the prediction

of S
(ni )

m,i is achievable in a dependent framework only.

4 Discussion

We addressed the problem of prediction in the context of species models with

multiple-samples information. We remark that similar problems were first faced

in [10] under the exchangeability assumption, i.e., in the presence of only one pop-

ulation. In [7, 10], the authors derived tractable analytical expressions for many
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Fig. 1 Prediction of the number of new species observed in each population for different values of

the additional sample size. The oracle prediction is shown in black, the estimated value is in red.

Shaded bands correspond to 95% estimated credible intervals

quantities of interest when the nonparametric prior is a Pitman–Yor process. The

partially exchangeable framework we have investigated here is much more involved

and the posterior distributions of the two statistics (5) and (6) are not available in

closed form. Therefore, we have used an MCMC sampler to estimate these quan-

tities, implementing the prediction algorithm suggested in [1] and showing its role

in the context of species sampling. It is possible to use such a procedure to predict

the outcome of many other statistics depending on an additional sample of arbitrary

size, e.g., the number of shared species across two or more populations. Work on

this and related applications is ongoing.



120 F. Camerlenghi et al.

Fig. 2 Prediction of the number of new species specific of each population (i.e., not shared with the

others) for different values of the additional sample size. The oracle prediction is shown in black,

the estimated value is in red. Shaded bands correspond to 95% estimated credible intervals
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Algorithm for Automatic Description of
Historical Series of Forecast Error in
Electrical Power Grid

Gaia Ceresa, Andrea Pitto, Diego Cirio, and Nicolas Omont

Abstract The EU-FP7 iTesla project developed a toolbox that assesses dynamic
security of large electric power systems in the presence of forecast uncertainties.
In particular, one module extracts plausible realizations of the stochastic variables
(power injections of RES Renewable Energy Sources, load power absorptions). It is
built upon historical data series of hourly forecasts and realizations of the stochastic
variables at HV (High-Voltage) nodes in the French transmission grid. Data reveal
a large diversity of forecast error distributions: characterizing them allows to adapt
the module to the data, improving the results. The algorithm here presented is aimed
to automatically classify all the forecast error variables and to cluster them into
smoother variables. The main steps of the algorithm are filtering of the variables
with too many missing data or too low variance, outliers detection by two meth-
ods (Chebyshev inequality, quantile method), separation of unimodal variables from
multimodal ones by exploiting a peak counting algorithm, Gaussian mixtures, com-
parison with asymmetrical distributions, multimodality index, clustering of the mul-
timodal variables whose sum is unimodal, comparing two alternative algorithms (the
former based on hierarchical clusterization, accounting for correlation and geograph-
ical closeness, and the latter on the identification of the same initial characters in the
identification codes).
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1 Introduction

The iTesla project [1, 2], led by the French transmission system operator RTE and
co-funded by the European Commission FP7, develops an approach to perform
the dynamic security assessment of large power systems in an online environment,
accounting for dynamic problems and for the forecast uncertainties due to renewable
sources and load, associated to a variable time horizon spanning from online opera-
tion to several hours ahead of operation. The outcome of the project is a free toolbox
described in [3] and available on GitHub [4]. After the end of the iTesla project,
further developments of the platform have been carried out in two directions [5–7]:
the choice of the suitable historical dataset to train the offline uncertainty model of
the platform, and a deeper analysis of the large amounts of available historical series
of forecasts and snapshots. The forecast error time series has very different profiles:
some are continuous and others take discrete values, some reflect a kind of periodic-
ity and others have sudden variations; also, the relevant distributions differ a lot. The
iTesla tool can take into account this variety, thanks to a deep analysis of the forecast
errors described in this paper: a classification into unimodal and multimodal vari-
ables allows to better tune the sampling module, while the clustering phase combines
some subsets of multimodal variables transforming them into unimodal, obtaining a
reduction of the problem dimensionality.

The novelty shown in this paper is the automatic processing of some thousands of
historical series [8]. This paper starts with the algorithm description in Sect. 2, which
explains the phases of raw data pre-processing, the overall descriptive statistics and,
finally, the comparison of two clustering methods. Section 3 shows one application
of the overall algorithm in a real dataset. Section 4 concludes.

2 Algorithm

The input is composed by a set of thousands of historical series of renewable energy
sources power injections and load absorptions of the French electrical high trans-
mission grid and one set of their forecasts done the day before; the timestamps are
hourly, the time domain is at least 1 month. The variables under study are the forecast
errors of active and reactive powers, computed as in Eq. 1.

errorhour,node = snapshothour,node − f orecasthour,node

∀hour ∈ [hourmin, hourmax ] (1)

The algorithm for automatic description of historical series of forecast errors has
three main steps:

1. Preprocessing: removal of not significant variables, detection and elimination of
outliers;
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2. Descriptive statistics: calculation of the first four moments, calculation of linear
correlations, multimodality analysis, classification of variables;

3. Clustering: algorithm based on hierarchical clustering, clustering of variables
lying in the same substation.

2.1 Preprocessing

The raw input data contain many time series that are not significant from a statistical
point of view; the input series where more than 30% of timestamps are missing
values, or more than 70% of timestamps are constant values, usually 0, and the
series with a variance lower than 1 MW2(Mvar2) are filtered out. The preprocessing
regards both forecast and snapshot series, and then it runs also on their differences.
The subsequent steps run only on the forecast error time series.

The retained variables must still be managed in order to remove the observations
that have an abnormal distance from the other values in the random sample, the
outliers. This definition leaves to the analyst the decision of which distances will be
considered abnormal, and several methods can help him [9], but none of them works
correctly on all of the thousands of forecast error time series. The sequel describes
the process of outliers’ detection and deletion that runs better on all the variety of
the input series.

The tool implements the outliers detection method based on Chebyshev’s Inequal-
ity: for each integrable random variable X , with finite mean µ and variance σ , it holds
valid the expression:

P (|X − µ| ≥ nσ) ≤
1

n2
. (2)

The most used parameter in literature is n = 3, and a lot of tests based on trials-

and-errors confirm the goodness of this value; the extreme values stay in the com-
plementary set of [µ − 3σ,µ + 3σ ].

The second outliers detection method is the Quartile Method, based on the com-
putation of first Q1 and third Q3 quartiles; the extreme values are contained in the
complementary set of [Q1 − n (Q3 − Q1) , Q3 + n (Q3 − Q1)]. From literature,
the most frequently used parameter is n = 1.5, but for the analysed forecast error
time series this value detects too many extreme values, and several tests based on
trials-and-errors select the parameter n = 3. After that, the MAD test runs on the
detected extreme values: be X the series and X i its elements, the outliers are those
X i that satisfy the condition

|X i − median(X)|
median (|X i − µ|)

> 5. (3)

Only the operator’s expertise can decide if an extreme value is an outlier or not;
but it is not possible to make the resolve for some thousands of variables. In order
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to automate the decision, the output of both methods are compared: their resulting
sets are of different size, where the smallest is a subset of the biggest, and only the
last one is selected for the subsequent steps. The final check is about the cardinality
of the selected set: if it is lower than 7% of the number of variable’s records, their
elements are classified as outliers and so removed, otherwise, they are considered as
extreme values. This limit is due to the discrete variables, where the record related
to an extreme value might be misinterpreted as outliers.

2.2 Descriptive Statistics

This subsection summarizes the phases of the overall statistical description.
The initial descriptive information comes from the computation of the first four

moments: average, variance, skewness and kurtosis; their quantiles allow an initial
classification of the variables.

The linear correlation between each pair of time series is computed through the
Pearson index, in view of the future clustering phase. The analysis of the output
matrix helps detect also the variables that are replicated in two different nodes due
to the state estimation system.

The Multimodality Algorithm carries out the time series classification into vari-
ables with multimodal or unimodal distribution. It is composed of four consecutive
steps where the first two work on the whole set of variables, and the last two run only
on the variables detected as multimodal in the previous steps. Four different methods
for multimodality detection are combined because none of them can guarantee the
best result if applied individually on all the variables, which are characterized by
large differences in the relevant distributions; each step of the algorithm improves
the result of its predecessor. The workflow, shown in Fig. 1, runs once for each time
series.

The first step finds the number of peaks working as follows: it generates the
histogram of the variable samples with 50 equally spaced bins, each one containing
at least 10 elements, both numbers decided by the rule of thumb. It considers the
height of each bin and compares it with the previous one and next one: if the height of
the analysed bin is higher than its neighbours, it is considered a local maximum. The
peaks are the local maxima that stay between two lower local maxima. The result is
a big set of values, most of which are not significant: it is necessary to better define
the number of modes of each variable in the next step.

A Gaussian Mixture tries to fit the distribution. Two nested loops are composed:
the outer runs changing every time the number of the mixture components, choos-
ing from the number of peaks identified in the previous step down to 1. For each
number of components, the inner loop runs three times the iterative Expectation–
Maximization Algorithm [10], to find the better parameters (averages, covariance
matrices, component proportions) of the mixture. The best fitting of the inner loop
has the lowest Akaike Information Criterion (AIC) [11], while the best fitting of the
outer loop has the lowest Bayesian Information Criterion (BIC) [12] ; both indices
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Fig. 1 Multimodality algorithm

depend on the likelihood function L penalized by the number k of the distribution’s
parameters, BIC in a heavier manner because k is multiplied by the logarithm of the
length n of the series.

B I C = −2ln(L) + k · ln(n); AI C = −2ln(L) + 2k. (4)

A skewed and platykurtic histogram usually is approximated by a multimodal
mixture, but a unimodal distribution could fit the histogram even better. Six unimodal
distributions (Weibull, Logistic, Gamma, Log-Normal, Generalized extreme value,
T-location scale) try to fit the variable, and the one with lowest BIC is selected and
compared also with the Gaussian Mixture. If the unimodal distribution has the lowest
BIC, the algorithm stops here and restarts analysing the next variable.
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The variables described by a multimodal Gaussian Mixture are subjected to a
final step, the computation of Ashman’s D index [13], that measures the distance
between the pairs of mixture components. This index is applied to the mixtures of
distributions with unequal variances: let µ1 and µ2 the component’s averages, σ1 and
σ2 their standard deviations; a two-component mixture is unimodal if and only if

D =
√

2
|µ1 − µ2|
√

σ 2
1 + σ 2

2

≤ 2. (5)

If a mixture contains three or more modes, the Ashman’s D index is computed for
each pair of components, and the variable is included among the multimodal if at
least one D index is higher than 2.

At this point, all the variables are classified, taking into account their averages,
variances and number of peaks. All the averages are collected, and their percentiles
are computed: the “low” averages stay within the percentiles [25th, 75th), while
the “high” averages stay in the complementary interval. Also, the variances are
classified based on their percentiles: they are “low” if they are lower than the 80th
percentile, “high” if higher. The third step of classification is the number of peaks of
the distribution, that can be “one” or “more than one”.

2.3 Clustering Algorithms

Clustering the multimodal variables and combine them into fewer unimodal series is
important for two reasons: the sampling module of the iTesla platform can provide
a more accurate result when dealing with unimodal variables. Moreover, the dimen-
sionality of the problem is reduced. Two algorithms, which are based on different
clustering criteria, are run. The clusters are composed of two or three variables of
the same type, all active or all reactive power.

The first algorithm is based on Hierarchical Clustering, shown in the left part of
Fig. 2. The power absorptions or injections at two electrical nodes that are linearly cor-
related could be influenced by the same local phenomenon; this correlation is signif-
icant and durable if the nodes are geographically closed and subject to the same phe-
nomena for a long time, otherwise, it could be only a random correlation. The algo-
rithm collects six consecutive steps; at first, it computes the distances between nodes
based on Pearson’s index previously computed: dist (X, Y ) = 1 − |corr(X, Y )| ;
after that it implements the hierarchical clustering, grouping the more correlated
variables in pairs. Then, each cluster is subjected to three checks. The first looks for
the equal variables: X and Y are equal if they differ for at most 1 MW (Mvar) for
at least the 97% of their elements. N is the number of elements of the time series,
maxi = 3% of N :
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Fig. 2 Left: Algorithm based on hierarchical clustering. Right: Algorithm CVBSS

given I = {1, 2, . . . , N } , J = { j1, j2, . . . jmaxi } ⊂ I

i f |X i − Yi | < 1 ∀i ∈ I \ J ⇒ X = Y (6)

1 MW(Mvar) is negligible in the forecast and snapshot time series, considering
also some rounding or measurement errors and their propagation. If two variables
are equal, they are put within the replicated variables and their cluster is eliminated.
The second check is about the geographical distance, computed by considering the
latitude and longitude of the nodes. Given the clustered variables X and Y , the cluster
is retained only if Y belongs to the 50 nodes closest to X , selected by the nearest
neighbour algorithm, where 50 is a suitable trade-off for both the very concentrated
urban nodes and the distant nodes in the countryside. If a cluster is retained until
here, the historical series of the involved variables are summed together: the sum
is preserved only if the multimodality algorithm of Fig. 1 identifies it as unimodal.
This new unimodal variable is used in the iTesla tool instead of the two or three
multimodal clustered variables.

The second algorithm is Clustering Variables Belonging to the Same Substation
(CVBSS), on the right side of Fig. 2. In the electrical grid, many substations contain
one bus-bar that works like one electrical node if the bus coupler is closed, and it
is splitted into two or three electrical nodes if the bus coupler is open. The variable
associated with each node contains the measured values when the bus coupler is open,
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while the total substation measure is divided into two or three fictitious measures
when the bus coupler is closed. The grid topology information (bus coupler status)
is not available in advance, thus the forecast works well at the substation level, but
it cannot predict correctly the power at the individual node level. Consequently, the
forecast errors of each individual node could be large, with an irregular distribution
and many peaks, but the sum of the series at the substation level usually becomes
Gaussian, so the adopted strategy is to sum the variables referring to the nodes lying
in the same substation, in order to obtain one variable with the smoother distribution.

The algorithm CVBSS groups the variables which refer to the same substation and
which have a multimodal distribution of the forecast error. As shown in Fig. 2 left, it
selects only multimodal variables, working separately on active and reactive power.
It selects the pairs or triplets of variables that stay in the same electrical substation,
then it identifies the equal variables like in Eq. 6 and it separates them from the others.
The clustered time series are summed together: if the sum is multimodal the cluster
is eliminated, otherwise, it is retained.

3 Case Study

This section shows one application of the algorithm on 7808 stochastic variables
of the electrical French transmission grid, only active power from 1 January 2016,
00:30 to 31 January 2016, 23:30; considering that there is a subset of instants with
missing values, in total, there are 737 hourly timestamps in each time series. The
preprocessing phase selects the significant variables in both snapshots and forecasts,
removing those with too many missing or constant values, or with a variance lower
than 1MW; this phase retains 5194 variables, 67% of the input, from which the
forecast error series derive as in Eq. 1. The distribution of the time series averages is
Gaussian, half of the values are concentrated within the interval [−0.27, 0.06] and the
25% stay out of the interval [−1.27, 1.06]. One variable has an average very far from
the rest of the series, equal to −47.6 MW. The 80% of variables have the variance
lower than 9.07 MW2, while, in the 2% of cases, it is greater than 135 MW2; two
variables have the variance higher than 36,000 MW2 (one has also the highest average,
the other lies in the same substation). A total of 3093 nodes are combined in different
manners, with some repetitions, to generate 2006 pairs of variables correlated more
than 0.99; 209 variables are equal in pairs or triplets; 201 series are combined, with
some repetition, in 127 pairs with a correlation higher than 0.9 in absolute value.
Figure 3a shows the results of the application of the multimodality algorithm to the
case study: each step reduces the number of multimodal variables. In the end, the
algorithm finds 614 multimodal variables and 4580 unimodal ones. The variable
classification, shown in Fig. 3b, is based on the values of their first two moments and
on the number of their peaks. “Low averages” fall within the interval around 0, “low
variances” are lower than 9.07 MW2, the “high” levels stay in the complementary
intervals, different colours refer to the number of peaks in the distributions, the height
of each bin is the cardinality of each class. The major group is composed by variables
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Fig. 3 Multimodality
Fig. 3b and classification
Fig. 3b summary; example of
clustering Fig. 3c

(a) Number of multimodal variables detected by each step of

the algorithm in Fig. 1.
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(b) Result of the classification of the variables.
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with low average, low variance and one peak (the desirable group); the smaller group
have low average, high variance and many peaks; considering each bin of the bar
diagram, the most numerous part is the one composed by unimodal variables; the
groups with high variance are smaller than those with low variance. The clustering
based on hierarchical method finds 16 clusters, while CVBSS generates 18 groups
with 2 variables and 4 groups with three variables: the latter is preferable in this
example. A cluster image is in Fig. 3c: the histograms of three variables in the same
substation are reported in blue, their unimodal sum in magenta.

4 Conclusion

This paper has presented an algorithm for the automatic analysis of historical series
of the forecast errors in power systems. Initially, the algorithm proposes an overall
statistical description of all the series. Then, it allows to divide the unimodal variables
from the multimodal ones; the latter are grouped in clusters, and then aggregated into
unimodal variables with smoother distributions, because they are more suitable to be
processed in the subsequent stages of the iTesla platform. The results of the algorithm
applied to a case study related to the French system show that multimodal variables
are a small percentage (about 12%) of the total number of variables under test. More-
over, the clustering process detects few tens of clusters which combine multimodal
variables into smoother unimodal ones. The algorithm is a valuable contribution to
increase the accuracy of the sampling module of the platform developed during the
iTesla project to assess the security of large power systems in the presence of forecast
uncertainties.
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Linear Wavelet Estimation in Regression
with Additive and Multiplicative Noise

Christophe Chesneau, Junke Kou, and Fabien Navarro

Abstract In this paper, we deal with the estimation of an unknown function from

a nonparametric regression model with both additive and multiplicative noises. The

case of the uniform multiplicative noise is considered. We develop a projection esti-

mator based on wavelets for this problem. We prove that it attains a fast rate of

convergence under the mean integrated square error over Besov spaces. A practi-

cal extension to automatically select the truncation parameter of this estimator is

discussed. A numerical study illustrates the usefulness of this extension.

Keywords Nonparametric regression · Multiplicative noise · Rates of

convergence · Wavelets

1 Introduction

We consider the following unidimensional nonparametric regression model

Yi = Ui f (X i ) + Vi , i ∈ {1, . . . , n}, (1)

where f : [0, 1] → R is an unknown regression function, X1, . . . , Xn are n identi-

cally distributed random variables with support on [0, 1], U1, . . . , Un are n identically

distributed random variables having the uniform distribution on a symmetric interval

around 0 and V1, . . . , Vn are n identically distributed random variables. Moreover, it

is supposed that X i and Ui are independent, and Ui and Vi are independent for any
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i ∈ {1, . . . , n}. Additional technical assumptions on the model will be formulated

later. We aim to estimate the unknown function r := f 2 from (X1, Y1), . . . , (Xn, Yn);

the random vectors (U1, V1), . . . , (Un, Vn) form the multiplicative-additive noise.

The model (1) can be viewed as a natural extension of the standard nonparametric

regression model; the main novelty is the presence of a multiplicative uniform noise

that perturbed the unknown function f . Such multiplicative regression model as (1)

is very popular in various application areas, particularly in signal processing (e.g.,

for Global Positioning System (GPS) signal detection in which not only additive

noise but also multiplicative noise is encountered [1]), or in econometrics (e.g., for

volatility estimation where the source of noise is multiplicative [2], also for deter-

ministic and stochastic frontier estimation where the noise is multiplicative and both

multiplicative and additive, respectively [3]). On the other hand, let us mention that

some connexions exist with the so-called heteroscedastic nonparametric regression

model. See, for instance, [4–6]. In particular, [4] consider the estimation of r in the

heteroscedastic nonparametric regression model defined as (1) with X1 determin-

istic, V1 deterministic but unknown (it is an unknown function of X1) and general

assumptions on U1. The form of the model is the same but the intrinsic definition is

different. In this paper, we propose to estimate r with wavelet methods. Such methods

have the advantage to capture the possible complexity of this unknown function. A

natural linear wavelet estimator is then developed. With a suitable choice of a tuning

parameter inherent of this estimator, we prove that it attains a fast rate of convergence

under the mean integrated square error over Besov spaces. One drawback of this esti-

mator is that the theoretical choice for the tuning parameter depends on a supposed

unknown smoothness of r . We then provide a practical solution to this problem to

choose the truncation level of our linear wavelet estimator using an adapted version of

the twofold Cross-Validation (2FCV) method introduced by Nason [7]. A numerical

study is performed to show the applicability of this extension.

The rest of this paper is organized as follows. In Sect. 2, we briefly present basics

on wavelets and Besov balls. Additional assumptions on the model (1), the considered

wavelet estimator and the main result are given in Sect. 3. Section 4 is devoted to the

simulation study. The technical details for the proof of our main result are postponed

in Sect. 6.

2 Basics on Wavelets and Besov Balls

For the purpose of this paper, we use the compactly supported wavelets of the

Daubechies family. We present the essential below, all the details can be found in,

e.g., [8, 9]. For any j ≥ 0, we set Λ j = {0, . . . , 2 j − 1} and, for k ∈ Λ j ,

φ j,k(x) = 2 j/2φ(2 j x − k), ψ j,k(x) = 2 j/2ψ(2 j x − k).

Following the methodology of [10], there exists an integer τ such that, for any integer

j0 ≥ τ , the collection of functions
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S = {φ j0,k, k ∈ Λ j0; ψ j,k; j ∈ N − {0, . . . , j0 − 1}, k ∈ Λ j }

forms an orthonormal basis of L
2([0, 1]). Therefore, for any integer j0 ≥ τ and

h ∈ L
2([0, 1]), we have the following wavelet expansion:

h(x) =
�

k∈Λ j0

α j0,kφ j0,k(x) +

∞
�

j= j0

�

k∈Λ j

β j,kψ j,k(x), x ∈ [0, 1],

where

α j0,k =

� 1

0

h(x)φ j0,k(x)dx, β j,k =

� 1

0

h(x)ψ j,k(x)dx,

Also, let us mention that
� 1

0
φ j,k(x)dx = 2− j/2, which will be a crucial technical

point in the proof. Let Pj be the orthogonal projection operator from L2([0, 1]) onto

the space V j with the orthonormal basis {φ j,k(·) = 2 j/2φ(2 j · −k), k ∈ Λ j }. Then,

for any h ∈ L2([0, 1]), we have

Pj h(x) =
�

k∈Λ j

α j,kφ j,k(x), x ∈ [0, 1].

Besov spaces have the feature to capture a wide variety of smoothness properties

in a function including spatially inhomogeneous behavior, see [11–13] for further

details. Definitions of those spaces are given below. Suppose that φ is m regular

(i.e., φ ∈ Cm and |Dαφ(x)| ≤ c(1 + |x |2)−l for each l ∈ Z, with α = 0, 1, . . . , m).

Let h ∈ L p([0, 1]), p, q ∈ [1,∞] and 0 < s < m. Then the following assertions are

equivalent:

(1) h ∈ Bs
p,q([0, 1]); (2)

�

2 js�Pj+1h − Pj h�p

�

∈ lq; (3) {2
j (s− 1

p
+ 1

2
)
�β j,.�p} ∈

lq . The Besov norm of h can be defined by

�h�Bs
p,q

:= �(ατ,.)�p + �(2
j (s− 1

p
+ 1

2
)
�β j,.�p) j≥τ�q , where �β j,.�

p
p =

�

k∈Λ j

|β j,k |
p.

3 Assumptions, Estimators, and Main Result

Technical assumptions on the model (1) are formulated below.

A.1 We suppose that f : [0, 1] → R is bounded from above.

A.2 We suppose that X1 ∼ U ([0, 1]).

A.3 We suppose that U1 ∼ U ([−θ, θ ]) with θ > 0 a fixed real number.

A.4 We suppose that V1 has a moment of order 4.

A.5 We suppose that X i and Vi are independent for any i ∈ {1, . . . , n}.
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Let us observe that A.2 specifies that we consider a uniform design and that A.3

specifies that the uniform multiplicative noise is considered over a symmetric interval

around 0. The assumption A.5 implies that Vi is not a function of X i a fortiori.

We construct our linear wavelet estimators for r as follows:

r̂ j0,n(x) :=
�

k∈Λ j0

α̂ j0,kφ j0,k(x), x ∈ [0, 1], (2)

where

α̂ j,k :=
3

θ2

�

1

n

n
�

i=1

Y 2
i φ j,k(X i ) − E(V 2

1 )2− j/2

�

. (3)

The definition of α̂ j,k rests on technical consideration which will be presented later.

In spite of the simplicity of its construction, its performances strongly depend on

the choice of level j0. Further details on the linear wavelet estimator in a standard

nonparametric regression setting can be found in [11]. Recent developments can be

found in [14].

The following result determines the rates of convergence attained by r̂ j0,n via the

MISE over Besov spaces.

Proposition 1 Consider the problem defined by (1) under the assumptions A.1–A.5,

let r ∈ Bs
p,q([0, 1]) with p, q ∈ [1,∞), s > 1/p. Then the linear wavelet estimator

r̂ j0,n with 2 j∗ ∼ n
1

2s"+1 and s " = s − (1/p − 1/2)+ satisfies

E

"� 1

0

"

r̂ j0,n(x) − r(x)
"2

dx

"

� n− 2s"

2s"+1 .

The level j0 as defined in Proposition 1 is chosen to minimize as possible the MISE of

r̂ j0,n over Besov spaces. The rate of convergence n− 2s"

2s"+1 is not a surprise; it generally

corresponds to the one obtained in the standard nonparametric regression estimation.

See [6, 11, 15]. The proof of Proposition 1 is based on a suitable decomposition of

the MISE and some intermediary results on the probabilistic properties of the wavelet

coefficient estimator (3) (see Lemmas 1 and 2 in Sect. 6). The rest of this section is

devoted to the practical aspect of the estimator (2), with alternatives on the choice

of the level j0. In particular, we propose a candidate by adapting version of the

2FCV method originally developed by Nason for choosing the threshold parameter

in wavelet shrinkage [7].

4 Simulation Study

In order to illustrate the empirical performance of the proposed estimator, a numerical

illustration was produced. In order to set in a realistic context, we proposed to use

an automatic selection method of the estimator truncation parameter (not depending
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Fig. 1 a–c: The three test (squared) functions to be estimated

on the regularity of the function to be estimated). Simulations were performed using

R and in particular the rwavelet package [16], available from https://github.com/

fabnavarro/rwavelet.

The simulated data were generated according to (1), where n = 4096, X i ’s are

uniformly distributed on [0, 1], Ui ’s are U ([−1, 1]) (so θ = 1) and Vi are N (0, σ 2)

variables and independent of X i ’s withσ 2 = 0.01. Daubechies’ compactly-supported

wavelet with eight vanishing moments were used. We consider three standard test

functions for f , commonly used in the wavelet literature (HeaviSine, Ramp and

Bumps, see [17]). Recall that we wish to estimate r = f 2. The squared version of

those functions are plotted in Fig. 1.

In the case of fixed design, the calculation of wavelet-based estimators is simple

and fast, thanks to Mallat’s pyramidal algorithm [9]. In the case of uniform random

design, the implementation requires some changes and several strategies have been

developed in the literature (see e.g., [18, 19]). For uniform design regression, [20]

proposed to use and studied an approach in which the wavelet coefficients are com-

puted by a simple application of Mallat’s algorithm using the ordered Yi ’s as input

variables. We have followed this approach because it preserves the simplicity of cal-

culation and the efficiency of the equispaced algorithm. In the context of wavelet

regression in random design with heteroscedastic noise, [21, 22] also adopted this

approach. Nason adjusted the usual 2FCV method to choose the threshold parame-

ter in wavelet shrinkage (see [7]). His strategy was used for the selection of linear

wavelet estimators by [22]. We have chosen to use this approach to select the trun-

cation parameter j0 of the linear estimator r̂ j0,n . More precisely, we built a collection

of linear estimators r̂ j0,n, j0 = 0, 1, . . . , log 2(n) − 1 (by successively adding whole

resolution levels of wavelet coefficients), and select the best among this collection

by minimizing a 2FCV criterion denoted by 2FCV( j0). The resulting estimator of

the truncation level is denoted by ĵ0 and the corresponding estimator of r by r̂ ĵ0,n

(see [22, 23] for more details).

For a single experiment, and for each of the three test functions, with a sample

size n = 4096, we display the observations and the unknown function r in Fig. 2a. A

sample of three estimators from the collection is also shown in the Fig. reffig:singleb.

https://github.com/fabnavarro/rwavelet
https://github.com/fabnavarro/rwavelet
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Fig. 2 a: Noisy observations (X, Y 2). b: Sample of the model collection. c: Graph of the MSE

(blue) against j0 and (re-scaled) 2FCV criterion. d: Typical estimations from one simulation with

n = 4096. Blue lines indicate the true functions, red lines correspond to the estimators r̂
ĵ0,n
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Graphs of the curves associated with the selection criterion (i.e. 2FCV( j0)) are also

displayed in Fig. 2c. In order to be able to evaluate the performance of this criterion,

the Mean Square Error curves (i.e., MSE(r̂ j0,n, r) = 1
n

�n
i=1(r(X i ) − r̂ j0,n(X i ))

2))

are also shown (in blue). We denote by j∗
0 , the parameter selected by minimizing

this quantity. It can be observed that 2FCV( j0) gives very reliable estimate for the

MSE(r̂ j0,n, r), and in turn, also a high-quality estimate of the optimal model. Indeed,

in this case, the method allows to find the oracle of the collection (i.e., that obtained by

assuming the regularity of the function to be estimated known) for the three signals.

5 Conclusion

In this paper, we develop a simple wavelet methodology for the problem of estimating

an unknown function subject to additive and multiplicative noises. Focusing on a

uniform multiplicative noise, we construct a linear wavelet estimator that attains a

fast rate of convergence. Then some extensions of the estimator are presented, with

a numerical study showing the usefulness of the method.

A possible extension of this work would be to consider a more general assumption

on the distribution of the multiplicative noise. Another possible extension would

be to construct another wavelet estimation procedure involving thresholding of the

wavelet coefficient estimators and also dependence on the observations, as in [24]

for the additive noise only. These aspects need further investigations that we leave

for future work.

6 Proofs

To prove Proposition 1, we use the following two lemmas.

Lemma 1 Let j ≥ τ , k ∈ Λ j , α̂ j,k be (3). Then, under A.1–A.5, we have

E[α̂ j,k] = α j,k .

Proof of Lemma 1. Using the independence assumptions on the random variables,

A.1–A.5 with E[U1] = 0, observe that

E
�

U1V1 f (X1)φ j,k(X1)
�

= E[U1]E[V1]E
�

f (X1)φ j,k(X1)
�

= 0

and

E
�

V 2
1 φ j,k(X1)

�

= E[V 2
1 ]E

�

φ j,k(X1)
�

= E[V 2
1 ]

� 1

0

φ j,k(x)dx = E[V 2
1 ]2− j/2.
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Therefore, using similar mathematical arguments with E
�

U 2
1

�

= θ2

3
, we have

E[α̂ j,k ] =
3

θ2
E

⎡

£

1

n

n
�

i=1

Y 2
i φ j,k(Xi ) − E[V 2

1 ]2− j/2

¤

⎦

=
3

θ2

#

E

#

Y 2
1 φ j,k(X1)

#

− E[V 2
1 ]2− j/2

#

=
3

θ2

#

E

#

U2
1 r(X1)φ j,k(X1)

#

+ 2E
�

U1V1 f (X1)φ j,k(X1)
�

+ E

#

V 2
1 φ j,k(X1)

#

− E

#

V 2
1 φ j,k(X1)

#

#

=
3

θ2
E

#

U2
1

#

E
�

r(X1)φ j,k(X1)
�

=

� 1

0
r(x)φ j,k(x)dx = α j,k .

Lemma 1 is proved. �

Lemma 2 Let j ≥ τ such that 2 j ≤ n, k ∈ Λ j , α̂ j,k be (3). Then, under (A.A.1)–

(A.5),

E
�

(α̂ j,k − α j,k)
2
�

�
1

n
.

Proof of Lemma 2. Owing to Lemma 1, we have E[α̂ j,k] = α j,k . Therefore

E[(α̂ j,k − α j,k)
2] = V ar

�

α̂ j,k

�

=
9

θ4
V ar

#

1

n

n
�

i=1

Y 2
i φ j,k(X i ) − E[V 2

1 ]2− j/2

#

=
9

θ4
V ar

#

1

n

n
�

i=1

Y 2
i φ j,k(X i )

#

=
9

θ4

1

n
V ar

�

Y 2
1 φ j,k(X1)

�

�
1

n
E

�

Y 4
1 φ2

j,k(X1)
�

�
1

n

�

E
�

U 4
1 f 4(X1)φ

2
j,k(X1)

�

+ E
�

V 4
1 φ2

j,k(X1)
��

=
1

n

�

E
�

U 4
1

�

E
�

f 4(X1)φ
2
j,k(X1)

�

+ E
�

V 4
1 φ2

j,k(X1)
��

. (4)

By A.1 and E

#

φ2
j,k(X1)

#

=
� 1

0
φ2

j,k(x)dx = 1, we have E

#

f 4(X1)φ
2
j,k(X1)

#

� 1.

On the other hand, by A.4 and A.5, we have

E
�

V 4
1 φ2

j,k(X1)
�

= E
�

V 4
1

�

E
�

φ2
j,k(X1)

�

= E
�

V 4
1

�

� 1

Thus, all the terms in the brackets of (4) are bounded from above. This ends the proof

of Lemma 2. �
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Proof of Proposition 1 from Lemmas 1 and 2. The main lines of the proof use

standard arguments (see, for instance, [11]). The key result remains Lemma 2 above

and a suitable choice for j0 which balance the bias and the rest term of term. More

precisely, by the definition of projector, we have

E

"� 1

0

�

�r̂ j0,n(x) − r(x)
�

�

2
dx

"

= E

#

�

�r̂ j0,n − Pj∗r
�

�

2

2

#

+
�

�Pj∗r − r
�

�

2

2
. (5)

The orthonormality of the wavelet basis gives

E

#

�

�r̂ j0,n − Pj∗r
�

�

2

2

#

= E

⎡

£

�

�

�

�

�

�

�

k∈Λ j∗

(α̂ j∗,k − α j∗,k)φ j∗,k

�

�

�

�

�

�

2

2

¤

⎦ =
�

k∈Λ j∗

E[(α̂ j∗,k − α j∗,k)
2].

According to Lemma 2, |Λ j∗ | ∼ 2 j∗ and 2 j∗ ∼ n
1

2s"+1 ,

E

#

�

�r̂ j0,n − Pj∗r
�

�

2

2

#

�
2 j0

n
� n− 2s"

2s"+1 . (6)

When p ≥ 2, s " = s. By Hölder inequality and r ∈ Bs
p,q([0, 1]),

�Pj0r − r�2
2 � �Pj0r − r�2

p � 2−2 j0s � n− 2s
2s+1 .

When 1 ≤ p < 2 and s > 1/p, Bs
p,q([0, 1]) ⊆ Bs "

2,∞([0, 1])

�Pj0r − r�2
2 �

∞
�

j= j0

2−2 js "

� 2−2 j0s "

� n− 2s"

2s"+1 .

Therefore, in both cases,

�Pj0r − r�2
2 � n− 2s"

2s"+1 . (7)

By (5), (6) and (7), we obtain

E

"� 1

0

�

�r̂ j0,n(x) − r(x)
�

�

2
dx

"

� n− 2s"

2s"+1 .

Proposition 1 is proved. �
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Speeding up Algebraic-Based Sampling
via Permutations

Francesca Romana Crucinio and Roberto Fontana

Abstract Algebraic sampling methods are a powerful tool to perform hypothesis

tests on conditional spaces. We analyse the link of the sampling method introduced

in [6] with permutation tests and we exploit this link to build a two-step sampling

procedure to perform two-sample comparisons for non-negative discrete exponen-

tial families. We thus establish a link between standard permutation and algebraic-

statistics-based sampling. The proposed method reduces the dimension of the space

on which the MCMC sampling is performed by introducing a second step in which

a standard Monte Carlo sampling is performed. The advantages of this dimension

reduction are verified through a simulation study, showing that the proposed approach

grants convergence in the least time and has the lowest mean squared error.

Keywords Conditional tests · Discrete exponential families · Markov basis ·
Markov chain monte carlo

1 Introduction

Consider two samples Y1 and Y2 of size n1 and n2, respectively, coming from some

non-negative discrete exponential family with natural parameter ψ(·), base measure

H(·) and normalising constant G(·)

f (y | µi ) = G(µi )H(y) exp{y · ψ(µi )} i = 1, 2.

We are interested in conditional tests that exploit the joint sample Y = (Y1, Y2)

of size N = n1 + n2 to test
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H0 : µ = µ1 = µ2 against H1 : µ1 ≷ µ2. (1)

Specifically, there exists a uniformly most powerful unbiased (UMPU) procedure

performed conditionally on the sum of the entries of the pooled sample T =
∑N

i=1 Yi

[10]. Moreover, T is a sufficient statistic for the nuisance parameter of the test, the

population constant β0, if we assume the standard one-way ANOVA model for the

means ψ(µi ) = β0 + βi , i = 1, 2 [11].

The test statistic adopted in UMPU tests is U =
∑n1

i=1 Yi and its conditional

distribution given T under H0 in (1) is

fU (u | T = t) =

∑

y1∈F n1 ,u

n1
∏

i=1

H(yi ) ·
∑

y2∈F n2 ,t−u

n1+n2
∏

i=n1+1

H(yi )

t
∑

u=0

∑

y1∈F n1 ,u

n1
∏

i=1

H(yi ) ·
∑

y2∈F n2 ,t−u

n1+n2
∏

i=n1+1

H(yi )

, (2)

where H is the base measure of the non-negative discrete exponential family f . We

denote by Fn,x the set of non-negative integer vectors of length n with sum of entries

equal to x .

In order to perform the test (1), we can either find the critical values for any

given risk of type I error or, alternatively, compute the p-value corresponding to the

observed value uobs of U . Unfortunately, the distribution (2) can rarely be computed

in closed form. In most cases, it is necessary to approximate (2) through Markov

Chain Monte Carlo (MCMC).

MCMC sampling methods suffer two major drawbacks in the discrete setting: the

construction of the Markov basis needed to build the chain is computationally expen-

sive and the chain may mix slowly [8]. The idea of speeding-up the MCMC sampling

is therefore not new in the Algebraic Statistics literature. In [7], the first drawback is

addressed in the case of bounded contingency tables, instead of computing the entire

Markov basis in an initial step, sets of local moves that connect each table in the

reference set with a set of neighbouring tables are studied. A similar approach for

bounded two-way contingency tables under the independence model with positive

bounds is presented in [13]. A hybrid scheme using MCMC and sequential impor-

tance sampling able to address both drawbacks has been proposed in [8]. We propose

a strategy that exploits the structure of the sample space for UMPU tests and does

not require sequential importance sampling but only standard independent Monte

Carlo sampling.

2 Markov Chain Monte Carlo Samplings

As a consequence of the conditioning on T =
∑n1+n2

i=1 Yi , the sample space to be

inspected under H0, is the fibre of non-negative integer vectors of size N = n1 + n2

and with entries which add up to t
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FN ,t = {(Y1, . . . , YN ) ∈ N
N :

N
∑

i=1

Yi = 1T
N Y = t}, (3)

where 1N = (1, . . . , 1) is the vector of length N with all entries equal to 1.

The distribution we are interested in is the cumulative distribution function of the

test statistic U =
∑n1

i=1 Yi given T =
∑N

i=1 Yi = t under H0 as specified in (1)

FU (u | FN ,t ) = P(U (y) ≤ u | y ∈ FN ,t ) =
∑

y∈F N ,t

I(U (y)≤u)(y) f (y | µ), (4)

where U (y) =
∑n1

i=1 yi and I(U (y)≤u)(y) is 1 if U (y) ≤ u and 0 otherwise and

f (y | µ) =
∏N

i=1 f (yi | µ) with a slight abuse of notation.

In the following, we describe two MCMC algorithms to sample from FN ,t . The

first one samples vectors y ∈ FN ,t , while the second one samples orbits of permu-

tations π ⊆ FN ,t . Both MCMC algorithms make use of a Markov basis, a set of

moves allowing to build a connected Markov chain over FN ,t using only simple

additions/subtractions [6]. Specifically, a Markov basis for a matrix A is a finite set

of moves {m1, . . . , mK } such that

1. mi belongs to the integer kernel of A, 1 ≤ i ≤ K ;

2. every pair of elements x, y in FN ,t is connected by a path formed by a sequence

(m, ε) of moves m and signs ε = ±1, and this path is contained in FN ,t .

Markov bases can be found analytically [5, 6] or using the algebraic software 4ti2

[1].

2.1 MCMC—Vector-Based

The first MCMC we consider is an adaptation of the algorithm used in [2, 3, 6] for

the fibre FN ,t .

An example of the Markov chain over FN ,t is shown in Fig. 1a for N = 3 and

t = 6. Each vertex of the graph represents a vector y ∈ FN ,t and each edge represents

an applicable move in the Markov basis. The number of states (i.e. vectors) and the

number of edges is given by

|V | =

(

t + N − 1

N − 1

)

|E | = 2(N − 1)

(

t − 1

N − 1

)

+

N−1
∑

z=1

(N − z)

(

t − 1

N − 1 − z

)(

N − 1

z − 1

) (

2N − 2

z

)

,

respectively [5].
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(a) Graph on the fiber 3,6.
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(b) Graph on the orbits of 3,6.

Fig. 1 Vector-based and orbit-based parametrisation of the fibre FN ,t

The target distribution of the Markov chain is the probability of sampling y ∈ FN ,t

under H0 as specified in (1)

f (y | µ) =

N
∏

i=1

f (yi | µ) = G(µ)N exp{ψ(µ)t}

N
∏

i=1

H(yi ) ∝

N
∏

i=1

H(yi ).

The estimator used to approximate (4) is the indicator function I(U (y)≤u)(y), where

the ys are the sampled vectors.

2.2 MCMC—Orbit-Based

The second algorithm is built by exploiting the link of FN ,t with orbits of per-

mutations π . Clearly, if y ∈ FN ,t , every permutation of y is an element of FN ,t

too. Moreover, different orbits do not intersect. Therefore the orbits of permutations

π ⊆ FN ,t form a partition of FN ,t .

This partition is particularly interesting, as the elements which belong to the same

orbit have the same probability of being sampled from FN ,t , [12].

Therefore, it is possible to devise a two-step sampling procedure:

Step 1: Sample one orbit π from the set of orbits π ⊆ FN ,t .

Step 2: Sample uniformly from π .
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The first step can be performed through a MCMC algorithm similar to the one

described in Sect. 2.1 with target distribution the probability of sampling y in orbit π

∑

y∈π

f (y | µ),

while the second one corresponds to a standard Monte Carlo sampling from π .

The number of orbits of permutation π contained in the fibre is given by part(t, N )

[5], with part defined in [9, 14]. The values of the partition function can be computed

using the recurrence

|O| = part(t, N ) = part(t, N − 1) + part(t − N , N )

and depend on both the sample size N and the sum of entries t .

To perform Step 1, we parametrise the fibre FN ,t in such a way that all the vectors

in the same permutation orbit are mapped to the same element. To do so, we consider

a frequency-based representation. In this representation the orbit π(0,2,4) ⊆ F3,6 is

mapped into fπ = (1, 0, 1, 0, 1, 0, 0). In this notation, vectors (0, 4, 2) and (2, 0, 4),

which belong to the same orbit, correspond to the same frequency vector.

The target distribution in the frequency-based parametrisation is

∑

y∈π

f (y | µ) = #π · C

t
∏

j=0

H( j) f j ∝
N !

f0! · . . . · ft !

t
∏

j=0

H( j) f j ,

with #π being the number of distinct elements in the orbit π .

Because Step 2 corresponds to a standard permutation sampling, we consider the

distribution of U given T over one orbit π , i.e. the usual permutation cdf,

FU (u | π) = P(U (y) ≤ u | y ∈ π) =
1

#π

∑

y∈π

I(U (y)≤u)(y). (5)

3 Comparison of Vector-Based and Orbit-Based MCMC

Dividing the sampling procedure into the two steps described in Sect. 2.2 has a clear

computational advantage: Step 2 corresponds to a standard Monte Carlo sampling

from the orbit π , which is faster than performing an MCMC sampling. On the other

hand, Step 1 performs an MCMC sampling over the set of orbits π contained in

FN ,t , whose cardinality is smaller than that of the set of vectors in FN ,t :

|V | =

(

t + N − 1

N − 1

)

> part(t, N ) = |O| for t, N > 1.
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Table 1 Ratio between the number of orbits |O| and the number of vectors |V | in FN ,t for several

values of N and t

N \ t 5 10 15 20 30 50 100

5 0.056 0.030 0.022 0.018 0.015 0.012 0.010

10 0.004 4.5 · 10−4 1.3 · 10−4 5.3 · 10−5 1.7 · 10−5 5.0 · 10−6 1.5 · 10−6

15 6.0 · 10−4 2.1 · 10−5 2.3 · 10−6 4.4 · 10−7 4.4 · 10−8 2.9 · 10−9 1.4 ·

10−10

20 1.6 · 10−4 2.1 · 10−6 9.5 · 10−8 9.1 · 10−9 2.9 ·

10−10
3.9 ·

10−12
2.0 ·

10−14

50 2.2 · 10−6 6.7 ·
10−10

1.1 ·
10−12

5.4 ·
10−15

1.0 ·
10−18

4.0 ·
10−24

2.8 ·
10−32

Table 1 shows the ratios between the cardinality of π ⊆ FN ,t and the cardinality

of y ∈ FN ,t for values of N and t between 5 and 100. Even for moderately sized

samples, the number of orbits contained in FN ,t is about two orders of magnitude

smaller than the number of vectors (e.g. for N = 5 and t = 5 |O|/|V | = 5.6 · 10−2).

Hence, if we keep the number of iterations fixed and compare the number of

vectors inspected by the two algorithms, the orbit-based algorithm gives the highest

value, namely the number of iterations × the number of distinct vectors in the orbit

sampled at iteration i .

We show how the reduction in the dimension of the space explored by the MCMC

algorithm improves convergence and accuracy with respect to the truth (4) through

the simulation study in the next section.

4 Simulation Study

Assume that the two samples Y1 and Y2 are Poisson distributed with mean µ1 and

µ2, respectively. In this case, the exact distribution (4) under H0 is the binomial

distribution

FU (u | FN ,t ) = P(Binomial(t, θ0) ≤ u) =

u
∑

k=0

(

t

k

)

θ k
0 (1 − θ0)

t−k, (6)

with θ0 = n1/(n1 + n2) [10, 11].

We compare the exact conditional cdf above with the approximated cdfs given by

the vector-based algorithm, the orbit-based algorithm and the standard permutation

cdf over the orbit of the observed pooled vector (this is the limit case of the orbit-

based algorithm when only the observed orbit is sampled). A preliminary simulation

study is presented in [4].

We consider 9 scenarios built taking three sample sizes (n1, n2) and, for each

sample size, three different couples of population means (µ1, µ2).
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The comparisons performed are two: first, we check the convergence behaviour

on a fixed runtime (15 s) for both algorithms; then we compare their accuracy through

the mean squared error (MSE).

4.1 Convergence Comparison

To compare how fast the two MCMC procedures converge to the true distribution (4),

we draw one random sample yobs for each scenario above and we run both algorithms

for 15 s. Figure 2 shows four examples of the behaviour of the two MCMC procedures

which are representative of the nine scenarios.

(a) n1 = 6, n2 = 4, µ1 = 1, µ2 = 1.5 (b) n1 = 10, n2 = 15, µ1 = 1, µ2 = 1

(c) n1 = 10, n2 = 15, µ1 = 1, µ2 = 1.5 (d) n1 = 30, n2 = 20, µ1 = 1, µ2 = 1

Fig. 2 Comparison of the convergence to the exact value (solid horizontal line) in 15 s for the

vector-based algorithm (dashed line) and the orbit-based algorithm (solid line). The Monte Carlo

permutation estimate of FU (u | FN ,t ) (dashed horizontal line) is reported too. The number of Monte

Carlo permutations per orbit is 5, 000. The plots show the estimates achieved as functions of the

log-time
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The orbit-based algorithm is very fast and achieves good convergence in ∼ 0.1

seconds. On the contrary, the vector-based algorithm is much less efficient, in fact, its

convergence to the exact value is not always satisfactory even after 15 s (Fig. 2a, b).

Remark 1 It would be possible to further reduce the computational time required by

the orbit-based algorithm by exploiting one of the key features of this new approach,

namely the possibility of sampling from each orbit independently. The Monte Carlo

samplings in Step 2 could be made in parallel: once the chain reaches an orbit π the

Monte Carlo sampling over π can be performed while the chain keeps on moving

on the set of orbits.

4.2 Accuracy Comparison

For each scenario, we randomly generate 1,000 samples through which we compute

the MSE of the distribution estimated by the three procedures under study

MSE =
1

1000

1000
∑

j=1

(

u j
∑

k=0

(

t j

k

)

θ k
0 (1 − θ0)

t j −k − F̂U (u j | FN ,t j
)

)2

.

Both MCMC algorithms are run for 15 s with no burn-in steps. The resulting MSE

for the nine scenarios is shown in Table 2. As a further comparison, we report the

MSE given by the standard Monte Carlo permutation sampling over the observed

orbit.

The orbit-based algorithm always give the smallest MSE apart from scenario

n1 = 20, n2 = 30, µ1 = 1, µ2 = 1, where the standard Monte Carlo permutation

sampling has the smallest MSE. Table 3 shows the ratio between the MSE of the

Table 2 Mean Squared Error (MSE) for the vector-based, the orbit-based and the Monte Carlo

permutation sampling. Both MCMC algorithms were run for 15 s with no burn-in steps

n1 n2 µ1 µ2 Orbit-based Vector-

based

Permutation

6 4 1 1 0.00012 0.0016 0.00284

6 4 1 1.5 0.00012 0.00083 0.00212

6 4 1 2 0.00016 0.00043 0.00221

10 15 1 1 0.00034 0.00131 0.00077

10 15 1 1.5 0.00009 0.00046 0.00074

10 15 1 2 0.00007 0.00017 0.00057

20 30 1 1 0.00069 0.00132 0.00036

20 30 1 1.5 0.00006 0.00053 0.00027

20 30 1 2 0.00001 0.00011 0.00009
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Table 3 Ratio between the MSE of the vector-based and the MSE of the orbit-based algorithm

(column 5) and ratio between the MSE of the standard Monte Carlo permutation sampling and the

MSE of the orbit-based algorithm (column 6).

n1 n2 µ1 µ2 MSE

vector/MSE

orbit

MSE

perm/MSE

orbit

6 4 1 1 12.82 22.7

6 4 1 1.5 6.98 17.79

6 4 1 2 2.67 13.82

10 15 1 1 3.9 2.31

10 15 1 1.5 4.96 8

10 15 1 2 2.45 8.27

20 30 1 1 1.9 0.52

20 30 1 1.5 9.03 4.58

20 30 1 2 15.9 12.77

Table 4 Number of iterations for 15 s

Scenario N. iterations Ratio

n1 n2 µ1 µ2 Orbit Vector Vector/Orbit

6 4 1 1 23,977 53,842 2.25

6 4 1 1.5 24,169 53,210 2.20

6 4 1 2 24,560 57,382 2.34

10 15 1 1 11,950 52,504 4.39

10 15 1 1.5 11,564 54,836 4.74

10 15 1 2 7326 53,492 7.30

20 30 1 1 4675 45,576 9.75

20 30 1 1.5 3174 44,817 14.12

20 30 1 2 2572 48,003 18.66

vector-based algorithm and the MSE of the orbit-based algorithm (column 5) and

the ratio between the MSE of the standard Monte Carlo permutation sampling and

the MSE of the orbit-based algorithm (column 6). The MSE of the vector-based

algorithm is at least 1.9 times bigger than that of the orbit-based algorithm, while the

MSE of the standard Monte Carlo permutation sampling can be 22.7 times bigger

than that of the orbit-based algorithm (scenario 1).

The number of iterations made by the vector-based and the orbit-based algorithms

in the allocated 15 s are reported in Table 4. The orbit-based algorithm performs better

than the vector-based one even if the number of iterations made is lower: in 15 s, the

ratio between the numbers of iterations increases from twice to almost 19 times.

Despite this difference in the number of iterations, the orbit-based algorithm always

achieves lower MSE than the vector-based algorithm.
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5 Conclusions

The orbit-based algorithm grants a faster convergence to the exact distribution if

compared to the standard MCMC algorithm proposed in [6]. At the same time, it gives

more reliable estimates by decreasing the MSE. This simulation-based observation

can be proved by comparing the variance of the estimators used by the two algorithms

(the indicator function in (4) and the permutation cdf (5) respectively) [5].

When permutation-invariant statistics are used, the orbit-based algorithm is dra-

matically simplified. In this case, it is only necessary to walk among orbits of per-

mutations without performing the second-step sampling and thus the reduction in

computational time is significant.

Finally, it is worth noting that the MCMC sampling procedure based on orbits

of permutations establishes a link between standard permutation and algebraic-

statistics-based sampling that, to the best of our knowledge, has not been previously

noted.

A preliminary version of this work has been presented at the 4th ISNPS conference

in June 2018 in Salerno, Italy. Extensions of the present work include hypothesis

testing for K > 2 groups and data fitting [5].
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Obstacle Problems for Nonlocal

Operators: A Brief Overview

Donatella Danielli, Arshak Petrosyan, and Camelia A. Pop

Abstract In this note, we give a brief overview of obstacle problems for nonlo-

cal operators, focusing on the applications to financial mathematics. The class of

nonlocal operators that we consider can be viewed as infinitesimal generators of

non-Gaussian asset price models, such as Variance Gamma Processes and Regular

Lévy Processes of Exponential type. In this context, we analyze the existence, unique-

ness, and regularity of viscosity solutions to obstacle problems which correspond to

prices of perpetual and finite expiry American options.

Keywords Obstacle problem · Nonlocal operators · Lévy processes · American

options · Viscosity solutions · Existence and uniqueness

2010 Mathematics Subject Classification. Primary 35R35 · Secondary 60G51 ·
91G80

1 Introduction

The purpose of this note is to give a brief overview of obstacle problems for nonlocal

operators, focusing on the applications to financial mathematics. Natural classes of

nonlocal operators are infinitesimal generators of Lévy processes. We recall that a

Lévy process {X (t)}t≥0 defined on a filtered probability space (",F , {Ft }t≥0, P) is a

random process that is stochastically continuous and has stationary and independent

increments. More precisely, {X (t)}t≥0 is a Lévy process if:
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1. X (0) = 0 with probability 1;

2. For all 0 ≤ t1 < t2 < · · · < tn , X (t1), X (t2) − X (t1), . . . , X (tn) − X (tn−1) are

independent;

3. For all 0 ≤ s < t < ∞, the probability distribution of X (t) − X (s) is the same

as the one of X (t − s);

4. For all ε > 0, we have that

lim
t↓0

P (|X (t)| > ε) = 0.

We begin the introduction with Sect. 1.1 where we give representations of Lévy

processes using the Lévy–Khintchine formula and the Lévy–Itô decomposition. We

continue in Sect. 1.2 to describe the connection to nonlocal (integro-differential)

operators and we present in Sect. 1.3 more general stochastic equations, which give

rise to a wider class of nonlocal operators. In Sect. 1.4, we give a brief introduction

to obstacle problems and we summarize in Sect. 1.5 previous results obtained in the

literature.

1.1 Representations of Lévy Processes

Our starting point is the Lévy–Khintchine formula [1, Corollary 2.4.20], which shows

that, for all t ≥ 0 and ξ ∈ Rn , we have

E
[
eiξ ·X (t)

]
= etψ(ξ), (1.1)

where the characteristic exponent ψ(ξ) is given by

ψ(ξ) = −
1

2
ξ · Aξ + ib · ξ +

∫

Rn\{0}

(
eiξ ·y − 1 − iξ · yχ|y|<1

)
ν(dy). (1.2)

Here, A is a n × n-dimensional, symmetric, positive-semidefinite matrix, b ∈ Rn

and ν is a Lévy measure on Rn \ {0}, i.e., it satisfies

∫

Rn\{0}

min{1, |y|2} ν(dy) < ∞.

When A ≡ 0 and ν ≡ 0, that is E
[
eiξ ·X (t)

]
= ei tb·ξ , the process X (t) = tb is deter-

ministic motion on a straight line, with velocity of motion, or drift, b. If instead

A ≡ 0, but ν "≡ 0 has finite variation, that is it satisfies

∫

Rn\{0}

min{1, |y|} ν(dy) < ∞, (1.3)
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then we can rewrite the characteristic exponent (1.2) as

ψ(ξ) = ib� · ξ +

∫

Rn\{0}

(
eiξ ·y − 1

)
ν(dy).

The simplest possible case is when ν = λδh, where λ > 0 and δh is the Dirac mass

concentrated at h ∈ Rn \ {0}. If we let X (t) = b�t + N (t), then the process {N (t)}t≥0

is such that

E
[
eiξ ·N (t)

]
= exp

[
λt

(
eiξ ·h − 1

)]
,

and therefore, {N (t)}t≥0 is a Poisson process of intensity λ taking values in {mh, m ∈

N}. The physical interpretation is that {X (t)}t≥0 follows the path of a straight line with

drift b� and has jump discontinuities of size |h|. The time between two consecutive

jumps are independent random variables exponentially distributed with parameter λ.

The next step is to take ν =
∑m

j=1 λ jδh j
, with m ∈ N, λ j > 0, h j ∈ Rn \ {0}, 1 ≤

j ≤ m. In this instance, we can write {X (t)}t≥0 as

X (t) = b�t +

m∑

j=1

N j (t),

where the {N j (t)}t≥0, 1 ≤ j ≤ m, are independent Poisson processes with intensity

λ j taking values in {mh j , m ∈ N}. The path is still deterministic with drift b� and

has jumps of size in {|h1|, . . . , |hm |} occurring at exponentially distributed random

times. When we let m tend to ∞ in a suitable sense, or more generally, when the

Lévy measure ν is of finite variation, that is, condition (1.3) holds, we can write

X (t) = b�t +
∑

0≤s≤t

�X (s),

where �X (s) = X (s) − X (s−) is the jump at time s. Instead of dealing with jumps

directly, it is more convenient to count the number of jumps that belong to a set A up

to time t . To this end, for a Borel set A ⊆ Rn \ {0} and t ≥ 0, we define the random

Poisson measure with intensity ν

N (t, A) = #{0 ≤ s ≤ t | �X (s) ∈ A},

which allows us to write

∑

0≤s≤t

�X (s) =

∫

Rn\{0}

x N (t, dx).

However, in the most general case, the Lévy measure μ may not satisfy the finite

variation condition (1.3) and to deal with the accumulation of small jumps, we make

use of the compensated Poisson measure:
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Ñ (dt, dx) = N (dt, dx) − dt ν(dx).

Finally, in case of a general Lévy measure ν and of a diffusion matrix A, one has the

Lévy–Itô decomposition [1, Theorem 2.4.16]:

X (t) = DW (t) + bt +

∫

0<|x |<1

x Ñ (t, dx) +

∫

|x |≥1

x N (t, dx), (1.4)

where D is a n × n-dimensional matrix such that DDT = A, and {W (t)}t≥0 is a

n-dimensional Brownian motion.

1.2 Connections to Integro-Differential Operators

At this point, we want to explore the connection between stochastic processes and

integro-differential operators. Using the fact that any Lévy process is a Markov

process, by defining

Tt f (x) := E [ f (x + X (t))] , ∀ x ∈ R
n,

we obtain that {Tt }t≥0 defines a one-parameter semigroup of linear operators on

the Banach space of bounded continuous functions, C(Rn). One can think of the

semigroup {Tt }t≥0 as a tool to give a deterministic, macroscopic description of the

Lévy process as an average of microscopic random dynamics. The infinitesimal

generator corresponding to the semigroup semigroup {Tt }t≥0 is defined formally by

L f (x) = lim
t↓0

Tt f (x) − f (x)

t
,

and takes the form

L f (x) =
1

2
tr(AD2 f ) + b · ∇ f (x) +

∫

Rn\{0}

[
f (x + y) − f (x) − y · ∇ f (x)χ|y|<1(y)

]
ν(dy).

Under suitable regularity assumptions that allow us to apply Itô’s rule [1, Theorem

4.4.7] to solutions to the parabolic differential equation ut = Lu on (0,∞) × Rn ,

with initial condition u(0, ·) = f on Rn , we obtain that u(t, x) = Tt f (x), for all

t ≥ 0 and x ∈ Rn , and so Tt = et L .

We can also establish a connection between the infinitesimal generator L of

the process {X (t)}t≥0 and the characteristic exponent ψ(ξ) appearing in the Lévy–

Khintchine formula (1.1). Viewed as a pseudo-differential operator [6, 27], the sym-

bol of the infinitesimal generator L is the characteristic exponent (1.2) appearing

in identity (1.1). In our survey, we will be concerned with generalizations of sym-

bols that contain only a drift and a nonlocal term (the second-order diffusion term is
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removed). This gives rise to mathematical challenges in the study of the regularity

of solutions when the drift term dominates the nonlocal component—the so-called

supercritical regime. This property is often encountered in financial models for stock

prices, such as Variance Gamma and Regular Lévy Processes of Exponential Type

described in greater detail in Sect. 2.

1.3 Stochastic Integro-Differential Equations

More generally than the infinitesimal generators of Lévy processes, in this survey we

are specifically concerned with nonlocal operators that are infinitesimal generators

of strong Markov processes, which can be written as solutions to stochastic integro-

differential equations of the form:

d X (t) = b(X (t−))dt +

∫

Rn\{0}

F(X (t−), y)Ñ (dt, dy), t > 0. (1.5)

Here, Ñ (dt, dy) is a compensated Poisson random measure with intensity measure

dν, as defined in Sect. 1.1, and b and F satisfy suitable conditions, which we describe

in detail in Sect. 3. Our conditions ensure, by [1, Theorem 6.2.9], that for any initial

condition X x (0) = x ∈ Rn , there exists a unique strong solution {X x (t)}t≥0 to equa-

tion (1.5) with càdlàg paths a.s. The process {X x (t)}t≥0 satisfies the strong Markov

property, and therefore, it is uniquely determined by its infinitesimal generator

Lu(x) = b · ∇u(x) +

∫

Rn\{0}

(u(x + F(x, y)) − u(x) − F(x, y) · ∇u(x)) ν(dy)

(1.6)

for all u ∈ C2(Rn) (this denotes all functions with bounded and continuous deriva-

tives up to and including order 2 in Rn). The term nonlocal refers to the fact that the

value of Lu(x) depends on the whole solution u and not only on its behavior nearby

the point x . A typical example of a nonlocal integro-differential operator is the frac-

tional Laplacian (−�)s , with s ∈ (0, 1), which is defined on the Fourier transform

side by the formula

�(−�)su(ξ) = |ξ |2s û(ξ),

or, equivalently, by the pointwise representation

(−�)su(x) = γ (n, s) p.v.

∫

Rn

2u(x) − u(x + y) − u(x − y)

|x |n+2s
dy,
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γ being a normalization constant depending only on n and s. The fractional Laplacian

(−�)s is the infinitesimal generator of the symmetric 2s-stable Lévy process with

characteristic exponent in the Lévy–Khintchine formula given by ψ(ξ) = |ξ |2s .

1.4 Obstacle Problems

In recent years, there has been a resurgence of interest in the study of nonlocal oper-

ators, motivated by applications. In fact, such operators and the associated integro-

differential equations naturally arise in a variety of contexts, ranging from temper-

ature control to linear elasticity, from fluid dynamics to financial mathematics. To

describe the latter application in more detail, we assume that

S(t) = eX (t) (1.7)

models an asset price process, where {X (t)}t≥0 is a solution to the stochastic equation

(1.5). We let ϕ : Rn → R be the payoff function of an American option (i.e., a profit

of ϕ(s) is generated when exercising the option at time t and the stock level is

s = S(t)). Without loss of generality, we can assume that the payoff can be written

as a function of {X (t)}t≥0. We recall that, unlike the European option, in the American

option framework the holder has the right to exercise at any date prior to maturity,

and not only at the expiry date. Hence, the value of the American option with expiry

date T can be written as

v(t, x) = sup E[e−r tϕ(X (θ))|X (t) = x], for all (t, x) ∈ (0, T ) × R
n,

where the supremum is taken over all stopping times θ bounded by T − t , and we

assume that the expectation is taken under a risk-neutral probability measure and r

is the risk-free interest rate. Letting τ be the first time that the stochastic process

{X (t)}t≥0 enters the exercise region {v = ϕ}, and assuming that the value function

u(t, x) is regular enough, probabilistic arguments ensure that the stopped process

{e−r t'τv(t ' τ, X (t ' τ))}t≥0 is a martingale, which is equivalent to the equality

∂tv + Lv − rv = 0, for all (t, x) ∈ {v > ϕ}. (1.8)

In general, however, the discounted option price process {e−r tv(t, X (t))}t≥0 is a

supermartingale, which translates into the inequality

∂tv + Lv − rv ≤ 0, for all (t, x) ∈ (0, T ) × R
n . (1.9)

Combining equations (1.8) and (1.9) together with the property that v ≥ ϕ gives us

that the value function v is a solution to the evolution obstacle problem:

min{−∂tv − Lv + rv, v − ϕ} = 0, for all (t, x) ∈ (0, T ) × R
n, (1.10)
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exercise (free) boundary

{v = ϕ}

−∂tv − Lv + rv ≥ 0

{v > ϕ}

−∂tv − Lv + rv = 0

Fig. 1 A schematic description of the complementarity conditions for the evolution obstacle prob-

lem at a time slice t . The exercise region {v = ϕ} is represented by the gray area, and the remaining

region is the continuation region {v > ϕ}

where L is the infinitesimal generator of {X (t)}t≥0. The strong Markov property of

{X (t)}t≥0 implies that the exercise decision at any time t depends only on t and

X (t). Therefore, for each t there exist an exercise region {v = ϕ}, in which one

should exercise the option, and a continuation region {v > ϕ}, in which one instead

should wait. The exercise boundary is the interface separating the two. See Fig. 1

for a schematic representation. We briefly mention here that in the case of perpetual

American option, when the option has a infinite expiration time, the value function

depends only on the current value of the process {X (t)}t≥0 and is a solution to a

stationary obstacle problem. We refer to Sect. 3 for further details.

1.5 Review of Literature and Outline of the Survey

If the underlying stochastic process is Brownian motion, then the infinitesimal gen-

erator of the underlying process is L = � and u will satisfy the classical obstacle

problem, which is by now very well understood [8–10, 20]. However, Brownian

motion falls short in some respects:

1. Stock prices do not move continuously, which prompts us to consider models

that allow jumps in small time intervals;

2. Empirical studies of stock price returns indicate distributions with heavy tails,

which are not compatible with a Gaussian model.

For these reasons, it becomes necessary to study jump diffusion processes, whose

infinitesimal generator is an integro-differential operator of the form (1.4). Such type

of operators was introduced in finance by the Nobel Prize winner Merton [25]. The

novel element, which reflects the presence of jumps, is the integral term. Its presence

leads to new theoretical and numerical issues. Since no closed-form solutions are

known in general for the American option, it becomes important to determine the

regularity of the exercise boundary, which in turn is closely related to the behavior

of the value function.

In the framework of jump diffusion models with a non-degenerate diffusion

matrix, regularity of the value function and efficient numerical schemes were stud-
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ied in [2, 3, 5, 23], and regularity of the free boundary was explored in [4]. Using

methods from the theory of pseudo-differential operators and the Wiener–Hopf fac-

torization, qualitative studies of American option prices and of the exercise region

under pure-jump models were performed in articles such as [6, 7, 21, 22, 26].

Our work continues the study of the regularity of solutions to obstacle problems

for nonlocal operators with (possibly supercritical) drift. The purpose of this note is

to give an overview of the regularity results obtained in [17]. In Sect. 2, we describe

two examples of stochastic processes of interest in mathematical finance to which our

results apply. In Sect. 3, we state the problem precisely, and provide the statements

of our main results. Finally, in Sect. 4, we indicate some future directions.

2 Motivating Examples

In this section, we assume n = 1 and that the asset price process can be written as

in (1.7). Moreover, r denotes the risk-free interest rate. It is crucially important to

ensure that the discounted asset price process {e−r t S(t)}t≥0 is a martingale in order

to obtain an arbitrage-free market. Assume that {X (t)}t≥0 is a one-dimensional Lévy

process that satisfies the stochastic equation:

d X (t) = b dt +

∫

Rn

y Ñ (dt, dy), ∀ t > 0, (2.1)

where b is a real constant and Ñ (dt, dy) is a compensated Poisson random measure

with Lévy measure ν(dy). Using [1, Theorem 5.2.4 and Corollary 5.2.2], a sufficient

condition that guarantees that the discounted asset price process {e−r t+X (t)}t≥0 is a

martingale is:

∫

|x |≥1

ex ν(dx) < ∞ and − r + ψ(−i) = 0, (2.2)

where ψ(ξ) denotes the characteristic exponent of the Lévy process {X (t)}t≥0, that

is,

ψ(ξ) = ibξ +

∫

R\{0}

(ei xξ − 1 − i xξ) ν(dx). (2.3)

Examples in mathematical finance to which our results apply include the Variance

Gamma Process [24] and Regular Lévy Processes of Exponential type (RLPE) [6].

When the jump part of the nonlocal operator L corresponding to the integral term

in the characteristic exponent (2.3) has sublinear growth as |ξ | → ∞, we say that the

drift term b · ∇ corresponding to ib · ξ in the characteristic exponent (2.3) is super-

critical. An example of a nonlocal operator with supercritical drift is the Variance

Gamma Process and a subcollection of Regular Lévy Processes of Exponential type

described below.
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2.1 Variance Gamma Process

Following [14, Identity (6)], the Variance Gamma Process {X (t)}t≥0 with parameters

ν, σ, and θ has Lévy measure given by

ν(dx) =
1

ν|x |

(
e
− |x |

ηp 1{x>0} + e
− |x |

ηn 1{x<0}

)
dx,

where ηp > ηn are the roots of the equation x2 − θνx − σ 2ν/2 = 0, and ν, σ, θ are

positive constants. From [14, Identity (4)], we have that the characteristic exponent

of the Variance Gamma Process with constant drift b ∈ R, {X (t) + bt}t≥0, has the

expression:

ψVG(ξ) =
1

ν
ln

(
1 − iθνξ +

1

2
σ 2νξ 2

)
+ ibξ, ∀ ξ ∈ C,

and so the infinitesimal generator of {X (t) + bt}t≥0 is given by

L =
1

ν
ln(1 − θν∇ −

1

2
σ 2ν�) + b · ∇,

which is a sum of a pseudo-differential operator of order less than any s > 0 and

one of order 1. When ηp < 1 and r = ψV G(−i), condition (2.2) is satisfied and

the discounted asset price process {e−r t+X (t)}t≥0 is a martingale. Thus, applying the

results in Sect. 3 to the Variance Gamma Process {X (t)}t≥0 with constant drift b, we

obtain that the prices of perpetual and finite expiry American options with bounded

and Lipschitz payoffs are Lipschitz functions in the spatial variable. Given that the

nonlocal component of the infinitesimal generator L has order less than any s > 0,

this may be the optimal regularity of solutions that we can expect.

2.2 Regular Lévy Processes of Exponential Type

Following [6, Chap. 3], for parameters λ− < 0 < λ+, a Lévy process is said to be of

exponential type [λ−, λ+] if it has a Lévy measure ν(dx) such that

∫ −1

−∞

e−λ+xν(dx) +

∫ ∞

1

e−λ−xν(dx) < ∞.

Regular Lévy Processes of Exponential type [λ−, λ+] and order ν are non-Gaussian

Lévy processes of exponential type [λ−, λ+] such that, in a neighborhood of zero,

the Lévy measure can be represented as ν(dx) = f (x) dx , where the density f (x)

satisfies the property that
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| f (x) − c|x |−ν−1| ≤ C |x |−ν �−1, ∀ |x | ≤ 1,

for constants ν � < ν, c > 0, and C > 0. Our results apply to RLPE type [λ−, λ+],

when we choose the parameters λ− ≤ −1 and λ+ ≥ 1. The class of RLPE include the

CGMY/KoBoL processes introduced in [14]. Following [14, Eq. (7)], CGMY/KoBoL

processes are characterized by a Lévy measure of the form

ν(dx) =
C

|x |1+Y

(
e−G|x |1{x<0} + e−M |x |1{x>0}

)
dx,

where the parameters C > 0, G, M ≥ 0, and Y < 2. Our results apply to CGMY/

KoBoL processes, when we choose the parameters G, M > 1 and Y < 2, or G, M ≥

1 and 0 < Y < 2.

3 Statements of the Main Results

In this section, we provide the statements of our main results. Complete proofs can

be found in [17], where these results have originally appeared.

We begin by listing the required assumptions on the measure ν(dx) and the coef-

ficients b(x) and F(x, y) appearing in the operator (1.6):

1. There is a positive constant K such that for all x1, x2 ∈ Rn , we have

∫

Rn\{O}

|F(x1, y) − F(x2, y)|2 dν(y) ≤ K |x1 − x2|
2,

sup
z∈B|y|

|F(x, z)| ≤ ρ(y), ∀ x, y ∈ R
n,

∫

Rn\{O}

(|y| ( ρ(y))2 ν(dy) ≤ K ,

where ρ : Rn → [0,∞) is a measurable function.

2. The coefficient b : Rn → Rn is bounded and Lipschitz continuous, i.e., b ∈

C0,1(Rn).

3. For the stationary problem, we assume that F(x, y) = F(y) (independent of x).

3.1 Stationary Obstacle Problem

We consider the obstacle problem

min{−Lv + cv − f, v − ϕ} = 0 on R
n, (3.1)
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where L is the infinitesimal generator of the unique strong solution {X x (t)}t≥0 to

the stochastic equation (1.5), with initial condition X x (0) = x . We explicitly remark

here that, in the applications in Sect. 2, one chooses c ≡ r , the risk-free interest

rate. Solutions to the obstacle problem (3.1) are constructed using the stochastic

representation formula of the value function:

v(x) := sup{v(x; τ) : τ ∈ T }.

where T is the set of stopping times and

v(x; τ) := E

[
e−

∫ τ
0 c(X x (s)) dsϕ(X x (τ )) +

∫ τ

0
e−

∫ t
0 c(X x (s)) ds f (X x (t)) dt

]
, ∀ τ ∈ T .

In order to state our results, we need to introduce the relevant function spaces. We

denote by C(Rn) the space of bounded continuous functions u : Rn → R such that

�u�C(Rn) := sup
x∈Rn

|u(x)| < ∞.

For all α ∈ (0, 1], a function u : Rn → R belongs to the Hölder space of functions

C0,α(Rn) if

�u�C0,α(Rn) := �u�C(Rn) + [u]C0,α(Rn) < ∞,

where, as usual, we define

[u]C0,α(Rn) := sup
x1,x2∈Rn ,x1 "=x2

|u(x1) − u(x2)|

|x1 − x2|α
.

When α ∈ (0, 1), we denote for brevity Cα(Rn) := C0,α(Rn). Our first result con-

cerns the regularity of the value function.

Theorem 3.1 Let c, ϕ, f : Rn → R be bounded Lipschitz continuous functions, and

assume that there is a constant c0 > 0 such that c(x) ≥ c0 > 0, ∀ x ∈ Rn . Then the

following hold:

(i) (Hölder continuity) There is a constant α = α([b]C0,1(Rn), c0) ∈ (0, 1), such that

the value function v ∈ Cα(Rn).

(ii) (Lipschitz continuity) If in addition we have that

c0 ≥ [b]C0,1(Rn), (3.2)

then the value function v ∈ C0,1(Rn).

The proof of Theorem 3.1 hinges on the stochastic representation of solutions

and on the continuity of the strong solutions to the SDE with respect to the initial

conditions. To proceed, we introduce the notion of viscosity solution, which gives
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an intrinsic definition of a solution which is local in nature but does not assume a

priori any regularity, except for continuity.

Definition 3.2 Let v ∈ C(Rn). We say that v is a viscosity subsolution (supersolu-

tion) to the stationary obstacle problem if, for all u ∈ C2(Rn) such that v − u has a

global max (min) at x0 ∈ Rn and u(x0) = v(x0), then

min{−Lu(x0) + c(x0)u(x0) − f (x0), u(x0) − ϕ(x0)} ≤ (≥) 0. (3.3)

We say that v is a viscosity solution if it is both a sub- and supersolution.

Next, we show that the value function is the unique solution to (3.1).

Theorem 3.3 (Existence) Assume in addition

∫

Rn\{O}

|F(y)|2α ν(dy) < ∞

where α ∈ (0, 1) is the constant appearing in Theorem3.1. Then the value function

v is a viscosity solution to the stationary obstacle problem.

Theorem 3.4 (Uniqueness) Suppose that c, f, ϕ ∈ C(Rn) and c is a positive func-

tion. If the stationary obstacle problem has a viscosity solution, then it is unique.

We remark that a sufficient condition on the Lévy measure to ensure that per-

petual American put option prices are Lipschitz continuous, but not continuously

differentiable, is provided in [6, Theorem 5.4, p. 133]. However, the condition is in

terms of the Wiener–Hopf factorization for the characteristic exponent of the Lévy

process, and it is difficult to find a concrete example for which it holds. Since in

our case the order of the nonlocal operator is strictly less than the order of the drift

component, and there is no second-order term, the issue of regularity of solutions is

quite delicate.

The proof of the existence result hinges in a crucial way on a Dynamic Pro-

gramming Principle. In order to state it precisely, we need the following definition.

Definition 3.5 For all r > 0 and x ∈ Rn , we let

τr := inf{t ≥ 0 : X x (t) /∈ Br (x)},

where Br (x) denoted the open Euclidean ball of radius r > 0 centered at x ∈ Rn .

Theorem 3.6 (Dynamic Programming Principle) The value function v(x) satisfies:

v(x) = sup{v(x; r, τ ) : τ ≤ τr }, ∀ r > 0,

where we define
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v(x; r, τ ):= E

[
e−

∫ τ

0
c(X x (s)) ds

(
ϕ(X x (τ ))1{τ<τr } + v(X x (τ ))1{τ=τr }

)]

+E

[∫ τ'τr

0

e−
∫ t

0
c(X x (s)) ds f (X x (t)) dt

]
.

Uniqueness is proved instead with the aid of the following theorem.

Theorem 3.7 (Comparison principle) Suppose that the assumptions of the unique-

ness theorem hold. If u and v are a viscosity subsolution and supersolution to the

stationary obstacle problem, respectively, then u ≤ v.

In financial terms, comparison principles simply translate into arbitrage inequal-

ities: if the terminal payoff of an American option dominates the terminal payoff of

another one, then their values should verify the same inequality.

3.2 Evolution Obstacle Problem

The evolution obstacle problem is given by

{
min{−∂tv − Lv + cv − f, v − ϕ} = 0 on [0, T ) × Rn,

v(T, ·) = g on Rn,
(3.4)

with the compatibility condition

g ≥ ϕ(T, ·) on R
n . (3.5)

The treatment of this problem is very similar to the stationary case. For the sake

of brevity, we confine ourselves to mentioning here that the main new difficulty

is to establish regularity in the time variable. This is done with the aid of the fol-

lowing result concerning the continuity properties of {X (t)}t≥0, which in turn is a

consequence of Doob’s Martingale Inequality.

Lemma 3.8 There is a positive constant C = C(�b�C0,1(Rn), K ) such that

E

[
max
s∈[0,t]

∣∣X x1(s) − X x2(s)
∣∣2

]
≤ C |x1 − x2|

2eCt , ∀ x1, x2 ∈ R
n, t ≥ 0,

E

[
max
r∈[s,t]

∣∣X x (r) − X x (s)
∣∣2

]
≤ C |t − s| ( |t − s|2, ∀ x ∈ R

n, 0 ≤ s < t.

The use of this lemma also allows to relax the assumptions on the coefficients

in that we no longer require condition (3.2) to hold and we can allow the jump size

F(x, y) to be a function of the current state x of the process.
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The relevant function spaces, in the evolution case, are as follows. For all T > 0,

we denote by C
1
2

t C0,1
x ([0, T ] × Rn) the space of functions u : [0, T ] × Rn → R such

that

�u�
C

1
2

t C
0,1
x ([0,T ]×Rn)

:= �u�C([0,T ]×Rn) + sup
t1 ,t2∈[0,T ],t1 "=t2

x1,x2∈Rn ,x1 "=x2

|u(t1, x1) − u(t2, x2)|

|t1 − t2|
1
2 + |x1 − x2|

< ∞,

and we let C1
t C2

x ([0, T ] × Rn) denote the space of functions u : [0, T ] × Rn → R

such that the first-order derivative in the time variable and the second-order deriva-

tives in the spatial variables are continuous and bounded. Let Tt denote the set of

stopping times τ ∈ T bounded by t , for all t ≥ 0. Solutions to problem (3.4) are

constructed using the stochastic representation formula,

v(t, x) := sup{v(t, x; τ) : τ ∈ TT −t }, (3.6)

where we define

v(t, x; τ) := E

[
e−

∫ τ

0
c(t+s,X x (s)) dsϕ(t + τ, X x (τ ))1{τ<T −t}

]

+ E

[
e−

∫ τ

0
c(t+s,X x (s)) ds g(X x(T − t))1{τ=T −t}

]

+ E

[∫ τ

0

e−
∫ s

0
c(t+r,X x (r)) dr f (t + s, X x (s)) ds

]
,

(3.7)

for all (t, x) ∈ [0, T ]× ∈ Rn .

Proposition 3.9 (Regularity) Suppose that c, ϕ, f belong to C0,1([0, T ] × Rn), the

final condition g is in C0,1(Rn), and the compatibility condition (3.5) holds. Then

the value function v defined in (3.4) belongs to C
1
2

t C0,1
x ([0, T ] × Rn).

We next define a notion of viscosity solution for the evolution obstacle problem

(3.4) extending that of its stationary analogue for Eq. (3.1) similarly to the ideas

described in [15, Sect. 8]:

Definition 3.10 (Viscosity solutions) Let v ∈ C(Rn). We say that v is a viscosity

subsolution (supersolution) to the evolution obstacle problem (3.4) if

v(T, ·) ≤ (≥)g, (3.8)

and, for all u ∈ C1
t C2

x ([0, T ] × Rn) such that v − u has a global max (min) at
(t0, x0) ∈ [0, T ) × Rn and u(t0, x0) = v(t0, x0), we have that

min{−∂t u(t0, x0) − Lu(t0, x0) + c(t0, x0)u(t0, x0) − f (t0, x0), u(t0, x0) − ϕ(t0, x0)} ≤ (≥) 0.

(3.9)

We say that v is a viscosity solution to Eq. (3.4) if it is both a sub- and supersolution.
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We then have the following theorems regarding the existence and uniqueness of

viscosity solutions.

Theorem 3.11 (Existence) Suppose that the hypotheses of Proposition 3.9 hold.

Then the value function v defined in (3.6) is a viscosity solution to the evolution

obstacle problem (3.4).

Theorem 3.12 (Uniqueness) Suppose that g belongs to C(Rn), c, f, ϕ are in

C([0, T ] × Rn), the compatibility condition (3.5) holds, and

lim
y→O

F(x, y) = 0, ∀ x ∈ R
n. (3.10)

If the obstacle problem (3.4) has a viscosity solution, then it is unique.

4 Concluding Remarks

We conclude this note by observing that optimal regularity of solutions and the reg-

ularity of the free boundary are completely unexplored for the classes of operators

we consider. In this connection, we mention that some of the most powerful tech-

niques to investigate these issues for nonlocal operators are based on an extension

approach à la Caffarelli–Silvestre [13], see e.g., [12, 16, 18, 19]. However, there are

now methods not relying on an extension procedure (such as the one developed by

Caffarelli et al. [11]), but those appear to be limited to a class of operators of positive

fractional order.
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Low and High Resonance Components
Restoration in Multichannel Data

Daniela De Canditiis and Italia De Feis

Abstract A technique for the restoration of low resonance component and high

resonance component of K independently measured signals is presented. The def-

inition of low and high resonance component is given by the Rational Dilatation

Wavelet Transform (RADWT), a particular kind of finite frame that provides sparse

representation of functions with different oscillations persistence. It is assumed that

the signals are measured simultaneously on several independent channels and in

each channel the underlying signal is the sum of two components: the low resonance

component and the high resonance component, both sharing some common char-

acteristic between the channels. Components restoration is performed by means of

the lasso-type penalty and backfitting algorithm. Numerical experiments show the

performance of the proposed method in different synthetic scenarios highlighting the

advantage of estimating the two components separately rather than together.

Keywords RADWT · Lasso regression · Multichannel signals

1 Introduction

The problem of recovering multiple signals recorded in different channels under the

assumption that they share some common characteristics is very frequent in various

fields of application, for example, biology, neuroscience, and information technology.

In this paper, we deal with the problem of recovering the low resonance component

and the high resonance component of K simultaneous measured signals. This is very

useful for the analysis of EEG data, as explained in [4]. Specifically, we hypothesize

to have K channels and the signal measured by each of them is the sum of two

components: a low resonance component and a high resonance component; the first
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being common to all the channels, as a grand mean; the second being channel specific

but sharing some common characteristics among the channels. The definition of low

and high resonance component will be given through the introduction of the RADWT

which is a modern and fast computational tool for analyzing a very general class of

signals and will be clarified later in Sect. 2. Here, however, we want to stress that the

aim is not to recover the compound signal in each channel, as discussed in [4], but,

rather, to reconstruct each of the two components separately. Obviously, this goal

returns for free the reconstruction of the compound signal in each channel, but it has

the advantage over the technique proposed in [4] to better reconstruct the components

rather than their sum. This fact can be useful in some studies, such as those presented

in [1], where the good reconstruction of the channel-specific effect allows a better

understanding of the underlying phenomenon.

The proposal resembles the Morphological Component Analysis (MCA), an active

line of research in image processing. The MCA is a quite new method which allows

us to separate features contained in an image when these features present different

morphological aspects, see [7].

The problem discussed in this paper is the equivalent in the field of signal pro-

cessing. In fact, the hypothesis of work is that in each channel the signal is a mixture

of two components morphologically different from each other and the goal is to

separate them.

The remainder of the paper is organized as follows. Section 2 describes the data

model we are considering with the working hypothesis. Section 3 presents and dis-

cusses the estimation procedure within the paradigm of Lasso procedures, enlight-

ening the connections with the procedure proposed in [4]. Finally, Sect. 4 shows the

empirical performance through some numerical experiments.

2 Statistical Model

Consider the following data model:

y(k) = c + u(k) + ε(k) k = 1, . . . , K and ε(k) ∼ N (0, σ 2 I ), (1)

where vector y(k) represents n-equispaced observations of function c(t) + u(k)(t)

over the equispaced grid design t1 < t2 < · · · < tn for each channel k = 1, . . . , K ,

i.e., y(k) ∈ Rn×1. In this contribution, the goal is to reconstruct the two signals c(t)

and u(k)(t) separately in each channel and not their sum as in [4]. From the practical

point of view, the aim is to reconstruct two deterministic vectors c and u(k) ∈ Rn×1

given the data in (1) in each channel. We stress that, from the triangular inequality, one

has �c + u − (ĉ + û)� f �c − ĉ� + �u − û�, hence the task of reconstructing each

of the two components gives for free the task of reconstructing their sum. We do not

hypothesize functions c(t) and u(k)(t)which belong to some functional Sobolev space

H s
p,q [a, b] as it is usually done in functional nonparametric regression setting, instead

we let these functions to be much more general and we restrict our attention to their

finite-dimensional representation. Since many physiological and physical signals are
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not only non-stationary but also exhibit a mixture of oscillatory and non-oscillatory

transient behaviors (for example, speech, stock-market, biomedical EEG, etc.) we

suppose that each signal in each channel is the sum of two morphologically different

signals, a “high resonance” component and a “low resonance” component. By a

high resonance component, we mean a signal consisting of multiple simultaneous

sustained oscillations; in contrast, by a low resonance component, we mean a signal

consisting of non-oscillatory transients of unspecified shape and duration. We stress

that the high and low resonance component of a signal can not be extracted from

its high- and low-frequencies components in a time-scale decomposition, but they

can be well represented by a high Q-factor RADWT and a low Q-factor RADWT,

respectively, as very well explained in [6]. Hence, in this contribution we use two

different RADWT to sparsely represent the two different components.

The RADWT is a normalized tight frame1 of L2(R) defined as
�

(
q

p
)k/2ψ

�

(
q

p
)k t + sp

q
l
��

k,l∈Z
where ψ is a wavelet function and (p, q, s) is a triplet of inte-

ger parameters which gives the time-scale characteristic of the frame. In particular,

the ratio q/p > 1 is closely related to the scale (or frequency) dilatation factor, the

parameter s g 1 is closely related to the time dilatation factor, and
p

s(q−p)
g 1 is the

redundant factor. The Q-factor depends on these parameters although there is not an

explicit formula. In a particular setting, the dilatation factor q/p between 1 and 2

and s > 1 gives a RADWT with high Q-factor, while setting s = 1 we obtain a low

Q-factor RADWT with time-scale characteristic similar to the dyadic wavelet trans-

form. When q = 2, p = 1, and s = 1 the frame reduces to the classical wavelet basis.

Given a finite energy signal x of length n, the finite representation of the RADWT

transform is a matrix W ∈ Rn×d with d g n (the higher the Q-factor the higher the

redundancy d) such that W W t = In . This matrix represents the finite frame opera-

tor, being W t x the analysis operation and W (W t x) the synthesis operation. See [2]

for details on fast analysis and synthesis schemes obtained by a sequence of proper

down-sampling operations (downsample of q and upsample of p) and fast Fourier

transforms.

Let Ψ ∈ Rn×d1 be the finite matrix representation of the low Q-factor analysis filter

and let Φ ∈ Rn×d2 be the finite matrix representation of the high Q-factor analysis

filter (the synthesis operators being just the transpose matrices), then our working

hypothesis is the following:

(H1) signal c is sparse inΨ , i.e., settingα0 = Ψ t c we have that
�

�Sα
0

�

� =
�

�{ j : α0 j
�= 0}

�

�

<< d1;

(H2) signals u(k) have a jointly sparse representation in Φ, i.e., setting β
(k)
0 = Φ t u(k)

and S
(k),β

0 = { j : β
(k)
0 j

�= 0} we have that S
(1),β

0 = · · · = S
(K ),β

0 , with the com-

mon cardinality denoted by

�

�

�
S

β

0

�

�

�
<< d2.

(H3) the columns of matrices Ψ and Φ are normalized to have norm 1.

1A collection of functions {wi } of L2(R) forms a frame if exist two constants cl and cr such that

cl� f �2 f
�

i < f, wi >2f cr � f �2 for all f ∈ L2(R). The frame is tight if cl = cr .
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3 Estimation

Model in (1) can be rewritten as a linear model in terms of RADWT coefficients as

follows:

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

y(1) = Ψ α + Φβ(1) + ε(1)

y(2) = Ψ α + Φβ(2) + ε(2)

...

y(K ) = Ψ α + Φβ(K ) + ε(K ).

(2)

With some basic linear algebra transformation, problem (2) can be reformulates as

follows:

y =

£

¤

¤

¤

¥

y(1)

y(2)

...

y(K )

¦

§

§

§

¨

= (Ψ ⊗ 1k) α + (Φ ⊗ IK )

£

¤

¤

¤

¥

β(1)

β(2)

...

β(K )

¦

§

§

§

¨

+

£

¤

¤

¤

¥

ε(1)

ε(2)

...

ε(K )

¦

§

§

§

¨

= X1α + X2β + ε,

(3)

where y is a column vector of nK response variables, 1K is a (K × 1) array of 1,

IK is the identity matrix of dimension K , and ε is a nK -variate Gaussian random

column vector with zero mean and covariance matrix σ 2 In×K . For completeness, we

express the design matrices explicitly:

Ψ ⊗ 1K =

£

¤

¤

¥

Ψ

Ψ

· · ·

Ψ

¦

§

§

¨

and Φ ⊗ IK =

£

¤

¤

¥

Φ 0 · · · 0

0 Φ · · · 0

· · ·

0 0 · · · Φ

¦

§

§

¨

. (4)

Vectors α and β are unknown regression coefficients of length d1 and K d2, respec-

tively. Under the working hypothesis (H1), we expect the coefficients of the com-

mon part α to be sparse into the dictionary Ψ , while under the working hypothesis

(H2), we expect the coefficients of the channel-specific effects β to be grouped

sparse into the dictionary Φ, i.e., for all j = 1, . . . , d2 we have β
(k)

j = 0, for all

k = 1, . . . , K or β
(k)

j �= 0 for all k = 1, . . . , K . This observation provides the fol-

lowing non-overlapping group structure for vector β

{1, 2 . . . , K d2} = G1 ∪ G2 ∪ · · · ∪ Gd2
, with G j = {β

(1)

j , β
(2)

j , . . . β
(K )

j }. (5)

While in [4], this problem has been approached by a “global” technique, i.e., a

technique for recovering a single vector θ = (αt β t )t ; in this work we propose a
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different technique that aims to recover α and β separately. We stress that this is not

an alternative algorithm to solve the same problem, but instead a different problem,

i.e., reconstructing each component and not their sum. More specifically, in [4] the

solution is expressed by the following:

θ̂ = argminθ∈R(d1+K d2)×1

⎧

«

¬

1

nK
||y − Xθ ||22 + λ�α�1 + λ

d2
�

j=1

||βG j
�2

«

¬

­

, (6)

with design matrix X = [X1 X2] of dimension nK × d1 + kd2. In this paper, the

perspective is quite different and we look at model (3) as an additive model in which

we are interested in recovering the two components: X1α and X2β. The literature

on additive models is very extensive and surely [5] is one of the most complete

references on that subject. In [5], it is explained how a natural approach to this

problem is the backfitting technique, which consists in cyclically updating one of the

two components using the partial residual obtained with the other component fixed.

Specifically, if we suppose to know the high resonance components u(k) = Φβ(k),

then we can evaluate for each channel k the partial residual z
(k)
1 = y(k) − Φβk and

estimate the common low resonance component by

α̂ = argminα∈Rd1×1

�

1

nK
�z1 − X1α�2

2 + λ�α�1

�

, (7)

where z1 ∈ RnK×1 is the concatenation of the partial residuals z
(k)
1 , for each k =

1, . . . , K .

Analogously, if we suppose to know the low resonance component c = Ψ α, then

we can evaluate for each channel k the partial residual z
(k)
2 = y(k) − Ψ α, and estimate

the channel-specific high resonance components by

β̂ = argminβ∈RK d2×1

⎧

«

¬

1

nK
�z2 − X2β�2

2 + λ

d2
�

j=1

||βG j
�2

«

¬

­

(8)

where z2 ∈ RnK×1 is the concatenation of partial residuals z
(k)
2 , for each k =

1, . . . , K . Problems (7) and (8) are both convex and can be solved by fast algo-

rithms. Specifically, problem (7) is a classical LASSO regression problem and can

be solved by a coordinate descendent algorithm, while problem (8) is a grouped

LASSO problem and can be solved by a group descendent algorithm as the one

proposed in [3]. Summarizing, we propose the following algorithm

• INPUT: λ, y(k), Φ, Ψ

• initialize β̂k
0 = 0, for all k = 1, . . . , K

• repeat until convergence for l = 0, 2, . . .

– update partial residual z
(k)
1 = y(k) − Φβ̂

(k)

l , for all k = 1, . . . , K



178 D. De Canditiis and I. De Feis

– solve problem (7) to obtain α̂l+1

– update partial residual z
(k)
2 = y(k) − Ψ α̂l , for all k = 1, . . . , K

– solve problem (8) to obtain β̂l+1

• OUTPUT: α̂ and β̂ =

�

�

β̂(1)
�t

,

�

β̂(2)
�t

, . . . ,

�

β̂(K )
�t

�t

In this contribution, the convergence is established if a maximum number of

iterations is reached or solution improvement is negligible. The unknown components

are finally obtained by the synthesis operation ĉ = Ψ α̂ and û(k) = Φβ̂(k), for k =

1, . . . , K .

4 Numerical Experiments

The aim of this section is to demonstrate, at least under the model hypothesis, the

advantage of using the proposed backfitting technique with respect to solving the sin-

gle problem in (6) as done in [4]. The delicate point is the choice of the regularization

parameter λ that can greatly affect the results of both procedures. For this reason,

recalling from the theory that the optimal λ is of order ∼ log(dimension)/si ze, we

fix λ = log(d1 + kd2)/nK in all our experiments.

We generated data according to model (2) using three channels (K = 3) and

n = 256 observations in each channel. Matrix Ψ was generated using the following

choice plow = 1, qlow = 2, slow = 1 with 4 levels of decomposition (d1 = 496),

and matrix Φ was generated using phigh = 8, qhigh = 9, shigh = 3 with 10 levels of

decomposition (d2 = 695). These matrices represent RADWT with Q-factor almost

1 and 5, respectively. We considered three scenarios with different sparsity level:

Scenario 1: low sparsity, corresponding to |Sα| = 24 and
�

�Sβ

�

� = 24;

Scenario 2: medium sparsity, corresponding to |Sα| = 12 and
�

�Sβ

�

� = 12;

Scenario 3: high sparsity, corresponding to |Sα| = 6 and
�

�Sβ

�

� = 6;

and for each scenario we used three signal to noise ratios (SNR): 1.5, 3, 6, defined

as

SN R =
1
K

�K
i=1 V ar(Ψ α + Φβ(k))

σ 2
.

The numerical setting mimics the one presented in [4], as well as the following

performance indexes:

• Root Mean Square Error (RMSE) defined as

RM SE =

�

�

�

�

1

n

n
�

i=1

�

f̂ (k)(ti ) − f (k)(ti )
�2

, k = 1, . . . , K ;

with f (k) = c + u(k) and f̂ (k) = Ψ α̂ + Φβ̂(k) as its estimate;
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• Root Mean Square Error for the low resonance component (RMSElow) defined as

RM SE low =

�

�

�

�

1

n

n
�

i=1

�

ĉ(ti ) − c(ti )
�2

;

• Root Mean Square Error for the high resonance component (RMSEhigh) defined

as

RM SEhigh =

�

�

�

�

1

n

n
�

i=1

�

û(k)(ti ) − u(k)(ti )
�2

, k = 1, . . . , K ;

RMSElow and RMSEhigh aim at evaluating a component wise accuracy.

Tables 1, 2, and 3 report results obtained for Scenario 1, 2, and 3, respectively.

In these tables, backfitting refers to the proposed technique, while multi-c

refers to the one proposed in [4]. We note that in each scenario the estimate of the

two components is better using the backfitting technique with respect to the

multi-c technique, while the estimate of the compound signal is very similar being

possible that some errors are compensated in the sum for the triangular inequality.

Finally, we observe that, as expected, for all types of scenarios the error improves

when the SNR increases.

We conclude this contribution observing that the proposed technique is very inter-

esting and deserves further investigations both from an applicative point of view as

well as from a theoretical perspective.

Table 1 Average values (standard deviation between parentheses) of RMSE, RMSElow (the same

for each channel), and RMSEhigh based on 10 simulations with different noise realizations. Exper-

iment carried out on Scenario 1 with SNR=1.5, 3, and 6

RMSE RMSElow RMSEhigh

multi-c backfitting multi-c backfitting multi-c backfitting

SNR=1.5

ch1 0.2051

(0.0031)

0.2048

(0.0029)

0.1952

(0.0016)

0.1870

(0.0015)

0.2185

(0.0131)

0.2104

(0.0113)

ch2 0.2171

(0.0113)

0.2167

(0.0112)

0.1952

(0.0016)

0.1870

(0.0015)

0.2386

(0.0093)

0.2304

(0.0109)

ch3 0.2189

(0.0102)

0.2188

(0.0101)

0.1952

(0.0016)

0.1870

(0.0015)

0.2404

(0.0066)

0.2342

(0.0055)

(continued)
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Table 1 (continued)

RMSE RMSElow RMSEhigh

multi-c backfitting multi-c backfitting multi-c backfitting

SNR=3

ch1 0.1487

(0.0050)

0.1481

(0.0050)

0.1627

(0.0125)

0.1531

(0.0105)

0.1890

(0.0086)

0.1788

(0.0088)

ch2 0.1587

(0.0057)

0.1579

(0.0056)

0.1627

(0.0125)

0.1531

(0.0105)

0.2013

(0.0122)

0.1911

(0.0111)

ch3 0.1557

(0.0045)

0.1553

(0.0045)

0.1627

(0.0125)

0.1531

(0.0105)

0.2000

(0.0078)

0.1911

(0.0078)

SNR=6

ch1 0.1185

(0.0057)

0.1178

(0.0057)

0.1439

(0.0157)

0.1346

(0.0133)

0.1712

(0.0112)

0.1597

(0.0089)

ch2 0.1327

(0.0063)

0.1322

(0.0065)

0.1439

(0.0157)

0.1346

(0.0133)

0.1932

(0.0109)

0.1828

(0.0101)

ch3 0.1421

(0.0117)

0.1415

(0.0115)

0.1439

(0.0157)

0.1346

(0.0133)

0.1988

(0.0189)

0.1885

(0.0179)

Table 2 Average values (standard deviation between parentheses) of RMSE, RMSElow (the same

for each channel), and RMSEhigh based on 10 simulations with different noise realizations. Exper-

iment carried out on Scenario 2 with SNR=1.5, 3, and 6

RMSE RMSElow RMSEhigh

multi-c backfitting multi-c backfitting multi-c backfitting

SNR=1.5

ch1 0.1641

(0.0038)

0.1641

(0.0036)

0.1172

(0.0081)

0.1163

(0.0081)

0.1485

(0.0076)

0.1478

(0.0078)

ch2 0.1835

(0.0064)

0.1834

(0.0063)

0.1172

(0.0081)

0.1163

(0.0081)

0.1777

(0.0060)

0.1773

(0.0061)

ch3 0.1719

(0.0100)

0.1716

(0.0100)

0.1172

(0.0081)

0.1163

(0.0081)

0.1624

(0.0140)

0.1619

(0.0138)

SNR=3

ch1 0.1061

(0.0035)

0.1057

(0.0035)

0.0865

(0.0054)

0.0861

(0.0055)

0.0938

(0.0070)

0.0933

(0.0066)

ch2 0.1113

(0.0027)

0.1110

(0.0027)

0.0865

(0.0054)

0.0861

(0.0055)

0.1083

(0.0059)

0.1077

(0.0051)

ch3 0.1116

(0.0095)

0.1113

(0.0094)

0.0865

(0.0054)

0.0861

(0.0055)

0.1082

(0.0130)

0.1074

(0.0129)

SNR=6

ch1 0.0849

(0.0022)

0.0848

(0.0022)

0.0606

(0.0045)

0.0605

(0.0045)

0.0827

(0.0039)

0.0824

(0.0038)

ch2 0.0978

(0.0039)

0.0977

(0.0039)

0.0606

(0.0045)

0.0605

(0.0045)

0.1049

(0.0049)

0.1046

(0.0050)

ch3 0.0856

(0.0071)

0.0855

(0.0071)

0.0606

(0.0045)

0.0605

(0.0045)

0.0876

(0.0079)

0.0875

(0.0078)
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Table 3 Average values (standard deviation between parentheses) of RMSE, RMSElow (the same

for each channel), and RMSEhigh based on 10 simulations with different noise realizations. Exper-

iment carried out on Scenario 3 with SNR=1.5, 3, and 6

RMSE RMSElow RMSEhigh

multi-c backfitting multi-c backfitting multi-c backfitting

SNR=1.5

ch1 0.0386

(0.0012)

0.0386

(0.0012)

0.0263

(0.0023)

0.0263

(0.0023)

0.0282

(0.0007)

0.0282

(0.0007)

ch2 0.0500

(0.0015)

0.0500

(0.0015)

0.0263

(0.0023)

0.0263

(0.0023)

0.0424

(0.0017)

0.0425

(0.0016)

ch3 0.0478

(0.0008)

0.0478

(0.0008)

0.0263

(0.0023)

0.0263

(0.0023)

0.0399

(0.0015)

0.0399

(0.0015)

SNR=3

ch1 0.0392

(0.0016)

0.0392

(0.0016)

0.0257

(0.0021)

0.0257

(0.0021)

0.0295

(0.0004)

0.0295

(0.0004)

ch2 0.0495

(0.0013)

0.0495

(0.0013)

0.0257

(0.0021)

0.0257

(0.0021)

0.0422

(0.0013)

0.0422

(0.0013)

ch3 0.0497

(0.0013)

0.0497

(0.0013)

0.0257

(0.0021)

0.0257

(0.0021)

0.0425

(0.0004)

0.0425

(0.0004)

SNR=6

ch1 0.0391

(0.0012)

0.0391

(0.0012)

0.0258

(0.0019)

0.0258

(0.0019)

0.0293

(0.0002)

0.0293

(0.0002)

ch2 0.0498

(0.0012)

0.0498

(0.0012)

0.0258

(0.0019)

0.0258

(0.0019)

0.0425

(0.0011)

0.0425

(0.0011)

ch3 0.0496

(0.0009)

0.0496

(0.0009)

0.0258

(0.0019)

0.0258

(0.0019)

0.0423

(0.0001)

0.0423

(0.0001)
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Kernel Circular Deconvolution Density
Estimation

Marco Di Marzio, Stefania Fensore, Agnese Panzera, and Charles C. Taylor

Abstract We consider the problem of nonparametrically estimating a circular den-

sity from data contaminated by angular measurement errors. Specifically, we obtain

a kernel-type estimator with weight functions that are reminiscent of deconvolution

kernels. Here, differently from the Euclidean setting, discrete Fourier coefficients

are involved rather than characteristic functions. We provide some simulation results

along with a real data application.

Keywords Circular kernels · Deconvolution · Fourier coeffcients · Measurement

errors · Movements of ants

1 Introduction

Circular data arise when the sample space is described by a unit circle. By comparison

with a linear scale, the main features of circular observations are that the beginning

and the end of the measurement scale coincide, and their common location is called

the origin (or zero direction) which is usually chosen arbitrarily. Once the origin and

the direction of rotation have been chosen, any circular observation can be measured

by an angle ranging, in radians, from 0 to 2π . Circular data often arise in biology,

meteorology and geology; other examples include phenomena that are periodic in
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time. For comprehensive accounts of statistics for circular data see, for example, [7]

and [8].

In this paper, we discuss the problem of nonparametrically estimating a circular

density when data are observed with error. Specifically, here we consider the case of

measurement errors described by i.i.d. circular random variables. This problem has

been studied by [6], who proposed an estimator constructed as a truncated develop-

ment of the density which is estimated by trigonometric basis in which the theoretical

coefficients are replaced by empirical ones. Then, using a model selection procedure,

[1] derived an adaptive penalized contrast estimator, and [9] proposed an orthogonal

series estimator which is optimal in the minimax sense.

In the Euclidean setting, the problem of estimating a density in the context of

errors-in-variables has been widely investigated. The most popular method is a non-

parametric one based on kernel-type estimators. A kernel density estimator in the

case of homoscedastic, classical measurement errors with known distribution has

been introduced by [10]. Kernel density estimation with a different type of measure-

ment error, named Berkson error, has been considered in [2]. A further estimator

for the case of heteroscedastic, classical measurement error has been proposed by

[5] who also considers the case of unknown error density. For this latter problem

see, among others, [4]. An exhaustive treatment of density estimation with errors-in-

variables and related topics is provided by [3]. In the directional setting, the kernel-

based methods for errors-in-variables problems seem to be substantially unexplored.

In this article, we propose to extend the Euclidean approach to the estimation of a

circular density in the case of classical, homoscedastic measurement errors being

circular random variables with known distribution.

After recalling in Sect. 2, some preliminaries about Fourier series and nonpara-

metric estimation of circular densities in the error-free case, in Section 3 we discuss

the extension of the kernel-type density estimator to the case where variables are

observed with errors. Then, in Sect. 4 we present some simulation results, and in

Sect. 5 we conclude with a real data application.

2 Preliminaries

In this section, we provide some basic facts about Fourier series representation of

circular densities and recall the definition of the circular kernel density estimator.

2.1 Trigonometric Moments and Fourier Series

Let Q be a circular random variable and denote by fQ its probability density function.

Due to the periodic nature of Q, its distribution is the same as the distribution of

Q + 2π ; this implies that the characteristic function of Q, which is
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ϕQ(�) = E[ei�Q] =

∫ 2π

0

ei�q fQ(q)dq,

is defined only for integer �s. Moreover, for any � ∈ Z, one has

|ϕQ(�)| ≤ 1, ϕQ(0) = 1, ϕ̄Q(�) = ϕQ(−�),

where ϕ̄Q(·) is the complex conjugate of ϕQ(·). Notice that the complex numbers

{ϕQ(�), � ∈ Z} are the coefficients in the Fourier series representation (in complex

form) of fQ and correspond to the trigonometric moments of Q about the mean

direction, i.e. letting

³� = E[cos(�Q)], ´� = E[sin(�Q)],

it holds that ϕQ(�) = ³� + i´�; clearly, for any � ∈ Z,

³−� = ³�, ´−� = −´�, |³�| ≤ 1, |´�| ≤ 1.

Then, assuming that fQ is a square integrable function on [0, 2π), for q ∈ [0, 2π),

one can recover fQ(q) from the Fourier coefficients using the expansion

fQ(q) =
1

2π

∞
∑

�=−∞

ϕQ(�)e−i�q =
1

2π

{

1 + 2

∞
∑

�=1

(³� cos(�q) + ´� sin(�q))

}

.

(1)

Equation (1) is analogous to the inversion formula for characteristic functions of

real-valued random variable. In the Euclidean setting, the smoothness of a density

can be determined by the rate of decay of the Fourier transforms: a polynomial decay

characterizes ordinary smooth functions, while an exponential decay characterizes

supersmooth ones. Analogously, for a circular density the smoothness can be defined

according to the rate of decay of the coefficients in its Fourier series representation.

We recall that for a wrapped circular distribution, the trigonometric moment of

order � ∈ Z corresponds to the value of the characteristic function of the unwrapped

random variable, say ϕX , at (integer) �, i.e. ϕQ(�) = ϕX (�).

Examples of supersmooth densities include the densities of wrapped Normal and

wrapped Cauchy distribution; conversely, the wrapped Laplace and the wrapped

Gamma densities are examples of ordinary smooth ones. See Fig. 1 for some examples

of wrapped distributions and their Fourier coefficients.

2.2 Circular Density Estimation in the Error-Free Case

Given a random sample of angles Θ1, . . . , Θn from an unknown circular density fΘ ,

the kernel estimator of fΘ at θ ∈ [0, 2π) is defined as



186 M. Di Marzio et al.

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

θ

D
e

n
s
it
y
 f

u
n

c
ti
o

n
s

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

F
o

u
ri

e
r 

c
o

e
ff

ic
ie

n
ts

wrapped Laplace

wrapped Normal

wrapped Cauchy

Fig. 1 Examples of wrapped densities sharing the values of mean and variance of their unwrapped

versions (left) and corresponding Fourier coefficients (right)

f̂Θ(θ; κ) =
1

n

n
∑

i=1

Kκ(Θi − θ),

where Kκ is a circular kernel, i.e. a periodic, unimodal, symmetric density func-

tion with concentration parameter κ > 0, which admits a convergent Fourier series

representation as follows

Kκ(θ) =
1 + 2

∑∞
�=1 γ�(κ) cos(�θ)

2π
.

Notice that, by comparison with Equation (1), due to the symmetry, the Fourier coef-

ficients of Kκ satisfy ´� = 0 and ³� = γ�(κ) for any �. It is well known that the choice

of the kernel is generally not crucial. This means that in our case it suffices to select

any symmetric circular density function able to arbitrarily concentrate its whole mass

around zero by increasing the value of the concentration parameter κ . Also, note that

circular data have a periodic range, whereas in the Euclidean case the presence of

boundaries of the sample space could require ad hoc, shape-designed kernels. Classi-

cal examples of circular kernels are the von Mises density with γ�(κ) = I�(κ)/I0(κ),

where I�(κ) is the modified Bessel function of order �; the Wrapped Normal and

Wrapped Cauchy densities where γ�(κ) = κ�2

and γ�(κ) = κ�, respectively. As in

the linear setting, the role of the kernel function is to emphasize, in the estimation

process, the contribution of the observations which are in a neighbourhood of the

estimation point. Here, κ controls the width of that neighbourhood in such a way that

its role is the inverse of the square of the bandwidth in the linear case, in the sense

that smaller values of κ give wider neighbourhoods.
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3 Kernel Density Estimator in the Errors-in-Variables Case

We consider the problem of estimating the density of a circular random variable Θ

which is observed with error. In particular, we deal with the classical, homoscedastic

measurement error case where we wish to estimate the density fΘ of Θ but we

observe independent copies of the circular random variable

Φ = (Θ + ε)mod(2π),

where ε is a random angle independent of Θ , whose density fε is assumed to be a

known circular density symmetric around zero. Notice that the density fΦ of Φ is

the circular convolution of fΘ and fε, i.e. for θ ∈ [0, 2π),

fΦ(θ) =

∫ 2π

0

fΘ(ω) fε(θ − ω)dω, (2)

so, the estimation of fΘ reduces to a circular deconvolution density problem. Simi-

larly to the Euclidean case, equation (2) implies that, for � ∈ Z,

ϕΦ(�) = ϕΘ(�)ϕε(�),

then, a naive estimator of fΘ at θ ∈ [0, 2π) could be

f̃Θ(θ) =
1

2π

∞
∑

�=−∞

ϕ̂Φ(�)

ϕε(�)
e−i�θ , (3)

where ϕ̂Φ(�) = 1
n

∑n
j=1 ei�Φ j is the empirical version of ϕΦ(�). Now, since

∫ π

−π

(

fΘ(θ) − f̃Θ(θ)

)

dθ =
1

2π

∞
∑

�=−∞

(

ϕΘ(−�) −
ϕ̂Φ(−�)

ϕε(−�)

) (

ϕΘ(�) −
ϕ̂Φ(�)

ϕε(�)

)

we have that rapid decays of ϕε(�) lead to big discrepancies between fΘ(θ) and

f̃Θ(θ) even in correspondence of small discrepancies between ϕΘ(�) and ϕ̂Φ(�).

Therefore, in order to regularize estimator (3), a possible remedy is to introduce the

characteristic function of a circular kernel Kκ , say ϕKκ
(�), as a damping factor, i.e.
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f̃Θ(θ; κ) =
1

2π

∞
∑

�=−∞

ϕ̂Φ(�)

ϕε(�)
ϕKκ

(�)e−i�θ

=
1

2π

∞
∑

�=−∞

ϕKκ
(�)

ϕε(�)

1

n

n
∑

j=1

ei�Φ j e−i�θ

=
1

2π

1

n

∞
∑

�=−∞

n
∑

j=1

ϕKκ
(�)

ϕε(�)
e−i�(θ−Φ j ),

which leads to the following circular deconvolution estimator of fΘ(θ) at θ ∈ [0, 2π)

f̃Θ(θ; κ) =
1

2π

1

n

n
∑

j=1

(

1 + 2

∞
∑

�=1

γ�(κ)

λ�(κε)
cos(�(θ − Φ j ))

)

, (4)

where γ�(κ) and λ�(κε), respectively, are the �th coefficients in the Fourier series

representation of Kκ and fε. Also, in order to guarantee that estimator (4) is well

defined, we assume that a) the error density is an infinitely divisible distribution, i.e.

it has nonvanishing coefficients |λ�(κε)| > 0 for any integer �, and b) the kernel Kκ

and f̃Θ(·; κ) are square integrable functions, i.e using the Parseval’s identity,

1

2π

(

1 + 2

∞
∑

�=1

γ 2
� (κ)

)

< ∞ and
1

2π

(

1 + 2

∞
∑

�=1

γ 2
� (κ)

λ2
�(κε)

)

< ∞.

The way in which the rate of decay of the λ�(κε)s affects the performance of the

estimator will be shown in the simulation experiments in the next section.

Notice that estimator (4) is suitable for the case where the εi s are homoscedas-

tic errors with known distribution. The Euclidean version designed for the case of

heteroscedastic errors has been studied by [5] who also introduce a modified estima-

tor for the problem where the distribution of the errors is unknown, but replicated

observations are available.

4 Simulations

In this section, we compare the performance of the deconvolution estimator and the

standard kernel density estimate in a simulation setting. In particular, we consider

the von Mises density (vM) with mean direction and concentration, respectively,

equal to π and 2 as the target density fΘ , and the wrapped Laplace (wL), wrapped

Normal (wN) or wrapped Cauchy (wC) with zero mean direction and different values

of the concentration parameter as the error density fε. Notice that the concentration

parameter takes non-negative real values for both vM and wL but with opposite

meaning in that, for wL, lower values of the concentration parameter give higher
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concentration, whereas for wN and wC the concentration parameter ranges from 0

to 1 with the concentration increasing with the value of the parameter.

Let ν�(κΘ) be the �th Fourier coefficient of fΘ , for � ∈ N. We consider the

noise-to-signal ratio (NSR), defined as the ratio between the circular variance

of ε and that of Θ , which can be expressed in terms of Fourier coefficients as

{1 − λ2(κε)}/{1 − ν2(κΘ)}. Specifically, we consider three different settings cor-

responding to a NSR ranging from 16% to 47%, which are shown in Fig. 2, where

for ease of presentation the target density has mean zero. In particular, for � ∈ N, we

have ν�(κΘ) = I�(κΘ)/I0(κΘ), while λ�(κε) = κ�2

ε , λ�(κε) = κ−2
ε /(�2 + κ−2

ε ), and

λ�(κε) = κ�
ε , respectively, give the wN, the wL and wC as the error distributions.

We generate 500 samples of size n = 100, 200 and 400 and compare the estimators

in terms of averaged integrated squared error (AISE). In particular, we calculate the

ratio AI SEdec/AI SEkde, where dec and kde, respectively, stand for f̃Θ(θ; κ) and

f̂Θ(θ; κ). The smoothing parameter κ has been selected by using least squares cross-

validation. The results are summarized in Table 1 and Fig. 3. It can be seen that the

deconvolution estimator outperforms the standard one especially when the NSR is

moderate or the error density is ordinary smooth.
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Fig. 2 vM density with zero mean direction and concentration parameter equals 2 (continuous),

error densities (dashed) which are wN (left), wL (middle) and wC (right) with zero mean direction

and concentrations, respectively, equal to 0.97, 0.33, 0.80, and convolution between target and error

densities (dotted)

Table 1 Comparison between the deconvolution estimator and the circular kernel density one

(AI SEdec/AI SEkde) over 500 samples of sizes 100, 200 and 400 drawn from the target population

contaminated by noise obtained by different error populations

NSR Target density Error density n = 100 n = 200 n = 400

16% vM(π , 2) wN(0, 0.97) 0.755 0.782 0.769

44% vM(π , 2) wL(0, 0.33) 0.866 0.857 0.839

47% vM(π , 2) wC(0, 0.80) 0.966 1.015 1.085
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Fig. 3 Comparison between the deconvolution estimator and the circular kernel density one in

terms of integrated squared errors (ISE) over 500 contaminated samples of sizes 100, 200 and 400

with a NSR equals to 16% (left), 44% (middle) and 47% (right)

5 Real Data Example

We consider the classical dataset described by [7] concerning the directions chosen by

100 ants in response to an evenly illuminated black target placed at π . [7] showed that

classical parametric models, like von Mises, are not suited for these data. However,

he concluded them for a unimodal population. A nonparametric approach has been

suggested by [6], who, in the context of errors-in-variables modelling, revealed some

evidence about multimodality. His approach is based on orthogonal trigonometric

series. The rationale behind the errors-in-variables hypothesis is that, due to the

typical jerky movement of the insect, the point where the ant intersects the circle can

be treated as indirect observation of the direction chosen by the ant.

We compare the standard circular kernel density estimator with our deconvolution

one. Specifically, we have assumed a wrapped Laplace error with zero mean and
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Fig. 4 Ants data (left) and kernel density estimate (continuous) and deconvolution estimate (dotted)

of the directions of ants (right)
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concentration equal to 0.2, employing a wrapped Normal weight function whose

smoothing parameter has been selected by least squares cross-validation. As it can

be seen in Fig. 4 the proposed deconvolution estimator reveals the presence of three

modes more distinctly than the standard method.
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Asymptotic for Relative Frequency When
Population Is Driven by Arbitrary
Unknown Evolution

Silvano Fiorin

Abstract Strongly consistent estimates are shown, via relative frequency, for the
probability of white balls inside a dichotomous urn when such a probability is an
arbitrary unknown continuous time-dependent function over a bounded time interval.
The asymptotic behaviour of relative frequency is studied in a nonstationary context
using a Riemann-Dini type theorem for strong law of large numbers of random
variables with arbitrarily different expectations; furthermore, the theoretical results
concerning the strong law of large numbers can be applied for estimating the mean
function of an unknown form of a general nonstationary process.

1 Introduction

Several different areas of statistics deal with an urn model including white and black

balls with probability p and 1 − p, respectively. In this very classic context a time-
dependent component is introduced, and p is replaced with p0(t) which denotes a
time varying quantity 0 ≤ p0(t) ≤ 1 in such a way that at any instant t ∈ [0, T ] only
one observation is taken from the corresponding urn with probability p0(t) and the
random variable Y (t) is obtained such that P(Y (t) = 1) = p0(t), P(Y (t) = 0) =

1 − p0(t), E(Y (t)) = p0(t) ∀t ∈ [0, T ], defining the nonstationary process

Y = {Y (t) : t ∈ [0, T ]} (1)

with mean function E(Y (t)) = p0(t). The description of the above model is specified
introducing some reasonable assumptions:

A 1 we assume continuity for the usually unknown mean function p0 : [0, T ] �→

[0, 1];
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A 2 for any fixed pair of instants t1, t2 ∈ [0, T ] the independence is assumed for the
random variables Y (t1) and Y (t2).

This assumption is introduced in order to apply the Rajchman Theorem (see [5])
or the classical results concerning Strong Law of Large Numbers (SLLN) (see [4]).
Namely, only pairwise uncorrelation is requested for Y (t1) and Y (t2) but, it can be
easily checked in this case, the uncorrelation implies independence; furthermore,
independence is here a very mild condition; in fact, we may suppose that the total
number of white and black balls in the urn is big enough that the knowledge of
Y (t1) = 1 or Y (t1) = 0 does not produce a meaningful modification of the probability
distribution for Y (t2).

The main purpose of this paper consists of a double aim:

1. to study the asymptotic behaviour of relative frequency in a nonstationary context;
2. to estimate the unknown function p0, i.e. the mean function p0(t) = E(Y (t)) of

the nonstationary process (1), which is an arbitrary continuous map form [0, T ]

into [0, 1].

The urn evolution has effects concerning sampling; for instance, if the observations
number n is big enough, a not slight time interval will be needed in order to receive
the n observations which surely are not values taken by the same random variable.
Then, for the sake of simplification, we assume that any r.v. Y (t) may be observed
at most only one time. The point of view we adopt is then characterized by a strong
nonstationarity and the consistent estimation for the mean m(t0) at a fixed time t0
may appear as a very hard objective.

An approach to estimation for the mean function m(·) of a nonstationary process
was given by M. B. Priestley (see [10] in page 587 and [11] in page 140) when the
form of m is known and the case is suggested of a polynomial function in t . Viceversa:
with no information on the form of m we obviously cannot construct a consistent

estimate of it. The approach here adopted is quite different from classical methods of
time series analysis; the only information available for m is the continuity property
over [0, T ], and no approximation of m is introduced by continuous functions of a
known form. The estimation technique involves the process (1) which is a specified
case of nonstationarity but the theoretical results given in the last section hold true for
a general nonstationary process. The case (1) is only a concrete example of a process
having no regularity properties; nevertheless, the continuity for the mean function
m is a reasonable and not restrictive assumption which denotes compatibility with a
context of an arbitrary but not brutal evolution for the composition of the urn.

Concerning estimation problem for the mean function m(·) of a nonstationary
process, some well-known approach is available in the literature as, for instance,
the smoothing spline estimation by [13] or nonparametric regression estimation as
in [7] and [9]. These classical approaches, following the sieves technique, need the
first kn functions belonging to a base inside a vector space and the usual assumptions
involved for the smooth function m(·) are concerning the derivatives m �, m �� and so on.
Thus the estimation procedure developed in this paper may be seen as an alternative
method; only continuity is adopted for m(·) and the use of sieves technique is omitted.
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The answer to above arguments is the relative frequency

1

n

n∑
j=1

Y (t j ) (2)

where {t j : j = 1, . . . , n} are the first n observation times of a sequence {t j :

j ≥ 1} ⊂ [0, T ] and the main purpose is that of getting consistent estimations of
m(t) = p0(t) via almost sure convergence for the sequence (2). The SLLN is then
the theoretical tool needed in the below analysis, but the classical approach based on
the zero-mean r.v.’s (Y (t j ) − p0(t j )), i.e.

1

n

n∑
j=1

(Y (t j ) − p0(t j )) → 0 a.s. (3)

is not enough; in fact, we need convergence for (2) with the not zero-mean r.v.’s
Y (t j ). This argument, investigated by Fiorin [8] is now improved with the help of
new results given in Sect. (5).

Nevertheless, the application of usual SLLN for studying the asymptotic behaviour
of (2) is not a trivial step and several problems arise concerning the process (1).
The family of r.v.’s {Y (t j ) : j ≥ 1} is not a stationary process and then we have no
possibility of applying the classical ergodic theory (see, for instance, Chap. 3 in [2])
based on a stationary probability distribution over R∞ and on a measure-preserving
transformation. Analogously the generalizations of ergodic theory such as Dunford
and Schwartz pointwise ergodic theorem (see [6] in page 675) or Chacon and Ornstein
theorem [3] cannot be applied to our problem. Also law of large numbers for random
functions cannot be adapted to the above problem; taking, for instance, the Ranga
Raw law for D[0, 1] valued r.v.’s [12], the main argument is given by the observable
trajectories inside the Skorohod space D[0, 1] of functions with discontinuities only
for the first kind; thus the trajectories of process (1), including any arbitrary function
taking only values 0 and 1, are not a random element into D[0, T ]. Moreover let
us observe that, because of the discontinuity at any point t , the observation of any
trajectory over all the interval [0, T ], and then any law of large numbers based on
trajectories, are a too hard purpose. Consequently, the asymptotic arguments are
concerning the sequence (2), where the number of observed r.v.’s Y (t j ) tends to
infinity.

The convergence of (2) is studied via the sequence {E(Y (t j )) = p0(t j ) : j ≥ 1}

and permutations (i.e. bijections) π : N → N ; in fact, if a permutation π is intro-
duced, the possible almost sure limit of

1

n

n∑
j=1

Y (tπ( j)) (4)
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is depending on π . If {P0
πn} is a sequence of probability measures, where each P0

πn

assigns mass 1
n

to each point {p0(tπ( j)) : j = 1, . . . , n}, then the weak or vague

convergence for the sequence {P0
πn} to a probability measure P0 implies almost sure

convergence of (4) to the limit
∫ 1

0 I (v)d P0(v) where I (v) is the identity map over
[0, 1] and P0 depends on the sequence {Y (t j ) : j ≥ 1} and on permutation π . All
the below analysis is based on the possibility of finding a permutation π in such a
way that the convergence of (4) is driven to a limit

∫ 1
0 I (v)d P0(v) where P0 is a

previously chosen probability measure over [0, 1]; under a theoretical point of view
this is a result for SLLN (4) which is the analogous of the well-known Riemann-Dini
Theorem for real simply convergent (but not absolutely convergent) series. Under
the operative point of view the strongly consistent estimates are the result of an
experimental design based on choosing

(I) the sequence of observation times {t j : j ≥ 1} ⊂ [0, T ];
(II) the permutation {tπ( j) : j ≥ 1}.

2 Convergence Elements

If the observation times {t j : j ≥ 1} are given jointly with the observable r.v.’s {Y (t j ) :

j ≥ 1}, an intuitive approach for studying the almost sure convergence for (2) is
suggested by the elementary equality

1

n

n∑
j=1

Y (t j ) =
1

n

n∑
j=1

(Y (t j ) − E(Y (t j ))) +
1

n

n∑
j=1

E(Y (t j )); (5)

if the Y (t j )’s are pairwise uncorrelated and their second moments have a common
bound (see [5]) then the a.s. convergence to 0 for 1

n

∑n
j=1(Y (t j ) − E(Y (t j ))) jointly

with the convergence to a limit L for the deterministic sequence

1

n

n∑
j=1

E(Y (t j )) (6)

imply that (2) is a.s. convergent to the limit L . Thus the argument of below analysis
is the possible convergence to some limit L for the sequence (6). Then writing (6)
as an integral

1

n

n∑
j=1

E(Y (t j )) =

∫ 1

0
I (x)d Pn(x), (7)

where I (x) is the identity map and Pn is the probability measure which assigns the
weight 1

n
to each point {E(Y (t j )) : j = 1, . . . , n}, and the argument of below analysis

is the possible limit for the sequence of integrals (7) adopting the technique of weak
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or vague convergence for the sequence of measures Pn’s; in fact, by definition of
weak convergence for measures, we have that if the Pn’s are weakly convergent to
P then

lim
n→∞

∫ 1

0
I (x)d Pn(x) =

∫ 1

0
I (x)d P(x). (8)

Nevertheless, the weak convergence for Pn’s is not so easy to obtain since the expec-
tations {E(Y (t j )) : j ≥ 1} define an arbitrary deterministic sequence and then weak
convergence is achieved via permutations.

3 A General SLLN via Permutations

A permutation is any bijection π : N → N defined over the naturals N in such a
way that the sequence of random variables is introduced

{Y (tπ( j)) : j ≥ 1} with expectations {E(Y (tπ( j))) : j ≥ 1} (9)

and thus, for any assigned natural n, Pπn is defined as the probability measure giving
mass 1

n
to each point {E((Y (tπ( j))) : j = 1, . . . , n}. The main theoretical result shows

the technique of finding a permutation π such that the sequence Pπn is weakly
convergent to an assigned probability measure P . For a rigorous proof of below
statement see Theorem 7 in [8].

Theorem 1 For any assigned sequence of constants {E(Y (t j )) : j ≥ 1} ⊂ [0, 1]

there exists a class M of probability measures (over [0, 1]) such that for each given

P ∈ M a corresponding permutation can be constructed such that the sequence Pπn

is weakly (or vaguely) convergent to P and then

lim
n→∞

∫ 1

0
I (x)d Pπn(x) =

∫ 1

0
I (x)d P(x) and

lim
n→∞

1

n

n∑
j=1

Y (tπ( j)) =

∫ 1

0
I (x)d P(x) almost surely.

Some comments and remarks may help to clarify the meaning of above result:

(a) The final goal is not only the construction of a permutation π making the Pπn’s
a weakly convergent sequence, but also that of driving convergence to a chosen
limit measure belonging to class M .

(b) The definition of class M is, of course, a central and rather technical argument:
for details and a rigorous treatment see the construction leading to Definition 6
in [8].
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(c) The main theorem may appear as an analogous of the well-known Riemann-
Dini theorem for convergent real series: both the proofs are clearly involving
permutations, but the technique adopted in proving the above main result is a
constructive one.

(d) The above result is a generalization of the classical SLLN concerning a sequence
of r.v.’s Y j having a common finite expectation µ = E(Y j ),∀ j ≥ 1. By the
elementary equality

1

n

n∑
j=1

Y (t j ) =
1

n

n∑
j=1

(Y (t j ) − E(Y (t j ))) +
1

n

n∑
j=1

E(Y (t j ))

and if the convergence holds true:

lim
n→∞

1

n

n∑
j=1

(Y (t j ) − E(Y (t j ))) = 0 a.s.

an easy direct comparison is possible:

1. in the standard case, when E(Y (t j )) = µ,∀ j ≥ 1, we trivially have

1

n

n∑
j=1

E(Y (t j )) = µ,∀n.

This means that for each n the weight 1 is assigned to value µ and then
the probability measure Pπn = δµ are invariant with respect to any given
permutation π and the Pπn’s are weakly convergent to measure P = δµ.

2. In the general case, when expectations {E(Y (t j )) : j ≥ 1} ⊂ [0, 1] are arbi-
trarily different values,

1

n

n∑
j=1

E(Y (tπ( j))) =

∫ 1

0
I (x)d Pπn

depends on the sequence {E(Y (t j )) : j ≥ 1} and π , and the technique based
on weak convergence for Pπn’s is a generalization of the standard case.

Moreover, the limit for SLLN is written as an integral
∫ 1

0 I (x)d P(x), i.e. as an
expectation with respect to the probability measure P which is the weak limit of
Pπn’s; thus P is defined through π , independently of probability distribution of r.v.’s
Y (t j ).

Finally, let us observe that the main theorem cannot be directly applied for finding
π because the proof technique is fully based on the knowledge of values E(Y (t j ))’s
which are the estimation object.
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4 Estimating E(Y(t))

Let us choose as observation times any sequence {t j : j ≥ 1} which is dense into
[0, T ] and thus Theorem 1 can be applied to {t j : j ≥ 1}; because of the density of
t j ’s the class M of the weak limit measures contains all the absolutely continuous
probability measures over [0, T ]. Thus PU ∈ M where PU denotes the uniform
probability measure over [0, T ] having density

fU (t) =
1

T
∀ t ∈ [0, T ]

and, applying the main theorem, a permutation π can be found such that Pπn , which
assigns weight 1

n
to each point {tπ( j) : j = 1, . . . , n}, is weakly convergent to PU .

The continuity of the unknown function p0(t) = E(Y (t)) for each t ∈ [0, T ] keeps
weak convergence for the induced measures over [0, 1]: then p0(Pπn) is weakly
convergent to p0(PU ), where p0(Pπn) assigns weight 1

n
to each point

{p0(tπ( j)) = E(Y (tπ( j))) : j = 1, . . . , n}

and then, by the mean value theorem for integrals, the limits hold true:

lim
n→∞

1

n

n∑
j=1

E(Y (tπ( j))) = lim
n→∞

∫ 1

0
I (x)dp0(Pπn) =

=

∫ 1

0
I (x)dp0(PU ) =

∫ T

0
p0(t)d PU =

1

T

∫ T

0
p0(t)dt = p0(t)

for some points t ∈ [0, T ], and

lim
n→∞

1

n

n∑
j=1

Y (tπ( j)) = p0(t) almost surely.

An analogous version of above result holds true for any assigned interval (a, b] ⊂

[0, T ]. Using the same above permutationπ such that the Pπn’s are weakly convergent
to PU over [0, T ], for each n fixed, we collect inside the set {tπ( j) : j = 1, . . . , n} all
the tπ( j)’s falling into (a, b], i.e. the set is defined

A(π, n, (a, b]) = {tπ( j) ∈ (a, b] : j = 1, . . . , n}

and if n(a, b] denotes its cardinality, the following statement holds true (see Theorem
4 in [8] for a complete proof).
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Theorem 2 The sequence of r.v.’s

1

n(a, b]

∑
tπ( j)∈A(π,n,(a,b])

Y (tπ( j)),

when n → ∞, is a strongly consistent estimate of p0(t) for some points t ∈ [a, b].

5 Remarks

1. Theorem (2) may be applied, at the same time, to several different subintervals of
[0, T ]; for instance, to all the subintervals belonging to a finite partition of (0, T ].

2. The policy of choosing the observation times {t j : j ≥ 1} as a dense subset of
[0, T ] is a technique which is common to several areas of statistical inference. In
this context it can be easily checked that

(a) this choice derives directly from evolution of the nonstationary process {Y (t) :

t ∈ [0, T ]}; in fact at most only one observation is possible for any r.v. Y (t).
Thus to increase the number of observations implies to choose new t j ’s and
their density in [0, T ] ensures a good knowledge of the process.

(b) The density of t j ’s makes necessary the use of permutations; in fact, the
sequence 1

n

∑n
j=1 Y (t j ) has no meaning if a permutation is not assigned for

choosing the t j ’s. But the choice of π , as it was shown above, has a deep
effect in terms of measures Pπn and of convergence.
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Semantic Keywords Clustering

to Optimize Text Ads Campaigns

Pietro Fodra, Emmanuel Pasquet, Bruno Goutorbe, Guillaume Mohr,

and Matthieu Cornec

Abstract In this paper, we describe how to use some well-known machine learning

tools to make groups of textual queries of similar semantic meaning. Such a clus-

terization can be used to improve the performances of bidding algorithms for online

advertising, by mutualizing the signal gathered by text ads displayed on result pages

of search queries which share a similar meaning. Indeed, search engines organize

auctions wherein participants bid on selected search terms on which they wish to dis-

play an ad. Generalist e-commerce companies such as Cdiscount bid simultaneously

on millions of terms that reflect the diversity of their catalog of products, according

to the expected profits associated with the ads. Methods to estimate these expected

returns suffer from a sparsity of data, since most of the keywords have little or no

historical signal. Grouping them and exploiting information on the most frequent

keywords (short tail) to infer information on the less frequent ones (long tail), allow

to anticipate the user behavior by semantics and improve the bidding strategy. The

plan is the following: pre-process the keywords by stemming, choose an e-commerce

training corpus for the Word2Vec model, train it, and perform an embedding into a

euclidean space where we can cluster keywords thanks to a K-means algorithm. We

validate our approach on a sub-sample of the keywords for which they have anon-
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semantic distance available. Finally, all the keywords in the same cluster share the

same bid, which is computed aggregating the cluster historical signal.

Keywords NLP · SEA · Semantic clustering

1 Introduction

For large e-commerce websites, visibility is crucial and largely depends on how

Internet users find the website through the most common online search engines. In

order to appear in the search engine result page, three options are usually available.

1. The free way (SEO): the search engine matches the user query to a page of the

website. This option, despite being free, has the disadvantage of being uncon-

trollable: the search engine is entirely responsible of the matching (if and which

page) and there is no way to improve the result in a short amount of time.

2. Text Ads: for each user query, the search engine creates an auction where e-

commerce actors participate to get the best position in the result page and increase

the chances of their link being clicked. Each participant creates an ad (a rich

message and a link) and associates it to a set of keywords, for which he can

specify the maximum amount of money he is willing to pay for each click (max

cost-per-click). Then the search engine chooses, according to the overall quality

of the ad and the bid amount, which ads to show, and the position of each one on

the result page. These ads render as the textual content of the ad, equipped with

a re-direction link exactly as for free results, but with a small extra label (“Ad,”

for example) on the left. They usually appear on the top and on the bottom of the

result page.

3. Product List Ads: similar to textual ads, but rendering as a priced image usually

displayed on the top of the page, before all the textual results. For this type of ads,

even if triggered by a textual query, the participants bid directly on the product

(and not on keywords), while the search engine is usually responsible for the

keyword-product match.

In this work, we will talk about how semantic clustering of keywords can help

to improve performances of textual ads campaigns (option 2). We will address this

problem by means of Machine Learning and Natural Language Processing (NLP)

tools as Word2Vec, clustering techniques, and text processing.

In Sect. 2 we will formalize the bidding problem and explain in detail why seman-

tic clustering helps to improve the bidding strategy. In Sect. 3 we will explore the

Word2Vec embedding, focusing on the metric nature of the landing space, and how

to validate the model by introducing a different distance (based on behavior) on a

subset of frequent keywords. Section 4 is devoted to the semantic clustering using

K-Means, while in Sect. 5 we present a practical application and the result of an A/B

testing.
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2 Formalization of the Bidding Problem

Before detailing the problem, let us fix some notation.

Definition 1 We take an agent participating to search engine auctions where he bids

to show textual ads for K a (finite) set of keywords (despite the name keywords,

keywords can be more than one words). We denote by k ∈ K a generic element of

this set and define W as the set of all words contained in all the keywords in K.

Definition 2 We define a clusterization of keywords as a partition of K: a cluster C

is a non-empty subset C ⊆ K of keywords sharing some property (not necessarily

an ad group), with the property that for any two clusters Ci , C j , Ci ∩ C j = ∅, and
"

i Ci = K.

Definition 3 For each keyword k, we define φk as the maximum cost-per-click (abbr.

max CPC) the agent is willing to pay for a click, while we will denote by φC the max

CPC associated to a cluster if all the keywords k ∈ C share the same bid.

Definition 4 For each keyword k, we define two random variables Xk and Vk rep-

resenting the total amount of money spent on k during the time interval [0, T ] and

the total revenue associated to keyword: both random sequences are controlled by

the max CPC bid φk . Notice that increasing the bid φk would make both the cost Xk

and the revenue Vk increase, even though the cost usually explodes much faster than

the revenue (saturation effect).

The bidding problem, for which we assume for simplicity that the control � is

constant throughout [0, T ], is to maximize:

max
�∈A

E

�

U

�

�

k∈K

Vk

��

, under
�

k

Xk = X, (1)

where X is the total budget of the agent for all his keywords, A the set of admissible

strategies and U a convex monotone utility function. We will focus on a problem

which comes before (1): in order to maximize the agent utility function, we need a

reliable model for the random variables (Vk)k .

Definition 5 We use the following decomposition of the revenue:

Vk = νk Nk, (2)

where νk is an uncontrolled (independent from �) variable representing the revenue

associated to each click (0 when a click is not followed by a purchase, which is most

of the time), and Nk (controlled) is the number of clicks during [0, T ].
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Fig. 1 Example of keywords clicks distribution: in this curve 20% of the keywords account for

more than 90% of the total clicks and roughly half of the keywords have no signal at all (flat tail).

For very large accounts with a lot of keywords, this curve can be much steeper

However, even for (νk)k i.i.d., estimating the average value per click can be a

challenge. In fact, as shown in (Fig. 1), most of the keywords have little or no historical

signal since they are only clicked few times during their lifetime; however, since there

are a lot of them, the impact of ignoring these keywords can be dramatic. The main

idea of this paper is to exploit semantic similarity (which is independent from �)

to group them into clusters having a much stronger historical signal, and provide an

average estimator for the cluster only. Instead of waiting or forcing as in multi-armed

bandit theory (see [2]) for rare keywords to accumulate signal over time, we use their

short-tail neighbors. Given clusters (Ci )
n
i=1, the problem (1) becomes

max
�∈A�

E

�

U

�

n
�

i=1

VCi

��

, under

n
�

i=1

XCi
= X, (3)

where XCi
and VCi

are the global cost and revenue of a whole cluster. Notice that a

strategy � ∈ A� if all the keywords in the same cluster share the same bid.

3 The Word2Vec Modeling

The first step is producing an embedding of W into a Euclidean metric space whose

distance respects the semantic distance among words.

In order to find this embedding, we use the Word2Vec model introduced by the

seminal paper [6] and [7], implemented by the Python package gensim (see [9]).

The Word2Vec model embeds the one-hot-encoding representation of W, which is
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a space of very-high dimension (as large as the number of keywords, which in our

case is more than one million), to a smaller Euclidean space, usually of dimension

between 100 and 500, thanks to a neural network whose hidden layer transformation

matrix is used as coordinates for the embedding. This technique works pretty well and

is able to capture the linear correlation among vectors: the classic example provided

by the paper takes into account the relationship

ψ(king) − ψ(queen) = ψ(man) − ψ(woman), (4)

which captures the semantics among the four terms involved.

However, even though the vector space structure of the landing space R
d is used

to express semantic differences among couples (as in the king to queen = man to

woman example), the metric used to compare words is not the one induced by the

vector space structure (the norm), but the cosine one.

Definition 6 We define d� : W
2 → [0, 1] as

d�(w1, w2) =
1

2

!

1 −
< w1, w2 >

�w1� �w2�

�

∈ [0, 1] (5)

as the semantic distance between words induced by the Word2Vec embedding.

3.1 The Behavioral Distance

Word2Vec is an unsupervised model whose performances are not easily measurable.

That is why we validate our approach on a keywords subset for which another distance

is available.

Definition 7 We define a subset K
∗ ⊂ K (roughly 10%) of search terms which are

particular frequent in our internal search engine (the one allowing to explore the

website) and define a behavioral distance on K
∗ ([3]) as

dJ (k1, k2) = 1 −
π(k1) ∩ π(k2)

π(k1) ∪ π(k2)
∈ [0, 1], ∀k1, k2 ∈ K

∗, (6)

where π(k) is the set of all the products that have been clicked on the internal engine

after searching for k.

It is worth noticing that this distance is not available on the whole K since most

of the elements of K have never been searched . This distance is commonly known

as the Jaccard distance . For example, dJ (k1, k2) = 1 if the two queries lead to no

common product, while dJ (k1, k2) = 0 if the user clicks are exactly identical for

the two queries. We call this distance behavioral, in contrast with the semantic one,

since it depends only on the user behavior and does not take into account the keyword

meaning.
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3.2 The Model Training and the Semantic Distance

In order to train the model, we need to define a training corpus D (a collection of

documents). We may use as corpus the collection of all our search terms K, i.e.,

D = K, but in this case, we would lose semantic information due to the documents

being very short (keywords are often less than 5 words) and we would not have

enough context to train the model.

That is why we have chosen the internal product description catalog, which pro-

vides a very rich and specific corpus, i.e., D is the collection of all the product

descriptions, for all the products in our catalog. In order to have a faster implemen-

tation, we have chosen to train a single model for keywords in a given category only

with the descriptions of products in the same category: since training time does not

scale linearly, this allows us to break a big problem into smaller problems (one for

each category) and still perform well.

So far, we have defined an Euclidean embedding of W, but our goal is to find a

distance between keywords, not words.

Definition 8 We define the weight associated to a word w as the inverse document

frequency ([8])

αw =
1

"

D∈D
Iw∈�(D)

, w ∈ W, (7)

where D is the corpus used to train the Word2Vec model.

Definition 9 We define

dS(k1, k2) = d�

⎛

¿

�

w∈�(k1)

αwψw,
�

z∈�(k2)

αzψz

À

⎠ , ∀k1, k2 ∈ K, (8)

where �(k) is the set of all the words contained in the keyword k (e.g.,

�(hello world) = {hello, world}).

The semantic distance dS is the Euclidean distance between the baricenters of the

two keywords, where the weight of each words decreases with the word frequency

in the corpus D. This allows us to reduce the weight of the word telephone in its

category, since its presence does not help to semantically distinguish two keywords.

Once we have defined these two distances, we can compare them on K
∗ ⊂ K by

taking the correlation value between the entries of the matrices
�

dJ (ki , k j )
�

i j
and

�

dS(ki , k j )
�

i j
. This metric allows to optimize the model hyper-parameters, as the

embedding dimension p, the extension of the training corpus, or the measure the

impact of text pre-processing. Here is our conclusions.
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corpus no tf-idf tf-idf

product catalogs 19.3% 35.2%

product catalogs + generic 19.1% 34.8%

Fig. 2 Correlation between behavioral and semantic distance for d = 300 on the telephone depart-

ment depending on the training corpus and the use of the idf normalization (8): while adding a

generic catalog does not improve the results, and the idf normalization is essential to obtain a good

performance

• General purpose corpus: we add a general purpose corpus (e.g., WaCkY [1]) to

the training phase, which leads to a much slower training without a significant

performance improvement. We conclude that the product description corpus is

sufficiently rich for our purpose.

• Pre-processing: we have improved the model performance by stemming words,

which allows us to normalize and reduce the keywords space, as well as removing

special characters and converting Latin numbers to Arabic ones to have a homo-

geneous text treatment. We have massively relied on the Python package nltk

([5]).

• Embedding dimensions: we have found that p = 300 is a good compromise

between learning speed and performances.

• Weighting by the IDF weights significantly improves the quality of the metric

(Fig. 2).

4 Keyword Clusterization

Thanks to the embedding described in the previous section, we can use the metrics

induced by dS to cluster all the keywords. However, since the number of keywords

is relatively large, we would like to use K-means ([4]) to minimize the fitting time

of the clustering model. However, we need to take care of some details.

We recall that the distance dS is the cosine distance between baricenters in the

Euclidean embedding space of the Word2Vec model. If we used a K-means on

keywords using those baricenters as Euclidean coordinates, we would be using the

norm distance to create clusters, and not the cosine one (which defines similarities

in the W2V model). To overcome this problem, it is enough to, for each K-means

iteration (Fig. 3):

1. project the whole embedding space R
d − {0} to the sphere Sd dividing by the

norm;

2. use the euclidean distance on the projected coordinates to compute centroids

(approximation of the sphere chord distance);

3. project the new centroids on the sphere.
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Fig. 3 Example of K-means on S1: the projection of the cluster centroids guarantees that centroids

are still on the sphere

5 A/B Testing and Conclusions

We used the keyword clusterization defined in the previous section to create ad

groups whose keywords are forced to share the same bid (max CPC). How bids are

determined is out of the scope of this paper; however, the idea is that bidder sees a

group of keywords in the same ad group as a unique one, aggregating all the history

into a unique shared signal. We have finally build an A/B test where the bidder bids

as usual (one bid per keyword) in the A part, and a bid per ad group on the B part.

The result of the A/B encourages our researches to go further: while the A part

outperforms the B part on a relatively small of very short-tail keywords, the B part

proves to be better on the long tail, leading to an overall tie. This is mainly due to the

purely semantic clusterization: some very generic (and often short keyword) have so

much signal that they would deserve to have a special treatment. Generic keywords
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Fig. 4 Graphical representation of clusters via TSNE [10] on the telephones category. Colors

represent clusters, which are computed before TSNE, while the circle size the number of clicks for

a given keyword in log-scale

(e.g., telephone) and specific keywords (e.g., telephone brand color) have different

behavior, even if their semantics can be similar: that is the way, further work will

be dedicated to a keyword tagging allowing to order keywords according to their

level of specification. This could be done by analyzing lexical property (as for the

keyword length, for example) or their previous behavior if available.

Another development axis is the clustering technique; instead of partitioning the

keyword space, we can identify neighbors for each keyword and use smoothing

techniques (as a kernel density or a KNN) to smooth the historical signal coming

from each keyword. This approach would allow us to introduce weights into the

smoothing densities depending on the keyword behavior.
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A Note on Robust Estimation
of the Extremal Index

M. Ivette Gomes, Miranda Cristina, and Manuela Souto de Miranda

Abstract Many examples in the most diverse fields of application show the need

for statistical methods of analysis of extremes of dependent data. A crucial issue

that appears when there is dependency is the reliable estimation of the extremal

index (EI), a parameter related to the clustering of large events. The most popular

EI-estimators, like the blocks’ EI-estimators, are very sensitive to anomalous cluster

sizes and exhibit a high bias. The need for robust versions of such EI-estimators is

the main topic under discussion in this paper.

Keywords Dependent sequences · Monte-Carlo simulation · Robust

semi-parametric estimation · Statistics of extremes

1 Introductory Notes

The extremal index (EI), denoted by θ , is a parameter of extreme events related to

the clustering of exceedances of high thresholds. In the semi-parametric estimation

of this parameter, we have to cope with problems similar to those that appear in

the estimation of the primary parameter of extreme events, the extreme value index

(EVI), here denoted by ξ , related to the tail heaviness: increasing bias, as the threshold

decreases and a high variance for high thresholds. See [14] for a recent overview on

the topic of univariate statistical extreme value theory (EVT).

We generally assume to be working with a strictly stationary sequence of ran-

dom variables (RVs), {Xn}n≥1, from a cumulative distribution function (CDF) F ,
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under general asymptotic and long-range dependence restrictions, like the long-range

dependence condition D ([24]) and the local dependence condition D” ([23]). Let

{X i :n}n≥1, 1 ≤ i ≤ n, denote the associated sequences of ascending order statistics.

The stationary sequence {Xn}n≥1 is said to have an EI, θ (0 < θ ≤ 1), if, for

all τ > 0, we can find a sequence of levels un = un(τ ) such that with {Yn}n≥1 the

associated independent, identically distributed (IID) sequence (i.e., an IID sequence

from the same CDF, F),

P (Yn:n ≤ un) = Fn(un) −→
n→∞

e−τ and P (Xn:n ≤ un) −→
n→∞

e−θτ .

There is thus a ‘shrinkage’ of maximum values, but the limiting CDF of the maximum,

Xn:n , linearly normalized, is still an extreme value (EV) CDF, with a functional form

of the type

EVξ (x) =
{

exp{−(1 + ξ x)−1/ξ }, 1 + ξ x > 0, if ξ �= 0

exp(− exp(−x)), x ∈ R, if ξ = 0.

Under the two mixing conditions D and D” (see [32]), the EI can also be defined as

θ = 1

limiting mean size of clusters
= lim

n→∞
P(X2 ≤ un|X1 > un),

with

un : F(un) = 1 − τ/n + o(1/n), as n → ∞, withτ > 0, fixed. (1)

The very simple m-dependent (m-DEP) processes are used here for illustration.

Those processes, with an EI given by θ = 1/m, are based on IID Fréchet(ξ) RVs Yi ,

i ≥ 1, from a CDF �
1/m

ξ , with �ξ (x) = exp
(
− x−1/ξ

)
, x ≥ 0, the standard Fréchet

CDF. They are then built upon the relation X i = max1≤ j≤i+m−1 Y j , i ≥ 1. To enhance

the clustering of high values (with an asymptotic mean size equal to m), we present

Fig. 1.
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Fig. 1 Sample paths of an IID (left), 2-DEP (center) and 5-DEP (right) processes from the same

underlying Fréchet(�ξ=1), but with EIs, respectively, equal to 1, 0.5, and 0.2
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Notice the richness of these processes regarding clustering of exceedances: there

is a ‘shrinkage’ of maximum values, together with larger and larger ‘clusters’ of

exceedances of high values, as θ decreases. Indeed, serial dependence leads to large

values occurring close in time and forming clusters.

The scope of the article is the following: In Sect. 2, we deal with the EI-estimation,

giving primordial emphasis to the blocks’ estimator, since it is perhaps the most

widely known EI-estimator. Robust versions of the blocks’ EI-estimators are dis-

cussed in Sect. 3. Such an approach provides also a bias reduction, particularly in

the presence of anomalous observations. A Monte-Carlo (MC) simulation study is

described in Sect. 4, in the framework of m-DEP processes. The proposed robust

version of the blocks’ EI-estimators is compared with other EI-estimators in the

literature. Finally, in Sect. 5, a few overall comments are put forward.

2 Extremal Index Estimation

The traditional estimators of θ differ mainly in the approaches and definitions used

for identifying the clusters of exceedances (see, among others, [12, 19, 20, 22, 26,

31, 33]). The most relevant approaches in the literature are (a) the blocks estimator,

where the sample is partitioned into b blocks and exceedances of high levels are

identified and counted in each block that has at least one exceedance; (b) the runs

estimator, for which the occurrence of a first exceedance determines the beginning of

a cluster. Other estimators have been recommended in the literature, like an improved

version of the block’s suggested in [33], the intervals estimator in [12], the k-gaps

estimator (see [34] or [35], among others), or the Nandagopalan estimator (see [23]

and [15], also among others). Herein we focus on the blocks’ estimator. The main

goal is to improve its robustness within the family of m-DEP processes.

Consider a sequence of high levels un = un(τ ) such that (1) holds, and a sequence

rn , such that rn ∈ N and rn = o(n) as n → ∞, i.e., rn/n → 0, as n → ∞. Let

bn = �n/rn�, where �x� denotes the integer part of x , and take the partition of a

sample with size n into bn adjacent disjoint blocks, all with size rn . The number of

times that {Xn} exceeds a fixed level un is counted by the point process Nn{un(τ )}.
A cluster of exceedances is defined by the number of exceedances within a block

in which there is at least one exceedance. Note that, according to this definition, the

blocks of observations without any exceedance are ignored.

In limit, it was proved in [21] that under a broad � condition, the number of

exceedances Nn converges to a compound Poisson process with multiplicities equal

to the dimension of the clusters. Moreover, clusters’ size distribution is given by

πn( j) = P

[
rn∑

i=1

IX i >un
= j |

rn∑

i=1

IX i >un
> 0

]
, j = 1, 2, . . .

where IA stands for the indicator function of A. If the limit exists when n → ∞,

the distribution of the clusters’ size associated with the compound Poisson process
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is π = limn→∞ πn . In general, π is not known and can be diverse. Nevertheless,

whenever it exists, and under the aforementioned dependence condition, the limiting

mean coincides with the inverse of the EI, i.e., the EI can be expressed as θ−1 =
limn→∞

∑
j≥1 jπn( j). Finally, the blocks’ estimator is defined by the inverse of the

mean number of exceedances per cluster, i.e., by

θ̂B = (Nn/Zn)
−1 = Zn/Nn, (2)

where Zn denotes the number of blocks that contain at least one exceedance, i.e., the

number of clusters by the definition of cluster. In the present paper, we consider the

blocks’ estimator (B) in a different but equivalent form of the one presented in [31].

The estimator is defined by

θ̂W = −
log

(
1
k

k∑
i=1

IM(i−1)r,ir ≤un

)

1
k

rk∑
i=1

IX i >un

, (3)

with Ms,r = maxs<i≤r X i , for 0 ≤ s < r . The estimator θ̂W is a consistent and asymp-

totically normal EI-estimator, but with a second-order asymptotic behavior better

than the one of the EI-estimator in (2).

The blocks’ estimator has a simple interpretation and important asymptotic prop-

erties, but it is based on the mean and it is very sensitive to an anomalous cluster’s

size. The occurrence of just one atypical cluster size is enough to produce a disastrous

estimate for θ . Thus, our main goal is to investigate procedures that can improve the

robustness of the blocks’ estimator.

3 Introducing Robustness

Dealing with robustness in statistical EVT seems to be an apparent contradiction.

Indeed, the main robust proposals were conceived for down-weighting extreme obser-

vations and in EV–analysis, those extreme observations are the most interesting ones.

In fact the conjugation is unusual and challenging but has been successfully exploited

in papers like [10] or [37] or [5], among others. Most of those papers are devoted

to the estimation of Pareto-type parameters and the robust estimation of a positive

EVI. As far as we know, the EI-estimation has not been treated from a robust point

of view.

3.1 Parametric Distribution of the Limiting Cluster Size

Since in limit the inverse of the EI represents the cluster mean dimension, we inves-

tigate the more appropriate robust procedure for estimating that mean. At a first
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glance this seems to be trivial, but it deserves particular attention. A robust estimator

must exhibit a good performance under the assumed statistical model in spite of not

being optimum and, simultaneously, it must produce reliable estimates if real data

show small departures from the assumptions. See [18] and [16], where the main

contributions for the systematization of robust statistics can be found.

Hampel’s approach considers the distribution of any estimator under F(�), the

family of all possible probability distributions defined in the sample space � and for

which the estimator is defined. It is within this framework that some fundamental

tools of robustness were defined: the influence function (IF) of an estimator, the

definition of a robust estimator when it has a bounded IF, or the development of

robust M-estimators (see, e.g., [16]), which are proportional to their bounded IF.

We have adopted the robust approach for dealing with the limiting distribution π of

the cluster dimension, i.e., we have considered π as π(θ) in the broad family F of

distributions. According to [21], π(θ) is unknown and can be diverse. Some authors

assumed specific distributions in their work, such as the Poisson model. Herein

we assume such a neighborhood approach, considering that the true distribution of

the limiting cluster size belongs to a neighborhood of the Poisson family. Such an

assumption was chosen specifically for the B-estimator, since it counts the number

of exceedances per cluster, and the Poisson process is perhaps the most used in

modeling counting processes.

3.2 Robust Estimators

In general, we expect to have small or very small cluster sizes. Their mean is thus

strongly affected by the occurrence of clusters with atypical dimensions. Robust esti-

mators can control the effect of anomalous data and they have a good performance in

a neighborhood of the assumed model. Nevertheless, the most popular and efficient

robust estimators were conceived and are computationally implemented for deal-

ing with considerable sample sizes, weighting tails usually with symmetric models,

namely, the Normal model. Thus, the selection of a robust mean estimator deserves

some concerns, particularly because robust estimators, in general, are not explicitly

defined and so, computational components play a decisive role in the results.

There is a great collection of robust location estimators whose properties are well

studied. Most of them are included in the broad family of M-estimators, which gen-

eralizes the class of maximum likelihood (ML)-estimators. Currently, the most used

robust estimators for location are perhaps the MM-estimators, a subfamily of the M-

estimators that combines efficiency with a high breakdown point (another important

measure of robustness), but their computational setup is prepared for the Normal dis-

tribution, and they are not adequate for the Poisson model. Dealing with generalized

linear models (GLM), there are robust estimators developed for the logistic regres-

sion, for the Poisson regression, for the Normal and the Gamma error terms. Those

estimators are implemented in statistical packages for the R environment (see [30]),

like the popular robustbase or the robmixglm (see [25], and [3] for documentation).

They have been tested by researchers in computational statistics and they are used by
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a wide community. We intend to use known and verified computational procedures,

aiming to simplify the procedures for data analysts. The proposals herein presented

keep thus that main goal in mind.

Due to the great number of blocks without exceedances, the probability of

occurrence of the zero value could be poorly modeled by the Poisson model.

The assumption of a Poisson distribution with parameter λ for the number of

exceedances per block, N0, including those without exceedances, would imply that

λ > 1 and P[N0 = 0] < exp(−1) ≈ 0.37, which seems unrealistic when dealing

with exceedances of very high thresholds. So, robust estimators prepared for the

Poisson model should not be directly applied and it is necessary to consider robust

estimators that can deal with a great number of zero observations. More precisely, the

mean cluster size will be estimated assuming a GLM framework and two different

models in the neighborhoods of the Poisson family, namely, a hurdle Poisson and a

mixture of GLMs with Poisson error terms.

First consider the robust hurdle model. The model was suggested by Heritier ([17])

as a possible way of dealing with an excess of zeros in count data. It consists of two

functionally independent processes: the first is a binary process generating the zero

values, while the second is conditional on the first one, according to a zero truncated

Poisson distribution. The model was studied in detail in [27]; also [4] presented the

link, variance, and deviance functions for the zero truncated Poisson. The Poisson

hurdle model is defined by

P[Yi = yi ] =
{

1 − p(xxx i ), yi = 0,

p(xxx i )
exp[−λ(uuui )][λ(uuui )]yi

yi ![1−exp[λ(uuui )]] , yi = 1, 2, . . . ,
(4)

where yi denotes the counts, xxx i ∈ R
p, uuui ∈ R

p̃. In the framework of the GLM, the

first part of the model assumes a logistic model for p(xxx i ), with

logi t[p(xxx i )] = log

[
p(xxx i )

1 − p(xxx i )

]
= xxxT

i ααα, (ααα ∈ R
p),

and the second part considers a log-linear model for λ(uuui ) conditionally on p(xxx i ),

with log[λ(uuui )] = uuuT
i γγγ , (γγγ ∈ R

p̃). The log-likelihood of the hurdle model can be

written in the form l(ααα,γγγ ; yyy) = l(ααα; y) + l(γγγ ; yyy), establishing the orthogonality of

the parameters ααα and γγγ . This allows the independent estimation of the two parts

of the model. Note also that for obtaining the mean cluster size estimate only the

second part is necessary. Robust estimators for the coefficients of the hurdle model

are investigated in [9]. For the logistic component of the model robust counterparts

are available, like the methods proposed in [7] and [8] or those suggested by [6].

They are implemented in the robustbase package. In [9] the authors generalize the

work in [7] to the truncated Poisson distribution: for a GLM with covariates xxx i and

unknown parameter βββ, they use a robust M-estimator which is the solution of
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n∑

i=1

Ë(yi ,µµµi ) =
n∑

i=1

[
Ëc(ri )Ì(xxx i )

1
√

νμi

µµµT
i − a(βββ)

]
= 000, (5)

where Ëc denotes the Huber function, which will control the effect of anoma-

lous residuals, being c the tuning constant that will regulate the degree of robust-

ness/efficiency of the estimator. Moreover, ri = (yi − μi )/
√

νμi
are the Pearson

residuals, with νμi
= V[Yi |xxx i ], Ì(xxx i ) are weights that will control anomalous covari-

ates observations, μi = E[Yi |xxx i ] and a(βββ) is a correction term that ensures Fisher’s

consistency. Robust estimators defined by Ë-functions, as in the intermediate term

of (5), are called Mallows-type estimators. When Ì(xxx i ) = 1 for all i , the estimator

becomes the Huber estimator. That is, the adequate case in the present study, since

for the mean cluster size estimation only the constant term estimate is taken. In

[17], it is recommended a c-value between c = 1.3 and c = 1.8, and we have used

c = 1.6. The properties of the robust estimator result from general M-estimation

theory, namely, their influence function is IF(y;Ë,π) = M(Ë, π)Ë(y, μ), where

M(Ë, π) = −E

[
∂

∂βββË(y, μ)

]

and their asymptotic covariance matrix is

M(Ë, π)−1 Q(Ë, π)M(Ë, π)−T ,

with Q(Ë, π) = E[Ë(y, μ)Ë(y, μ)T ]. Cantoni and Zedini (see [9]) concretized the

form of matrices M(Ë, π) and Q(Ë, π) for the truncated Poisson and they deducted

robust estimators from the asymptotic covariance matrix of the corresponding Mal-

lows quasi-likelihood estimators.

The truncated Poisson component of the hurdle model can be alternatively esti-

mated with an MT-estimator (see [36]). MT-estimators are another subfamily of M-

estimators that consider a variance stabilizing transformation in the response variable

and a redescending Ë function in (5), (instead of Ëc). The aforementioned general

properties also follow from M-estimation theory. The computational process for

obtaining MT-estimates in simulation studies has been more complex and more time

consuming than for computing robust Mallows-type estimates. The obtained results

were very similar, and so we focus only on the former process.

Consider now the second approach referred to above, which assumes a mixture

model of GLMs by considering potential outliers coming from an overdispersed

GLM as in [1], namely,

g(μi |ci , λi ) =
{

xxxT
i βββ, ci = 1,

xxxT
i βββ + λi , ci = 2,

(6)

where ci = 1 stands for the standard model belonging to the exponential family,

and ci = 2 groups potential outliers considering a random effect λi ∼ N (0, τ 2) and
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assuming mixture proportions p1 and p2 (p1 + p2 = 1) fixed over xxx i . The estimates

are obtained by fitting the model with EM (expectation-maximization) optimiza-

tion methods, particularly, the GEM algorithm and the quasi-Newton methods. The

inclusion of the λ random effect can accommodate discordant observations, allowing

good estimates for the parameters in the standard model component. From this point

of view it is a robust estimation procedure, in spite of not being defined through a

particular robust estimators family. The methodological support is explained in [2]

and computations were performed using the robmixglm package and its estimating

function with the same name. Once again, results were very similar to those achieved

with Cantoni and Zeidini proposal in [9]. In the following, we have decided to present

only the results achieved by the latter suggestion. Recall that the above computa-

tional procedures are related to the estimation of the constant term of a GLM with a

link function g(μ) = log(μ). The obtained constant term estimate, λ̃, needs thus to

be transformed to λ̂ = exp(λ̃), for obtaining the mean cluster size estimate. So, the

robust version of the EI blocks’ estimator is defined by

θ̂Rob = 1/λ̂. (7)

The main steps of the computational procedures through the robustbase package are

summarized in the following algorithm.

Algorithm

Step 1.Use the function glmrob in the R-package robustbase, inserting the observed

clusters’ size as observations of the response variable (N ∗
n ). Consider the

linear predictor as a constant term of a regression without any other regres-

sor.

Step 2. Select the following options in the glmrob function: family=“Poisson",

method=“Mqle", weights.on.x= “none", control=glmrobMqe.control(tcc=

c), with c a value between 1.3 and 1.8, to get a robust estimate λ̃∗ of the

constant term.

Step 3. Transform λ̃∗ by the inverse of the link function, obtaining the mean cluster

size estimate λ̂ = exp λ̃∗.

Step 4. Compute the EI–estimate θ̂Rob, already defined in (7).

4 A Simulation Study

In the first part of the simulation study, we aim to compare θ̂Rob (computed by

the hurdle model and the aforementioned algorithm for c = 1.6) with other EI-

estimators, namely, the traditional blocks estimator θ̂B in (2), its improved version θ̂W

in (3), the interval estimator θ̂Int in [12], the runs estimator θ̂Runs in [23] (see also [15])

and the k-gaps estimator θ̂Gap in [34]. A comparison of different EI-estimators, done
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through MC simulations, can be found in [11]. Next, we introduced contamination

in the samples for analyzing the effect on the estimates and the advantages of the

robust proposal.

The performance of all methods was evaluated regarding the simulated values in

terms of the estimated expected mean value (or equivalently, bias) and in terms of

the estimated mean squared error (MSE). All computations were developed with R

software. For the alternatives θ̂Int and θ̂Runs the package extRemes ([13]) was used and

for the θ̂Gap estimator we used the revdbayes package (see [28] and a last version of

package documentation in [29]). Notice that in previous studies we have compared

the three robust procedures cited above in Sect. 3, namely, the robust approach of the

hurdle model in (4), with Huber estimators, the robust approach of the hurdle model,

again in (4), but with MT-estimators and the mixture of GLMs in (6), and the results

were similar, either with or without contamination. Thus, the results presented in this

section for θ̂Rob were computed through the algorithm written above, at the end of

Sect. 3, with c = 1.6.

4.1 Simulation Study Design

Observations were simulated from a standard Fréchet model with CDF �ξ (x)

= exp
(

− x−1/ξ
)

, x > 0, ξ > 0. In the present study we consider m-DEP sequences.

This type of structures verifies the limit conditions imposed by the theory and the

EI can be straightforwardly computed. Originally, we have assumed different EI-

values, namely, θ = 0.5, 0.2, and 0.1. Those θ values, respectively, represent the

expectations λ = 2, 5, and 10, in the Poisson model, and θ = 1/m, with m = 2, 5,

and 10 in the m-DEP structures. The simulation is illustrated for θ = 0.2, a sample

size n = 2000 and for 500 replications. We have used blocks determined by three

different partitions, associated with a number of blocks b = 100, 150, 200. The per-

formance of the estimators for each sample was evaluated considering 30 thresholds

corresponding to upper sample quantiles from 0.80 up to 0.99.

The advantages of the robust version were evaluated by comparing the results

obtained under the previous conditions with those obtained after introducing con-

tamination in the samples. We have contaminated the same samples used before in

a deterministic way. To guarantee an anomalous cluster size although not inducing

changes in the extremal index value, it has been necessary to generate a number of

sequencial exceedences so it produces an outlier in the N0 sequence. After ordering

observations in each sample, (x1, . . . , xn), the central values around the median were

thus replaced, in a tiny percentage (1.2%), by the corresponding value of the order

statistic xn:n , assuring in this way an outlier over cluster dimension in every sample,

independently of the exceedance value that determined the atypical cluster size. With

this type of contamination one can observe how the estimates can be affected by the

presence of just one discordant value.
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Fig. 2 Estimated mean values (left) and MSEs (right) of θ̂B, θ̂W, θ̂Rob, θ̂Int , θ̂Runs, and θ̂Gap in a

5-DEP structure (θ = 0.2) for the sample without contamination

4.1.1 Illustration

We next provide an illustration of the performed studies with a 5-DEP structure. We

compared the EI-estimators in terms of estimated mean cluster size (for bias) and

estimated MSE, considering b = 100 disjoint blocks. Figure 2 shows the results using

samples without contamination. The robust version of the blocks’ estimator θ̂Rob

produced good results, very close to the original version of the estimator. Comparing

with other estimators globally, considering both bias and MSE, the k-gaps estimator

had the best performance, followed by the runs estimator.

The scenery is very different when contamination is introduced (see Fig. 3). The

k-gaps and the runs estimator lose the advantages since their bias increases for high

quantiles, as well as their MSEs. The three versions of the block’ estimator per-

formed better, particularly, the robust blocks’ estimator which globally had the best

performance among all, observing simultaneously bias and variability.

5 Final Comments

– A robust version of the blocks’ EI-estimator has been presented, considering the

limit distribution of the cluster dimension in the neighborhood of a Poisson model.

Such an approach allows the truncation associated with the definition of clusters

of exceedances. Then, the limiting mean cluster size can be estimated through the

constant term of a GLM, namely, using a truncated Poisson.
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Fig. 3 Estimated mean values (left) and MSEs (right) of θ̂B, θ̂W, θ̂Rob, θ̂Int , θ̂Runs, and θ̂Gap in a

5-DEP structure (θ = 0.2) for the contaminated sample

– We have paid attention to robust methods whose computational procedures are

available and tested, in order to facilitate their potential use by data analysts. In

the present comparative study, the robustness was integrated in the process by

assuming a hurdle model and using Huber M-estimators. Other robust estimators

could have been considered, which justifies a future and deeper investigation.

– Compared with other EI-estimators and without contaminated samples, the robust

proposal performance was similar to the traditional blocks’ estimator, and the k-

gaps estimator produced the best results. With contaminated samples and under

the simulated conditions, the robust version had the best performance among all

the considered estimators, in what respects both bias and variability.

– Further work is required in investigating robust procedures for other models with

known theoretical EI.
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Abstract The main goal of this article is to compare whether different groups with

ordinal responses on the same measurement scale satisfy stochastic dominance and

monotonic stochastic ordering. In the literature, the majority of inferential approaches

to settle the univariate case are proposed within the likelihood framework. These solu-

tions have very nice characterizations under their stringent assumptions. However,

when the set of alternatives lie in a positive orthant with more than four dimensions,

it is quite difficult to achieve proper inferences. Further, it is known that testing for

stochastic dominance in multivariate cases by likelihood approach is much more

difficult than the univariate case. This paper intends to discuss the problem within

the conditionality principle of inference through the permutation testing approach

and the nonparametric combination (NPC) of dependent permutation tests. The NPC

approach based on permutation theory is generally appropriate to suitably find exact

good solutions to this kind of problems. Moreover, some solutions for a typical

medical example are provided.
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1 Introduction

Ordered categorical data are frequently encountered in many research and decision-

making fields. For instance, records from patients under different treatments in clin-

ical experiments, feedbacks of questionnaire in social sciences, data on some ques-

tions about feeling, thought or opinion collected in a natural way in psychology, qual-

ity examination of products in marketing and technology, etc. Taking clinical trails as

a guide, we intend to find if results of cure plans satisfy stochastic ordering and to find

the best treatment among cure plans. Problems of comparing whether different groups

with ordinal responses on the same measurement scale satisfy stochastic dominance

(C = 2) is our principal interest. Thereby, we intend to provide tests of hypothe-

ses with ordinal responses especially by testing for stochastic dominance since that

for stochastic ordering, (C > 2), is obtained as a combination of C − 1 dominance

partial tests. This is known to be a rather difficult problem. Many approaches are

proposed in the literature to settle it within likelihood frameworks. [14] proposed an

iterative procedure with censored data which is based on a pair-wise algorithm to find

the asymptotic MLE’s of Kaplan–Meier form. [25] introduced numerical approxi-

mation of MLE’s of two V -dimensional distributions under stochastic ordering. [27]

derived the null asymptotic distribution for the likelihood ratio test statistic for some

testing procedures. Testing procedures based on maximum likelihood estimates of

odds ratios have been considered by [2, 3] and others. Moreover, Kateri and Agresti

(2013), in place of traditional frequentist methods, applied a Bayesian approach to

test if the structure of an association between the response variable and the explana-

tory variable in two samples is ordinal. When available, likelihood-based solutions

within their stringent assumptions are provided with known inferential properties.

In general, however, it is quite difficult to obtain proper testing inference, especially

for the multivariate case. Multivariate case is much more difficult to be analyzed

within likelihood frameworks than the univariate one. In such a setting, the number

of underlying nuisance parameters and/or that of observed variables can often be

much larger than sample sizes. So, unless clearly justified assumptions allowing for

considerable reduction of underlying complexity, the most intriguing of which is

when one pseudo-parameter is expressed as a function of many underlying nuisance

parameters, no correct general testing solution is possible within that approach.

Our approach to this kind of problems is within the conditionality principle of

inference [13], where the conditioning is with respect to a set of sufficient statis-

tics in the null hypothesis as usually the pooled observed data is. That is, by using

the permutation testing theory and the nonparametric combination (NPC) of depen-

dent permutation tests [4–8, 18–23]. When the underlying population distribution

is unknown, nonparametric permutation methods might become a necessity. This is

especially true when the number of categories and/or that of underlying nuisance

parameters are not very small. [16] studied the testing for marginal inhomogeneity

and direction-independent marginal order under the global permutation tests. [15]

utilized χ2-P statistic with small sample size under the permutation approach. The

NPC approach is a general methodology for multivariate problems, especially, for
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stochastic dominance and stochastic ordering. The NPC testing solution performs

[24] Union-Intersection (UI) approach when an equivalent set of sub-problems is

properly carried out.

In principle, the exact calculations of required testing distributions are obtained

through complete enumeration of all data permutations. This, however, becomes

impossible in practice when the cardinality of permutation spaces are large. To this

end, a conditional Monte Carlo procedure was suggested to practically obtain their

estimations, at any desired degree of accuracy ([18, 20, 22]). Main NPC routines are

achieved in MATLAB, R, Python, StatXact, SAS, etc.

The rest of the paper is organized as follows. Section 2 introduces a typical real

example. Section 3 discusses the two-sample basic problem under unidimensional

and multidimensional cases. Section 4 studies approaches for stochastic ordering

restriction in C-sample designs. Solutions to the example are in Sect. 5. Some con-

cluding remarks are in Sect. 6.

2 A Typical Medical Example

Let us consider the example in Table 1 from Chuang-Stein and Agresti (1997), also

reported by [1, 2, 12, 26]. It regards a unidimensional survey on subarachnoid hem-

orrhage measured by Glasgow outcome scale, where 210 patients received a Placebo,

190 received a Low dose, 207 a Medium dose, and 195 a High dose. Response data,

related to the extent of trauma, measured on the same ordinal scale, are classified

according to C = 4 doses of a treatment, {Placebo, Low, Medium, High}, with

outcome classified in K = 5 ordered categories {Death, Vegetative state, Major dis-

ability, Minor disability, Good recovery}.

Based on our intuition, but also in accordance with quoted authors, patients taking

Placebo are expected to achieve lower treatment effect than those taking Low dose,

patients taking Low dose have lower effects than those with Medium dose, and so

forth. Therefore, it is expected that patients exhibit monotonically non-decreasing

responses X as the dose increases. Thus, it is required to test whether there is a

monotonic stochastic ordering on related response data. Formally, the hypotheses to

consider are H0 : X P
d
= X L

d
= X M

d
= X H against H1 : X P

d
� X L

d
� X M

d
� X H with

Table 1 Dose and Extent of trauma due to subarachnoid hemorrhage

Treatment Death Veget Major Minor Recov Total

Placebo 59 25 46 48 32 210

Low 48 21 44 47 30 190

Medium 44 14 54 64 31 207

High 43 4 49 58 41 195

Total 194 64 193 217 134 802
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at least one strict inequality. If responses were quantitative, this problem is also termed

of isotonic regression. Defining the cumulative distribution function for responses X

at ordered categories c1 ≺ . . . ≺ cK as FX (ck) = Pr{X � ck}, namely, the hypothe-

ses are equivalently expressed as H0 : {FX P
= FX M

= FX L
= FX H

} against H1 :

{FX P
≥ FX M

≥ FX L
≥ FX H

}, with at least one strict inequality.

With clear meaning of the symbols, the rationale for this formulation resides

in that if, according to increasing doses, non-decreasing treatment effects δ occur at

latent variables Y , i.e., δh ≤ δ j , 1 ≤ h < j ≤ C , then latent responses should behave

as Yh = (Y + δh)
d
≤ Y j = (Y + δ j ).

The related testing problem has a rather difficult solution within the likelihood-

ratio theory, which with categorical data in addition presents quite a serious difficulty:

even for moderate number of cells it is recognized to be not unique ([10–12, 26, 27];

etc.). Moreover, to get a solution, important supplementary options, difficult to justify

in terms of the real problem under study, are required. This difficulty mostly consists

in that the set of alternatives is restricted to lie in the (C − 1) × (K − 1)-Dimensional

positive orthant where the likelihood cannot be maximized under H0 by ordinary

methods of maximization.

Our solution does firstly consider the setting of two treatments, and then, according

to [24] UI and Jonckheere–Terpstra’s approaches, by a breakdown of the hypotheses

into C − 1 pairs of sub-hypotheses. Later, all resulting dependent partial tests are

combined by a NPC method.

3 The Two-Sample Basic Problem

Let us firstly consider the two-sample basic case, where data are in a 2 × K table

and the specific hypotheses are expressed as H0 : X1
d
= X2 ≡ {F1(ck) = F2(ck), k =

1, . . . K } against H1 : X1

d
≺ X2 ≡ {F1(ck) ≥ F2(ck), k = 1, . . . K } with at least one

strict inequality. The related testing problem can be equivalently set as H0 :
⋂K−1

k=1

[F1(ck) = F2(ck)] against the set of restricted alternatives H1 :
⋃K−1

k=1 [F1(ck) >

F2(ck)].

It is worth noting that i) according to [24] the problem is equivalently broken-

down into K − 1 one-sided sub-problems; ii) H1 defines a multi-one-sided set of

alternatives; iii) since under both H0 and H1 it is F1(cK ) = F2(cK ) = 1, category

cK is not considered; iv) the global solution requires the joint comparison of K − 1

random relative frequencies: F̂1(ck) − F̂2(ck), k = 1, . . . , K − 1.

Since the number of unknown nuisance parameters to take care in any 2 × K

testing process is 2 × K − 1 and the likelihood is to be maximized in the (K − 1)-

dimensional positive orthant, indeed a very difficult task especially when K > 4, our

approach is to stay within the conditional principle of inference.

The conditioning should be on a set of sufficient statistics in the null hypoth-

esis for the unknown underlying common distribution F . To this end, let pF (X)

be the underlying likelihood related to F , and let the two independent sam-



Multivariate Permutation Tests for Ordered Categorical Data 231

ples of IID data, respectively, sized n1 and n2, be X1 = (X11, . . . , X1n1
) and

X2 = (X21, . . . , X2n1
). So the data set is X = (X1, X2), whose joint likelihood is

pF (X) =
∏n1

i=1 pF1
(X1i )

∏n2

i=1 pF2
(X2i ). In null hypothesis, it is assumed that there

is no difference between two distributions, namely, F1 = F2 = F . Thus, the joint

null likelihood pF (X) =
∏2

j=1

∏n j

i=1 pF (X j i ) is invariable with respect to any per-

mutation X∗ of the observed pooled data X = (X1

⊎

X2), where
⊎

is the symbol

for pooling two data sets. This shows that data under H0 are exchangeable, i.e., per-

mutable. Moreover, under H0 pooled data X are always a set of sufficient statistics

for any underlying distribution F [18–20, 22]; so, any information on parameters

defining F is wholly contained in X. The set of all permutations X∗ of X is indicated

with "(X). It is worth noting that "(X) = "(X∗), i.e., the set of permutations of

X coincides, ∀X∗ ∈ "(X), with that of X∗. Of course, under the alternative H1 the

above invariable property does not work, because the two distributions are different

by assumption: indeed X1 is sufficient for F1 and X2 is sufficient for F2 and so pooled

data are not exchangeable.

The act of conditioning on a set of sufficient statistics for F in H0 entails that

any conditional inference is independent of the underlying population distribution

F . This conditioning gives rise to the following fundamental property:

Let (X ,A, F) be the probability space related to data X , then sufficiency of X

for underlying F , under H0, implies that the null conditional probability of any event

A ∈ A, given X, is independent of F , i.e., Pr{X∗ ∈ A; F | X} = Pr{X∗ ∈ A | X} =

P[A | X].

Three relevant consequences of this property are c1) under H0 all M permutations

X∗ of X are equally likely; c2) so P[A | X] = #(X∗ ∈ A)/M , where #(·) is the

number of elements of "(X) that satisfy condition (·), i.e., P[A | X] is properly

a count ratio; c3) if T = (T1, . . . , TS)
� is a vector of S ≥ 1 permutation statistics

(e.g., tests) and ϕ : RS ³ R1 is any measurable function, then the conditional null

distribution of ϕ is independent of F ; indeed,

Pr{ϕ(T ∗
1 , . . . , T ∗

S ) ≤ z; F | X} = Pr{ϕ(T ∗
1 , . . . , T ∗

S ) ≤ z | X}

= Pr [ϕ−1
T (z) | X] =

#[X∗ ∈ ϕ−1
T (z)]

M
, (1)

since, due to measurability of ϕ, ∀z ∈ R1, it is ϕ−1
T (z) ∈ A.

It is worth noting that (c3) is the central property for deducing and justifying

the NPC of dependent permutation tests. Also worth noting is (i) the conditional

probability P[A | X] has always an objective existence; (ii) the conditional null

distribution of ϕ is independent of all dependence parameters underlying T; (iii)

to characterize sufficiency of X in H0, permutation tests require the existence of a

likelihood pF (X) > 0, not its calculability; (iv) when X is minimal sufficient for

F , it makes no sense to work outside the permutation testing principle [20]; (v)

permutation tests are nonparametric, distribution-free, and intrinsically robust.
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For operating with categorical data, to the usual contingency table we prefer using

its unit-by-unit representation: X = {X (i), i = 1, . . . , n; n1, n2}, with n = n1 + n2,

where it is intended that the first n1 data belong to the first sample and the

rest belong to the second. Such a representation, is one-to-one related with the

table for unidimensional variables, as with the example; it is much more efficient

for multidimensional variables, where working with contingency tables becomes

more and more difficult, up to impossibility, as the number of variables increases.

Using that representation, a random permutation X∗ ∈ "(X) can be expressed

as X∗ = {X (u∗
i ), i = 1, . . . , n; n1, n2}, where u∗ ∈ "(u) is a random permutation

of the unit labels u = {1, . . . , n}. The corresponding permuted table is calculate

as { f ∗
jk = #(X∗

j i ∈ ck), k = 1, . . . , K , j = 1, 2}. Obviously, the marginal frequen-

cies are permutation invariable quantities since f·k = f1k + f2k = f ∗
1k + f ∗

2k = f ∗
·k ,

k = 1, . . . K . Similarly, the cumulative marginal frequencies are also invariable:

N·k = N1k + N2k = N ∗
·k with N jk =

∑

s≤k f js .

3.1 The 2 × K One-Dimensional Case

We start with the two-samples one-dimensional problem. For the case of C = 2,

the related stochastic dominance testing problem becomes H0 : F1 = F2 ≡
⋂K−1

k=1 [F1(ck) = F2(ck)] against H1 : F1 > F2 ≡
⋃K−1

k=1 [F1(ck) > F2(ck)], whose

global analysis requires the joint comparison of K − 1 differences of random fre-

quencies: F̂1(ck) − F̂2(ck), k = 1, . . . , K − 1. Since the crucial point for that joint

analysis is the proper handling of all underlying dependences, to attain general

solutions we must work within the UI-NPC of related dependent permutation tests

because, due to c3) (see Sect. 3), the estimation of dependence coefficients is not

required since NPC works independently of such dependences, how complex these

are.

Accordingly, the K − 1 partial test statistics are

T ∗
k = C(n1, n2) · [F̂∗

1k − F̂∗
2k]

[

F̄·k(1 − F̄·k)
]− 1

2 , k = 1, . . . , K − 1, (2)

where F̂∗
jk = F̂∗

j (ck) = N ∗
jk/n j , j = 1, 2; F̄·k = N·k/n are permutation and marginal

empirical distribution functions (EDFs); N ∗
1k and N ∗

2k , k = 1, . . . , K − 1 are permu-

tation cumulative frequencies obtained from the permuted table { f ∗
jk, k = 1, . . . , K ,

j = 1, 2}.

It is worth noting that (i) EDFs F̂ jk are maximum likelihood unbiased estimates

of population CDFs F j (ck), k = 1, . . . , K − 1, j = 1, 2; (ii) each partial tests T ∗
k

is a reformulation of Fisher’s exact probability test and so it is a best conditional

test; (iii) large values of each partial test T ∗
k are significant against its related null

sub-hypothesis H1k ; (iv) the K − 1 partial tests are positively dependent; (v) for

computation of T ∗
k , 0 is assigned to expressions with the form 0/0; (vi) C(n1, n2) =

[n1n2(n − 1)/n2]1/2 is a permutation constant not dependent on k; (vii) for increasing



Multivariate Permutation Tests for Ordered Categorical Data 233

Table 2 Representation of the conditional Monte Carlo method in multivariate tests

X X∗
1 X∗

r X∗
R

T o
1 T ∗

11 · · · T ∗
1r · · · T ∗

1R

.

.

.
.
.
.

.

.

.
.
.
.

T o
K T ∗

K 1 · · · T ∗
Kr · · · T ∗

K R

´

T o
ψ T ∗

ψ1 · · · T ∗
ψr · · · T ∗

ψ R

sample sizes, each T ∗
k under H0 converges to the standardized normal distribution:

T ∗
k

d
³ N (0, 1).

According to the approach discussed in [18, 19, 22], the global testing solution

can be obtained by their UI-NPC while using any admissible combining function.

The simplest admissible combination is by the direct sum of partial tests:

T ∗
AD =

K−1
∑

k=1

T ∗
k = C(n1, n2) ·

K−1
∑

k=1

[F̂∗
1k − F̂∗

2k]
[

F̄·k(1 − F̄·k)
]− 1

2 . (3)

Such a solution looks like the discrete version of Anderson–Darling goodness-of-

fit type test for multi-one-sided alternatives. It is worth noting that (i) each partial

test is unbiased and so T ∗
AD is unbiased; (ii) at least one partial test is consistent

and so T ∗
AD is consistent; (iii) T ∗

AD is an admissible combination of partial best tests

and so provided with good power behavior. Of course, by using other admissible

combining functions one can obtain other good solutions, none of which, however,

being uniformly better than any other.

The corresponding p-value-like statistics can be written as λAD = Pr{T ∗
AD ≥

T o
AD | X}, where T o

AD = TAD(X) is the observed value of TAD on pooled data X.

So, remembering that p-value-like statistics play the role of tests whose common

critical value is α, if λAD ≤ α, the null hypothesis is rejected at significance level

α > 0.

Consider the representation displayed in Table 2. It corresponds to the NPC pro-

cedure for a general problem with K partial tests, R random permutations, and

combining function ψ .

Under H0, the sub-matrix {T ∗
kr }K×R simulates the K -dimensional null distribution

of K partial permutation tests. The sub-vector {T ∗
ψr }R simulates the null permutation

distribution of combined test Tψ .

Thus, the statistic λ̂ψ = #(T ∗
ψ ≥ T o

ψ )/R gives an unbiased and, as R diverges, a

strongly consistent estimate of the p-value statistic λψ of Tψ .

Under H1, at least one T o
k presents larger observed values than in H0; so, if the

combining function ψ is non-decreasing in each argument, the p-value statistic satis-

fies the relation: λ̂ψ;H1

d
≤ λ̂ψ;H0

uniformly for every data set X and every underlying

distribution F . Hence, the latter justifies that H0 is rejected when λ̂ψ ≤ α; moreover,
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it can be proved that Tψ is provided with the unbiasedness and consistency properties.

Details and proofs for these and other properties are in [18–20, 22].

3.2 The 2 × K Multidimensional Case

In the general multidimensional case, let us start from two-sample V -dimensional

problem, V ≥ 2. The formulation of testing for multidimensional hypotheses are

H0 : X1
d
= X2 against H1 : X1

d
≺ X2. The hypotheses H0 and H1, according to

[24] are assumed to be equivalently broken-down into K ≥ 2 sub-hypotheses,

H0 ≡
⋂K

k=1 H0k and H1 ≡
⋃K

k=1 H1k . Thus, with V dimensional ordinal data and

K ordered categories for each variable, the hypotheses are equivalently written as
⋂V

v=1

⋂K−1
k=1 [F1v(ck) = F2v(ck)] and

⋃V
v=1

⋃K−1
k=1 [F1v(ck) > F2v(ck)], respectively.

Thus, for variable v = 1, . . . , V , partial test is T ∗
ADv according to Sect. 3.1. Since all

these partial tests are standardized and so, sharing the same asymptotic null distribu-

tion, for their combination we can proceed with their direct sum. This provides for the

V -dimensional extension of Anderson–Darling test for multi-one-sided alternatives:

T ∗
AD =

V
∑

v=1

T ∗
ADv = C(n1, n2) ·

V
∑

v=1

K−1
∑

k=1

[F̂∗
1vk − F̂∗

2vk]
[

F̄·vk(1 − F̄·vk)
]− 1

2 . (4)

It is worth noting that, now, with symbol X it is represented the V -dimensional

variable and the pooled sample data matrix, the context generally suffices avoiding

misunderstandings. Of course, the V -dimensional T ∗
AD enjoys the same good proper-

ties as the unidimensional. In place of the direct combination of V partial tests T ∗
ADv ,

i.e., one Anderson–Darling test for each variable, it is possible to think of a more

general combination like, for instance, T ∗
ψ = ψ(T ∗

AD1, . . . , T ∗
ADV ). The most com-

monly used combining functions ψ are Fisher’s TF = −2
∑

v log(λ∗
ADv), or Liptak’s

T ∗
L =

∑

v �−1(1 − λ∗
ADv), where λ∗

ADv is the p-value statistic of T ∗
ADv and �(·)−1

is the inverse standard normal CDF. Since in T ∗
AD all summands are well defined,

it is also of some interest to observe that the double summation can equivalently be

computed as
∑

k

∑

v .

4 The C-sample Stochastic Ordering Problem

Considering the Jonckheere–Terpstra idea, the C × K table can be broken-down

into (C − 1) sub-tables. Accordingly, the testing problem is broken-down into

(C − 1) sub-problems each based on a 2 × K sub-table. To be specific, for any

j ∈ {1, . . . , C − 1}, we divide the data set into two pooled pseudo-groups, where

the first pseudo-group is obtained by pooling data of the first j ordered groups and

the second by pooling the rest. Thus, the procedure considers the first pooled pseudo-
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group as Y1( j) = X1

⊎

. . .
⊎

X j and the second as Y2( j) = X j+1

⊎

. . .
⊎

XC , j =

1, . . . , C − 1, where X j = {X j i , i = 1, . . . , n j } is the data set in the j th group.
In the null hypothesis H0, related pooled variables satisfy the relationships

Y1( j)
d
= Y2( j), j = 1, . . . , C − 1, thus, data from every pair of pseudo-groups are

exchangeable. In the alternative H1, as for at least one j the relation inequal-

ity X j

d
≺ X j+1, 1 ≤ j ≤ C − 1 is strict, the corresponding stochastic dominance

between each pair of pseudo-groups Y1( j)

d
≺ Y2( j) is true for all j ≤ C − 1. There-

fore, the hypotheses for monotonic stochastic ordering problem can be equivalently

written as H0 : {
⋂C−1

j=1 (Y1( j)
d
= Y2( j))} and H1 : {

⋃C−1
j=1 (Y1( j)

d
≺ Y2( j))}, emphasizing

a break-down into a set of C − 1 sub-hypotheses. For each sub-problem we can
consider the test:

T ∗
AD( j) = C(n1( j), n2( j)) ·

K−1
∑

k=1

[

F̂∗
1( j)k − F̂∗

2( j)k

]

[F̄·( j)k(1 − F̄·( j)k)]
− 1

2 , j = 1, . . . , C − 1,

(5)

where n1( j) = n1 + . . . + n j , n2( j) = n − n1( j); the permutation relative frequen-

cies are F̂∗
l( j)k = #(X∗

l( j) � ck)/nl( j), l = 1, 2; the marginal relative frequencies

are F̄·( j)k = [#(X∗
1( j) � ck) + #(X∗

2( j) � ck)]/n; partial tests T ∗
AD( j) are positively

dependent; and C(n1( j), n2( j)) are the permutation k-invariable constants. So the

global problem is solved by combining the C − 1 partial tests within the UI-NPC as,

for instance, by

T ∗
AD =

C−1
∑

j=1

T ∗
AD( j). (6)

According to our experience, except for the direct, the most suitable combining

functions for this problem are Fisher’s and Liptak’s. Since in the stochastic ordering

alternative all C − 1 partial tests contain a positive non-centrality quantity, i.e., all

lie in their respective sub-alternatives, Tippett’s combination is less sensitive than

others.

Of course, if V > 1 variables were involved, the multivariate stochastic order-

ing solution would require one stochastic ordering partial test for each variable

v = 1, . . . , V . So, with clear meanings of the symbols, the global test, by direct

combination, is

T ∗
AD,V =

C−1
∑

j=1

C(n1( j), n2( j)) ·

V
∑

v=1

K−1
∑

k=1

[

F̂∗
1v( j)k − F̂∗

2v( j)k

]

[F̄·v( j)k(1 − F̄·v( j)k)]
− 1

2 .

(7)



236 H. Huang et al.

Table 3 p-values based on UI-NPC approach

T ∗
(1)

T ∗
(2)

T ∗
(3)

T
��

D T
��

F T
��

L T
��

T

λ̂AD( j) 0.0141 0.0025 0.0074 0.0017 0.0015 0.0012 0.0068

λ̂W ( j) 0.0131 0.0021 0.0076 0.0010 0.0012 0.0010 0.0053

λ̂M( j) 0.0144 0.0024 0.0062 0.0011 0.0014 0.0011 0.0068

5 Solution of Medical Example

The analyses of the data from medical example, based on R = 100 000 random

permutations, for tests: Anderson–Darling T ∗
AD, on scores T ∗

W , and on mid-ranks TM ,

and their combination functions: T ��
D direct, T ��

F Fisher’s, T ��
L Liptak’s, and T ��

T Tippett’s

are shown in Table 3. Note that (i) W scores are assigned to ordering integer numbers

as (w1 = 1, w2 = 2, w3 = 3, w4 = 4, w5 = 5); (ii) since small p-value statistics are

evidence for H1, Fisher’s, Liptak’s, and Tippett’s are non-increasing functions of

partial p-values. The p-values based on UI-NPC method are

Results in Table 3 clearly show that the p-values based on four different combi-

nation functions T
��

D , T
��

F , T
��

L , and T ��
T , all reject the null hypothesis at significance

level α = 0.01 of monotonic stochastic ordering among the C = 4 doses. So the

inferential conclusion is that patients present non-decreasing responses as the dose

increases.

It is worth noting that the three combined p-value statistics T
��

D , T
��

F , and T
��

L differ

only slightly in the fourth digit. This means that related tests are all suitable for

testing unidimensional dominance and stochastic ordering alternatives. In our case,

if the stochastic ordering alternative is true, it is also jointly true by construction for

all C − 1 partial tests T ∗
( j). So, Tippett’s T ��

T differs from other combination functions

because its power behavior is mostly sensitive when only one partial test lies in the

alternative. Due to too many ties in the data set, test with rank transformations was

not considered.

Since all p-values statistics related to TAD(3) are < 0.05/3, by simple Bonferroni’s

rule it results that subjects taking High dose exhibit significantly lower responses than

those taking lower doses.

6 Concluding Remarks

The basic idea in this paper is to test for stochastic ordering restrictions with mul-

tivariate ordered categorical data through a suitable combination of a set of partial

tests by UI-NPC approach based within the permutation theory. Such problems have

quite difficult solutions within the likelihood ratio theory which, when available,

have nice characterizations under their usually too stringent assumptions.

The UI-NPC approach is within the conditionality principle of inference, where

the conditioning is with respect to a set of sufficient statistics in the null hypothesis like
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the pooled observed data. So, it is based on the permutation testing approach and the

NPC of dependent permutation tests. The NPC approach shows a good general power

behavior, it is rather efficient and less demanding in terms of underlying assumptions

comparing to parametric competitors when these exist and are available.
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Smooth Nonparametric Survival Analysis

Dimitrios Ioannides and Dimitrios Bagkavos

Abstract This research proposes the local polynomial smoothing of the Kaplan–

Meier estimate under the fixed design setting. This allows the development of esti-

mates of the distribution function (equivalently the survival function) and its deriva-

tives under the random right censoring model. The asymptotic properties of the

estimate, including its asymptotic normality are all established herein.

Keywords Kaplan–Meier · Local polynomial fitting · Censoring

1 Introduction

The present research proposes the combination of the Kaplan–Meier estimate with

the local polynomial fitting technique. The result is an estimate of the distribution

function and its derivatives for discretized (binned) data, under the right censorship

model.

The motivation behind this research is two fold. One aspect is that the original

version of the Kaplan–Meier estimate comes with some significant limitations. Per-

haps the most important is that it produces a step function. This contradicts the quite

plausible assumption of continuity and smoothness of the distribution and survival

functions. Subsequently, this limits the scope of the estimate’s application, especially

for inferential purposes where differentiability plays a key role. Another aspect which

prompted the present research is that the literature seems to be rather thin on bound-

ary aware kernel estimates of the density function and its derivatives under the right

censorship model. However, these quantities are quite useful in bandwidth selec-

tion, estimation of the slope, curvature, or mode of a population among many other

applications.
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With the purpose to address all aforementioned points, this work combines the

Kaplan–Meier estimate of the distribution function which intrinsically admits right-

censored data and the local polynomial fitting principle which allows estimation of

distribution function derivatives of any arbitrary order. The benefit of this approach

is that additionally to filling these gaps, it produces distribution / survival function

estimates with asymptotically smaller mean squared error compared to the Kaplan–

Meier estimate.

The proposed estimates together with the necessary notation and its asymptotically

equivalent form are introduced in Section 2. Their asymptotic properties together with

quantification of their asymptotic distribution are discussed in Section 3. All proofs

are given in Section 4.

2 Local Linear Estimation of the Distribution Function and

Its Derivatives

Let T1, T2, . . . , Tn be a sample of i.i.d. survival times censored on the right by

i.i.d. random variables U1, U2, . . . , Un , which are independent from the Ti ’s. Let

fT be the common probability density and FT the distribution function of the

Ti ’s. Denote with H the distribution function of the Ui ’s. Typically the randomly

right-censored observed data are denoted by the pairs (X i , ·i ), i = 1, 2, . . . , n with

X i = min{Ti , Ui } and ·i = 1{Ti ≤Ui }, where 1{·} is the indicator random variable of

the event {·}. The distribution function of X i ’s satisfies 1 − F = (1 − FT )(1 − H).

It is assumed that estimation happens in the interval [0, M] where M satisfies the

relationship

M = sup{x : 1 − F(x) > ¸} for a small ¸ > 0.

We are interested in estimating the distribution function FT (x) and its derivatives of

any arbitrary order. An immediate byproduct of obtaining an estimate of FT (x) is its

use in estimating the survival function ST (x) = 1 − FT (x). The classical nonpara-

metric estimate of FT , [11], is given by

F̂S(x) =

⎧

⎪

«

⎪

¬

0, 0 ≤ x ≤ Z1,

1 −
�k−1

i=1

�

n−i
n−i+1

��i
, Zk−1 < x ≤ Zk, k = 2, . . . , n,

1, x > Zn

(1)

where (Z i ,�i ) are the ordered X i ’s, along with their censoring indicators ·i , i =
1, . . . , n. According to the standard local polynomial principle, first, partition the

interval [0, M] into g disjoint subintervals {I j , j = 1 . . . g} of equal length b. Denote

with x j = ( j − 1
2
)b, j = 1, . . . , g, the center of the interval I j . Essentially b can be

determined by an optimal histogram bin width selection rule.

Denote with σ 2(xi ) the variance of F̂S(xi ) at xi and let ¸i , i = 1, . . . , g be inde-

pendent random vectors with mean 0 and variance 1. Also, set m(xi ) = FT (xi ). Since
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F̂S(xi ) is an asymptotically unbiased estimate of FT (x) it can be used as the response

to the local nonparametric regression problem

F̂S(xi ) = m(xi ) + σ(xi )¸i , i = 1, . . . , g.

Using the data {F̂S(xi ), xi }, i = 1, . . . , g, the regression function m can be approxi-

mated locally in a nearby point x0 such that |x − x0| ≤ ¸ for an arbitrarily small ¸,

by a Taylor expansion

m(x) =
p

�

k=0

m(k)(x0)

k! (x − x0)
k + Rk(x),

with Rk(x) being the Lagrange remainder term. Set Kh(u) = h−1 K (u/h). Here K

is a kernel function, usually a symmetric density, assumed to be supported on a

symmetric and compact interval. h denotes the bandwidth which controls the spread

of the kernel. Define the i th kernel moment by

μi (K ) ≡ μi =
" +∞

−∞
ui K (u) du, i = 0, 1, . . . , ν + 1.

It is assumed throughout that K satisfies μ0 = 1, μ1 = 0, and μ2 < +∞. Also, let

βk = m(k)/k!, k = 0, . . . , p. The estimates of βk , say β̂k will result by solving the

optimization problem

min
βk ,k=0,...,p

g
�

j=1

�

F̂S(x j ) −
p

�

k=0

βk(x j − x)k

�2

Kh(x j − x). (2)

According to [5], the optimal order of the local polynomial to use in (2) depends on

the order of the derivative being estimated and is given by p = ν + 1. This yields

the solution

β̂ν =
g

�

i=1

Kν

�

xi − x

h

�

F̂S(xi ), ν = 0, 1, 2, . . . (3)

where

Kν(u) = eT
ν+1S−1(1, hu, . . . , (hu)ν, (hu)ν+1)T h−1 K (u).

eT
ν+1 denotes a vector with ν + 2 elements with 1 in the (ν + 1)th position and zeros

elsewhere. S is the (ν + 2) × (ν + 2) matrix (Sn, j+l)0≤ j,l≤ν+1 with

Sn,l(x) =
g

�

i=1

Kh(xi − x)(xi − x)l , l = 0, 1, . . . , 2ν + 2.
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Thus, F
(ν)

T (x) is estimated by F̂
(ν)

L (x) = ν!β̂ν .

In the definition of Kν , the role of eT
ν+1S−1(1, hu, . . . , (hu)ν, (hu)ν+1)T h−1 is to

automatically reinstate the kernel mass falling outside the region of estimation back

in so as to correct the estimate at the boundary. In the interior this factor equals to 1

and the estimate defaults to a regular kernel estimate. To see this, assume without loss

of generality that K is supported on [−1, 1] and let 0 < c < 1 so that x = ch ∈ [0, h)

is a boundary point. Correspondingly, in the interior we have x = ch, c > 1 so that

x ∈ [h, M − h]. Define

μi,c =
" +∞

−c

ui K (u) du, i = 0, 1, . . . , 2ν + 2.

In the interior where c > 1, μi,c = μi . Let Sc = (μi+ j,c)0≤i, j≤ν+1. From the proof

of Theorem 1 in [1],

Sn,l(x) =
g

�

i=1

Kh(xi − x)(xi − x)l = b−1hl+1μl,c(1 + o(1)), l = 0, . . . 2ν + 2.

(4)

Then it is easy to see that in the interior we have

F̂
(ν)

L (x) = ν!
hν+1

g
�

i=1

K ∗
ν,c

�

xi − x

h

�

F̂S(xi )(1 + o(1)),

where

K ∗
ν,c(u) = eT

ν+1S−1
c (1, u, . . . , uν, uν+1)T b−1 K (u)I{−c,+∞}(u),

and for c > 1, Kν(u) = h−(ν+1)K ∗
ν,c(u)(1 + o(1)). In order to facilitate the theoret-

ical study of F̂
(ν)

L (x) it is worth defining the following equivalent formulation of the

estimate. For fixed j and for k ∈ {1, . . . , g} set

ck j = 1[xk− b
2
,xk+ b

2
](X j , · j = 1).

Since the X1, X2, . . . , Xn are i.i.d., using the strong law of large numbers yields

n−1b−1

n
�

j=1

ci j
a.s.→ b−1

" xi + b
2

xi − b
2

fT (y)(1 − H(y)) dy =

! b−1b fT (xi )(1 − H(xi )) = fT (xi )(1 − H(xi )). (5)

Thus, dividing the empirical estimate of fT (xi )(1 − H(xi )) by an estimate of 1 −
H(xi ) yields an estimate of fT (xi ). Following [13], by reversing the intuitive role

played by Ti and Ui , 1 − H(x) can be estimated by the (sightly modified) Kaplan–

Meier estimator,
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1 − Ĥ(x) =

⎧

⎪

«

⎪

¬

1, 0 ≤ x ≤ Z1,
�k−1

i=1

�

n−i+1
n−i+2

�1−�i
, Zk−1 < x ≤ Zk, k = 2, . . . , n,

�n
i=1

�

n−i+1
n−i+2

�1−�i
, Zn < x .

Thus, from (5), for fixed i , an empirical estimate of b fT (xi ) at the i th bin center,

denoted by f̂T (xi ) is defined by

f̂T (xi ) = 1

n

n
�

j=1

ci j

1 − Ĥ(xi )
! b fT (xi ).

Let

W ∗
ν (u) =

" u

−∞
Kν(t) dt and W ∗

ν,c(u) =
" u

−∞
K ∗

ν,c(t) dt.

Following [15] and [10], f̂T (xi ) can be used to approximate the jump of the Kaplan–

Meier estimate at xi . As a consequence F̂
(ν)

L (x) can be approximated as

F̂
(ν)

L (x) ! ν!
g

�

i=1

Wν

�

xi − x

h

�

f̂T (xi )

≡ ν!
hν

g
�

i=1

W ∗
ν,c

�

xi − x

h

�

f̂T (xi )(1 + o(1)).

An obvious estimate of the survival function ST (x) is ŜT (x) = 1 − F̂
(0)

L (x). Addi-

tional applications include using F̂
(ν)

L (x) (for ν > 1) in plug-in bandwidth selection

rules in estimation of population characteristics etc. For all these it is important to

establish the theoretical properties and the asymptotic distribution of F
(ν)

T (x). These

are discussed next.

3 Asymptotic Properties

Denote with bL ,c(x) and σ 2
L ,c(x) the bias and variance of F̂

(ν)

L (x) using bandwidth

hν at the boundary point x = chν . The notation hν instead of the simpler form h is

used henceforth so as to emphasize the fact that different bandwidth should be used

according to the order of the derivative being estimated. Let bL(x) and σ 2
L(x) denote

correspondingly the bias and variance in the interior. Also, let μi (K ∗
ν ), μi,c(K ∗

ν,c)

denote the i th kernel moment of K ∗
ν in the interior and K ∗

ν,c in the boundary. The

asymptotic properties of F̂
(ν)

L (x) are summarized in the next theorem.

Theorem 1 Assume that for l = 0, . . . , ν + 1, K (l) is bounded, absolutely inte-

grable, with finite second moments and FT is l + 2 times differentiable. Assume
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also that as n → +∞, hν → 0, nh2ν
ν → +∞ and b/hν → 0. Then, the asymptotic

bias and variance of F̂
(ν)

L (x) are given by

bL(,c)(x) = h2
ν

ν!
(ν + 2)!μν+2(,c)(K ∗

ν(,c))F
(ν+2)

T (x) + o(h2
ν),

σ 2
L(,c)(x) = (ν!)2

nh2ν
ν

�

G(x) − 2hνg(x)

"

t K ∗
ν(,c)(s)W ∗

ν(,c)(s) ds

−
�

F
(ν)

T (x) + h2
νν!((ν + 2)!)−1μν+2,c(K ∗

ν(,c))F
(ν+2)

T (x)

�2
�

+ O(n−1h2ν
ν ) + o(h4

ν),

where

g(x) = fT (x)(1 − H(x))−1, G(x) =
" x

0

g(t) dt, W ∗
ν(,c)(s) =

" s

−∞
K ∗

ν(,c)(u) du.

Further,

F̂
(ν)

L (x) ∼ N
"

F
(ν)

T (x) + bL(,c)(x), σ 2
L(,c)(x)

"

.

Remark 1 The asymptotic properties of F̂
(ν)

L (x) in Theorem 1 show that the estimate

automatically achieves boundary corrections. In the interior the estimate behaves

like a conventional kernel estimate, e.g., the survival function estimate of [10].

Remark 2 Theorem 1 also implies that the derivative order leaves the bias rate

of convergence unaffected. Further the second term of the variance expression is

negative and this indicates that kernel smoothing improves the estimate’s variance

compared to the variance of F̂T (x) by a second-order effect.

Remark 3 Theorem 1 also shows that random right censoring does affect the vari-

ance leading term because of the survival function 1 − H(x) in the denominator. As

a result it is expected that the censored data estimate to be more variable in practice

than its complete sample counterpart.

4 Proofs and Auxiliary Lemmas

Let

f̃T (xi ) = 1

n

n
�

j=1

ci j

1 − H(xi )
.

From [12], supx |Ĥ(x) − H(x)| = Op(n
−1/2) and thus
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1

1 − Ĥ(xi )
= 1

1 − H(xi ) + H(xi ) − Ĥ(xi )
= 1

1 − H(xi )

1

1 + H(xi )−Ĥ(xi )
1−H(xi )

= 1

1 − H(xi )

+∞
�

k=0

(−1)k

�

H(xi ) − Ĥ(xi )

1 − H(xi )

�k

= 1

1 − H(xi )

�

1 + Op

"

n−1/2
"�

.

Therefore, f̂T (xi ) can be approximated asymptotically by f̃T (xi ) with negligible

error. For this reason, we equivalently prove theorem 1 for estimator

F̃
(ν)

L (x) = ν!
hν

g
�

i=1

W ∗
ν,c

�

xi − x

h

�

f̃T (xi )(1 + o(1)).

Lemma 1 Assume that FT is twice differentiable, continuous and that b = o(h),

then, as n → ∞,

Eck j = Ec2
k j = Ec3

k j = Ec4
k j = b fT (xk)(1 − H(xk)) + o(b), (6)

E(ck j ckr ) = E(ck j ckr )
2 = E(c2

k j ckr ) = E(c3
k j ckr ) = b2 f 2

T (xk)(1 − H(xk))
2

+ o(b2) for r �= j, (7)

E(ck j ckr ckl) = E(c2
k j ckr ckl) = b3 f 3

T (xk)(1 − H(xk))
3 + o(b3) for r �= j �= l,

(8)

E(ck j ckr cklckt ) = b4 f 4
T (xk)(1 − H(xk))

4 + o(b4) for r �= j �= l �= t, (9)

where all r, j, l, t above are between 1 and g.

Proof First note that conditioning on X j = y and · j = 1, for fixed k and j ,

E

�

1[xk− b
2
,xk+ b

2
](X j , · j = 1)

�

=
" xk+ b

2

xk− b
2

fT (y)(1 − H(y)) dy

= b fT (xk)(1 − H(xk)) + o(b). (10)

Now, using

E(ck j ckr ) = E1[xk− b
2
,xk+ b

2
](X j , · j = 1)E1[xk− b

2
,xk+ b

2
](Xr , ·r = 1)

= b2 f 2
T (xk)(1 − H(xk))

2 + o(b),

together with the fact that

Ec2
k j ckr = Ec2

k jEckr = Eck jEckr = (Eck j )
2 = E(ck j ckr )

2 = Ec3
k j ckr

completes the proof of (7). The proofs of (6), (8), and (9) follow similarly.
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4.1 Proof of Theorem 1

The proof of the theorem is based on a combination of lemma 1 with straightforward

algebra and well-known results. Thus only a sketch is provided here and only for

the boundary case x = chν, 0 < c < 1 as the result for the interior follows by letting

c → +∞. Combining (3) and (4), for ν = 0, 1, 2, . . . , and by Lemma 1,

EF̃
(ν)

L (x) = ν!
nhν

ν

g
�

i=1

W ∗
ν,c

�

xi − x

hν

�

b fT (xi )(1 − H(xi ))

1 − H(xi )
(1 + o(b)).

By lemma 2 of [1], we have

�

�

�

�

�

g
�

i=1

W ∗
ν,c

�

xi − x

hν

�

b fT (xi ) −
"

W ∗
ν,c

�

u − x

hν

�

fT (u) du

�

�

�

�

�

≤ b2

4

" �

W ∗
ν,c

�

u − x

hν

�

fT (u)

���
du. (11)

Then, by applying integration by parts, performing the change of variable u − x =
shν , Taylor expanding around x and using the boundary conditions

" +∞

−c

uq K ∗
ν,c(u) du = ·ν,q , 0 ≤ ν, q ≤ p

where ·ν,q is Kronecker’s delta, which establishes the bias expression. The variance

is treated similarly by combining Lemma 1 and approximating the sums by integrals

based on lemma 2 of [1]. Now, for ν = 0, 1, . . . set

F̃
(ν)

L (x) = W =
n

�

j=1

W j , W j = ν!
nhν

ν

g
�

i=1

W ∗
ν,c

�

xi − x

hν

�

ci j

1 − H(xi )
.

Note that the random variable W j depends only on the pair (X j , · j ) and thus

F̃
(ν)

L (x) = W =
n

�

j=1

W j

is a sum of independent random variables. Hence, the asymptotic normality of F̃
(ν)

L (x)

will result by the application of the Lyapunov Central Limit Theorem (Theorem 4.9

in [14]) according to which a sufficient condition for

W − EW√
Var(W )

d→ N (0, 1)

to hold is
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lim
n→∞

Var(W )−3/2

n
�

i=1

E|Wi − EWi |3 = 0. (12)

To verify the condition, first note that fixing j and using the nonnegativity of W j in

the first step below, using an approximation similar to (11) in the third step, in the

fourth step the change of variable u − x = thν , subsequently expanding fT (x + thν)

in Taylor series around x and by the assumption that Kν , and therefore its integral

over its support is bounded, yields

n
�

j=1

E|W j − EW j |3 ≤ n(8E(|W j |3) + 8|E(W j )|3) ≤ 16n|E(W j )|3

= n
(ν!)3

n3h3ν
ν

�

g
�

i=1

W ∗
ν,c

�

xi − x

hν

�

Eci j

1 − H(xi )

�3

= (ν!)3

n2h3ν
ν

�

g
�

i=1

W ∗
ν,c

�

xi − x

hν

�

b fT (xi )(1 + o(b))

�3

≤ (ν!)3

n2h3ν
ν

�"

W ∗
ν,c

�

u − x

hν

�

fT (u)(1 + o(b)) du

�3

= (ν!)3

n2h3ν
ν

�

hν

"

W ∗
ν,c(t) fT (x + thν)(1 + o(b)) dt

�3

= O(n−2h−(3ν−3)
ν ). (13)

Also, fixing j in the second step below, using in the fourth step twice an approximation

similar to (11), applying the change of variable u − x = thν and subsequently Taylor

expanding fT (x + thν)(1 − H(x + thν))
−1 and f 2

T (x + thν) around x and using (as

in obtaining (13)) the fact that W ∗
ν,c is bounded, the variance of W becomes

Var(W ) = (ν!)2

n2h2ν
ν

Var

⎧

«

¬

n
�

j=1

g
�

i=1

W∗
ν,c

�

xi − x

hν

�

ci j

1 − H(xi )

«

¬

­

≤ (ν!)2

nh2ν
ν

g
�

i=1

W∗
ν,c

�

xi − x

hν

�2

�

Ec2
i j

− (Eci j )
2
�

(1 − H(xi ))
2

= (ν!)2

nh2ν
ν

g
�

i=1

W∗
ν,c

�

xi − x

hν

�2 b fT (xi )(1 − H(xi )) − {b fT (xi )(1 − H(xi ))}2

(1 − H(xi ))
2

× (1 + o(b))

= (ν!)2

nh2ν
ν

"

W∗
ν,c

�

u − x

hν

�2 �

fT (u)

1 − H(u)
− b f 2

T (u)

�

du(1 + o(b))

= O(n−1h
−(2ν−2)
ν )(1 + o(b)). (14)
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Using (13) and (14) back to (12) yields

lim
n→∞

Var(W )−3/2

n
�

i=1

|Wi − EWi |3 = O
�

n3/2h3(2ν−2)/2
ν n−2h−3ν+3

ν

�

= O
�

n−1/2
�

which verifies the condition and finishes the proof.
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Density Estimation Using Multiscale
Local Polynomial Transforms

Maarten Jansen

Abstract The estimation of a density function with an unknown number of sin-

gularities or discontinuities is a typical example of a multiscale problem, with data

observed at nonequispaced locations. The data are analyzed through a multiscale

local polynomial transform (MLPT), which can be seen as a slightly overcomplete,

non-dyadic alternative for a wavelet transform, equipped with the benefits from a

local polynomial smoothing procedure. In particular, the multiscale transform adopts

a sequence of kernel bandwidths in the local polynomial smoothing as resolution

level-dependent, user-controlled scales. The MLPT analysis leads to a reformula-

tion of the problem as a variable selection in a sparse, high-dimensional regression

model with exponentially distributed responses. The variable selection is realized by

the optimization of the l1-regularized maximum likelihood, where the regularization

parameter acts as a threshold. Fine-tuning of the threshold requires the optimization

of an information criterion such as AIC. This paper develops discussions on results

in [9].

Keywords Wavelets · Sparsity · Local polynomials · Kernel · Smoothing

1 Introduction

Due to its natural intermittency, the estimation of a non-uniform density can be

described as a nonequispaced multiscale problem, especially when the density con-

tains singularities. Indeed, when the number and the locations of the singularities

remain unknown, then the estimation procedure is deemed to go through all possible

combinations of locations and intersingular distances. Also, since a given bandwidth

in a kernel-based method may be too small in a region of low intensity and too large

in a region of high intensity, a local choice of the bandwidth can be considered as an

instance of multiscale processing, where the bandwidth is seen as a notion of scale.
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A popular class of multiscale methods in smoothing and density estimation is

based on a wavelet analysis of the data. The classical wavelet approach for density

estimation [3, 6] requires an evaluation of the wavelet basis functions in the observed

data or otherwise a binning of the data into fine scale intervals, defined by equispaced

knots on which the wavelet transform can be constructed. The preprocessing for the

equispaced (and possibly dyadic) wavelet analysis may induce some loss of details

about the exact values of the observations.

This paper works with a family of multiscale transforms constructed on noneq-

uispaced knots. With these constructions and taking the observations as knots, no

information is lost at this stage of the analysis. The construction of wavelet transforms

on irregular point sets is based on the lifting scheme [11, 12]. Given the transforma-

tion matrix that maps a wavelet approximation at one scale onto the approximation

and offsets at the next coarser scale, the lifting scheme factorizes this matrix into a

product of simpler, readily invertible operations. Based on the lifting factorization,

there exist two main directions in the design of wavelets on irregular point sets. The

first direction consists of the factorization of basis functions that are known to be

refinable, to serve as approximation basis, termed scaling basis in a wavelet analysis.

The wavelet basis for the offsets between successive scales is then constructed within

the lifting factorization of the refinement equation, taking into account typical design

objectives such as vanishing moments and control of variance inflation. Examples

of such existing refinable functions are B-spline functions defined on nested grids of

knots [8]. The second approach for the construction of wavelets on irregular point

sets does not factorize a scheme into lifting steps. Instead, it uses an interpolating or

smoothing scheme as a basic tool in the construction of a lifting step from scratch.

Using interpolating polynomials leads to the Deslauriers-Dubuc refinement scheme

[2, 4]. To this refinement scheme, a wavelet transform can be associated by adding

a single lifting step, designed for vanishing moments and control of variance infla-

tion, as in the case of factorized refinement schemes. This paper follows the second

approach, using local polynomial smoothing [5, Chapter 3] as a basic tool in a lifting

scheme. For reasons explained in Sect. 2, the resulting Multiscale Local Polynomial

Transform (MLPT) is no longer a wavelet transform in the strict sense, as it must be

slightly overcomplete. Then, in Sect. 3, the density estimation problem is reformu-

lated in a way that it can easily be handled by an MLPT. Section 4 discusses aspects of

sparse selection and estimation in the MLPT domain for data from a density estima-

tion problem. In Sect. 5, the sparse selection is finetuned, using information criteria

and defining the degrees of freedom in this context. Finally, Sect. 6 presents some

preliminary simulation results and further outlook.

2 The Multiscale Local Polynomial Transform (MLPT)

Let Y be a sample vector from the additive model Yi = f (xi ) + σi Z i , where the

covariates xi may be non-equidistant and the noise Z i may be correlated. The under-

lying function, f (x), is assumed to be approximated at resolution level J by a linear

combination of basis functions ϕJ,k(x), in
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f J (x) =

n J −1∑

k=0

ϕJ,k(x)sJ,k = "J (x)s J ,

where "J (x) is a row vector containing the basis functions. The choice of coefficients

sJ is postponed to the moment when the basis functions are specified. At this moment,

one could think of a least squares projection as one of the possibilities.

The Multiscale Local Polynomial Transform (MLPT) [7] finds the sparse

coefficient vector v in sJ = Xv, using a linear operation v = X̃s J . Just like in

wavelet decomposition, the coefficient vector of several subvectors v =

[ sT
L dT

L dT
L+1 . . . dT

J−1 ]T , leading to the following basis transformation

"J (x)s J = "J (x)Xv = "L(x)sL +

J−1∑

j=L

� j (x)d j ,

where we introduced "L(x) and � j (x) for the submatrices of the transformed basis

"J (x)X, corresponding to the subvectors of the coefficient vector v. The detail

vectors d j are associated to successive resolution levels through the decomposition

algorithm, corresponding to the analysis matrix X̃,

for j = J − 1, J − 2, . . . , L

• Subsamplings, i.e., keep a subset of the current approximation vector, s j+e,e =

J j s j+1, with J j a n j × n j+1 submatrix of the identity matrix.

• Prediction, i.e., compute the detail coefficients at scale j as offsets from a predic-

tion based on the subsample.

d j = s j+1 − P j s j+1,e

• Update, the remaining approximation coefficients. The idea is that s j can be

interpreted as smoothed, filtered, or averaged values of s j+1.

s j = s j+1,e + U j d j

Before elaborating on the different steps of this decomposition, we develop the

inverse transform X by straightforwardly undoing the two lifting steps in reverse

order.

for j = L , L + 1, . . . , J − 1

• Undo update, using s j+1,e = s j − U j d j .

• Undo prediction, using s j+1 = d j + P j s j+1,e.

2.1 Local Polynomial Smoothing as Prediction

The transform in this paper adopts a smoothing operation as prediction, thus incor-

porating the covariate values as parameters of the analysis. As an example, the

Nadaraya–Watson kernel prediction leads to
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Pj;k,� =
K

(
x j+1,k−x j,�

h j+1

)

∑n j

l=1 K
(

x j+1,k−x j,l

h j+1

) .

In this expression, K (u) denotes a kernel function, i.e., a positive function with

integral 1. The parameter h j+1 is the bandwidth. While in (uniscale) kernel smoothing

this is a smoothing parameter, aiming at optimal balance between bias and variance

in the estimation, it acts as a user-controlled scale parameter in a Multiscale Kernel

Transform (MKT). This is in contrast to a discrete wavelet transform, where the scale

is inherently fixed to be dyadic, i.e., the scale at level j is twice the scale at level j + 1.

In an MKT, and also in the forthcoming MLPT, the scale can be chosen in a data

adaptive way, taking the irregularity of the covariate grid into account. For instance,

when the covariates can be considered as ordered independent realizations from a

uniform density, it is recommended that the scale is taken to be h j = h0 log(n j )/n j

[10]. The scales at fine resolution levels are then a bit larger, allowing them cope up

with the non-equidistance of the covariates.

A slightly more complex prediction, adopted in this paper, is based on local

polynomial smoothing. It fills the kth row of P j with P(x j+1,k), where the row

vector P j (x) is given by

P j (x) = X ( p̃)(x)
(

X
( p̃)

j

T
W j (x)X

( p̃)

j

)−1

,

with the row vector of power functions, X ( p̃)(x) = [1 x . . . x p̃−1] and the corre-

sponding Vandermonde matrix at resolution level j , X
( p̃)

j = [1 x j . . . x
p̃−1

j ]. The

diagonal matrix of weight functions is given by (W j )��(x) = K
(

x−x j,�

h j

)
.

The prediction matrix has dimension n j+1 × n j . This expansive or redundant pre-

diction is in contrast to lifting schemes for critically downsampled wavelet transform,

such as the Deslauriers–Dubuc or B-spline refinement schemes. In these schemes,

the prediction step takes the form d j = s j+1,o − P j s j+1,e, where s j+1,o = Jc
j s j+1,

with Jc
j the (n j+1 − n j ) × n j+1 subsampling operation, complementary to J j . In

the MLPT, a critical downsampling with J j and Jc
j would lead to fractal-like basis

functions [7]. The omission of the complementary subsampling leads to slight redun-

dancy, where n data points are transformed into roughly 2n MLPT coefficients, at

least if n j is approximately half of n j+1 at each scale. The corresponding scheme

is known in signal processing literature as the Laplacian pyramid [1]. With an out-

put size of 2n, the MLPT is less redundant than the non-decimated wavelet trans-

form (cycle spinning, stationary wavelet transform) which produces outputs of size

n log(n). Nevertheless, the inverse MLPT shares with the non-decimated wavelet

transform an additional smoothing occurring in the reconstruction after processing.

This is because processed coefficients are unlikely to be exact decompositions of an

existing data vector. The reconstruction thus involves some sort of projection.



Density Estimation Using Multiscale Local Polynomial Transforms 253

2.2 The Update Lifting Step

The second lifting step, the update U j , serves multiple goals, leading to a combi-

nation of design conditions [8]. An important objective, especially in the context

of density estimation, is to make sure that all functions in � j (x) have zero inte-

gral. When f j (x) = "L(x)sL +
∑J−1

j=L � j (x)d j , then any processing that modifies

the detail coefficients d j , e.g., using thresholding, preserves the integral of f j (x),

which is interesting if we want to impose that
∫ ∞

−∞
f j (x)dx = 1 for an estimation or

approximation of a density function. Another important goal of the update, leading

to additional design conditions, is to control the variance propagation throughout the

transformation. This prevents the noise from a single observation from proceeding

unchanged all the way to coarse scales.

2.3 The MLPT Frame

Examples of MLPT functions are depicted in Fig. 1. It should be noted that these

functions are defined on an irregular grid of knots. Nothing of the grid irregularity

is reflected in the approximation and detail functions "L(x) and � j (x). Also, as the

detail functions form an overcomplete set, they are not basis functions in the strict

sense. Instead, the set of "L(x) and � j (x) for j = L , L + 1, . . . , J − 1 is called a

frame.

Unlike in a B-spline wavelet decomposition, observations in the knots are valid

fine scale approximation coefficients [9]. More precisely, the approximation

f J (x) =

n∑

i=1

f (xi )ϕJ,i (x),

has a convergence rate equal to that of least squares projection. This property is

important when incorporating a MLPT model into the regression formulation of the

problem of the density estimation problem in Sect. 3.

Fig. 1 Left panel: approximation function, i.e., one element of "L (x). Right panel: detail or offset

function, i.e., one element of � j (x). It holds that
∫ ∞
−∞ � j (x)dx = 0T

j
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2.4 The MLPT on Highly Irregular Grids

The regression formulation of the density estimation problem in Sect. 3 will lead to

regression on highly irregular grids, that is, grids that are far more irregular than

ordered observations from a random variable. On these grids, it is not possible to

operate at fine scales, even if these scales are a bit wider than in the equidistant case,

as discussed in Sect. 2.1. In order to cope with the irregularity, the fine scales would

be so wide that fine details are lost, and no asymptotic result would be possible.

An alternative solution, adopted here, is to work with dyadic scales, but only pro-

cessing coefficients that have sufficient nearby neighbors within the current scale.

Coefficients in sparsely sampled neighborhoods are forwarded to coarser scales. The

implementation of such a scheme requires the introduction of a smooth transition

between active and non-active areas at each scale [9].

More precisely, the reconstruction from the local polynomial prediction s j+1 =

d j + P j s j+1,e, is replaced by a weighted form

s j+1 = Q j+1

(
P j s̃ j + d j

)
+ (I j+1 − Q j+1)̃J

T
j s̃ j . (1)

The diagonal matrix Q j+1 has values between 0 and 1. The value is 0 when a coef-

ficient is not surrounded by enough neighbors to apply a regular local polynomial

prediction P j , and it gradually (not suddenly, that is) tends to one in areas with

sufficiently dense observations to apply proper polynomial prediction.

3 A Regression Model for Density Estimation

Let X be a sample of independent realization from an unknown density fX (x) on

a bounded interval, which we take, without loss of generality, to be [0, 1]. The

density function has an unknown number of singularities, i.e., points x0 ∈ [0, 1]

where limx→x0
fX (x) = ∞, as well as other discontinuities.

As in [9], we consider the spacings !Xn;i = X(n;i) − X(n;i−1), i.e., the differences

between the successive ordered observations X(n;i). Then, by the mean value theorem,

we have that there exists a value ξ n;i ∈ [X(n;i−1), X(n;i)] for which fX (ξ n;i )!Xn;i =

!Un;i , where !Un;i = U(n;i) − U(n;i−1) = FX (X(n;i)) − FX (X(n;i−1)).

Unfortunately, the value of ξ n;i cannot be used as such in the subsequent asymptotic

result, due to technical issues in the proof. Nevertheless, for a fairly free choice of

ξn;i ∈ [X(n;i−1), X(n;i)], close to ξ n;i , the theorem provides nonparametric regression

of !Xn;i on ξn;i . For details on the proof, we refer to [9].

Theorem 1 Let fX (x) be an almost everywhere twice continuously differentiable

density function on x ∈ [0, 1]. Define AM,δ ⊂ [0, 1] as the set where fX (x) ≥ δ

and f "
X (x) ≤ M, with δ, M arbitrary, strictly positive real numbers. Then there

exist values ξn;i ∈ [X(n;i−1), X(n;i)], so that with probability one, for all intervals

[X(n;i−1), X(n;i)] ⊂ AM,δ ,
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the value of fX (ξn;i )(n + 1)!Xn;i , given the covariate ξn;i , converges in distribution

to an exponential random variable, i.e.,

fX (ξn;i )(n + 1)!Xn;i |ξn;i
d

→ D ∼ exp(1), a.s.

We thus consider a model with exponentially distributed response variable Yi = (n +

1)!Xn;i |ξn;i and the vector of parameters θi = fX (ξn;i ) = 1/μi with μi = E(Yi ),

for which we propose a sparse MLPT model θ = Xβ, with X the inverse MLPT

matrix defined on the knots in ξ .

The formulation of the density estimation problem as a sparse regression model

induces no binning or any other loss of information. On the contrary, the information

on the values of X i is duplicated: a first, approximative copy can be found in the

covariate values ξn;i . A second copy defines the design matrix. The duplication pre-

vents loss of information when in subsequent steps some sort of binning is performed

on the response variables.

4 Sparse Variable Selection and Estimation in the

Exponential Regression model

For the i.i.d. exponential responses Y ∼ exp(|θ |) with θ = Xβ, and μi = 1/θi , the

score is given by ∇ log L(θ; Y) = XT (Y − μ), so that the maximum �1 regularized

log-likelihood estimator β̂ = arg maxβ log L(β) − λ�β�1 can be found by solving

the Karush–Kuhn–Tucker (KKT) conditions

XT
j (Y − μ) = λsign(β j ) if β j �= 0,∣∣∣XT

j (Y − μ)

∣∣∣ < λ if β j = 0.

Even if we knew which components of β were nonzero, the KKT would still be highly

nonlinear. This is in contrast to the additive normal model, where μ = Xβ. The esti-

mator given the selection then follows from a shrunk least squares solution. Indeed,

with I the set of selected components, we have β̂I =
(
XT

I
XI

)−1
STλ

(
XT

I
Y

)
, where

STλ(x) is the soft-threshold function. In the case of orthogonal design, i.e., when

XT
I

XI is the identity matrix, and this reduces to straightforward soft-thresholding in

the transformed domain. In the case of non-orthogonal, but still Riesz-stable, design,

straightforward thresholding is still a good approximation and a common practice, for

instance, in B-spline wavelet thresholding. For the model with exponential response,

the objective is to find appropriate values of SJ , so that β̂ = X · STλ(X̃SJ ). can be

used as an estimator. For this we need at least that

(C1) the expected value of SJ is close to θ , so that E(X̃SJ ) ≈ X̃θ = β,

(C2) the MLPT decomposition β = X̃θ is sparse,
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(C3) the MLPT decomposition of the errors, X̃(SJ − θ) has no outliers, i.e., no

heavy tailed distributions.

As θi = 1/μi = 1/E(Yi ), it may be interesting to start the search for appropriate

fine scale coefficients SJ,i from S
[0]
J,i = 1/Yi . Unfortunately, S

[0]
J,i is heavy tailed.

Experiments show that the heavy tails cannot be dealt properly by truncation of 1/Yi

in S
[1]
J,i = min(1/Yi , smax) without loss of substantial information about the position

and nature of the singular points in the density function.

Therefore, a prefilter with a binning effect is proposed; however, keeping track of

the original values of Y through the covariate values in the design X. More precisely,

let

SJ = �Dh J,0
�̃S

[0]
J . (2)

The matrices �̃ and � represent a forward and inverse, one coefficient at-a-time,

unbalanced Haar transform defined on the data adaptive knots tJ,i =
∑i−1

k=0 Yk and

tJ,0 = 0. An Unbalanced Haar transform on the vector of knots t J is defined by

s j,k =
� j+1,2ks j+1,2k + � j+1,2k+1s j+1,2k+1

� j,k

=
� j+1,2ks j+1,2k + � j+1,2k+1s j+1,2k+1

� j+1,2k + � j+1,2k+1

,

d j,k = s j+1,2k+1 − s j,k,

where �J,k = tJ,k − tJ,k = Yk and � j,k = � j+1,2k + � j+1,2k+1. In the coefficient

at-a-time version, the binning operation � j+1,2k + � j+1,2k+1 takes place on a single

pair � j+1,k and � j+1,k+1, chosen so that � j,k = � j+1,k + � j+1,k+1 is as small as

possible. Finally, the diagonal matrix Dh J,0
in (2), replaces all details d j,k by zero

for which the scale � j,k is smaller than a minimum width h J . The overall effect of

(2) is that small values in Y are recursively added to their neighbors until all binned

values are larger than h J,0. For values of h J,0 sufficiently large, it can be analyzed

that the coefficients of SJ are close to being normally distributed with expected

value asymptotically equal to θ and variance asymptotically equal to θ/h J,0 [9].

Unfortunately, a large value of h J,0 also introduces binning bias. In order to reduce

this bias and to let h J,0 be sufficiently large, the choice of h J,0 is combined with a

limit on the number of observations in one bin [9].

5 Fine-Tuning the Selection Threshold

The estimator β̂ = X · STλ(X̃SJ ). applies a threshold on the MLPT of SJ . The

input SJ is correlated and heteroscedastic, while the transform is not orthogonal.

For all these reasons, the errors on X̃SJ are correlated and heteroscedastic. In an

additive normal model where variance and mean are two separate parameters, the

threshold would be taken proportional to the standard deviation. In the context of the

exponential model with approximate variance function var(SJ,i ) = E(SJ,i )/h J,0,

coefficients with large variances tend to carry more information, i.e., they have a
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larger expected value as well. As a result, there is no argument for a threshold linearly

depending on the local standard deviation. This paper adopts a single threshold for

all coefficients to begin with. Current research also investigates the use of block

thresholding methods.

The threshold or any other selection parameter can be finetuned by optimiza-

tion of the estimated distance between the data generating process and the model

under consideration. The estimation of that distance leads to an information criterion.

This paper works with an Akaike’s Information Criterion for the estimation of the

Kullback–Leibler distance. As data generating process, we consider the (asymptotic)

independent exponential model for the spacings, and not the asymptotic additive, het-

eroscedastic normal model for SJ . This choice is motivated by the fact that a model

for SJ is complicated as it should account for the correlation structure, while the

spacings are nearly independent. Moreover, fine-tuning w.r.t. the spacings is not

affected by the loss of information in the computation of SJ .

The resulting information criterion is given by the sum of two terms, AIC(̂θ) =

�̂(̂θ) − ν̂(̂θ). The first term is the empirical log-likelihood

�̂(̂θ) =

n∑

i=1

[
log(θ̂i ) − θ̂i Yi

]
,

while the second term is an estimator of the degrees of freedom

ν(̂θ) = E
[
θ̂

T
(μ − Y)

]
.

The degrees of freedom are also the bias of �̂(̂θ) as estimator of the expected log-

likelihood has taken over the unknown data generating process. The expected log-

likelihood in its turn is the part of the Kullback–Leibler distance that depends on the

estimated parameter vector.

An estimator of the degrees of freedom is developed in [9],

leading to the expression

ν̂(̂θ) = Tr
[
DλX̃ϒ

−2
Q̃ϒ�̂−1X

]
,

where �̂−1 is a diagonal matrix with slightly shifted versions of the observed values,

i.e., �̂−1
i i = Yi−1. The matrix ϒ is a diagonal matrix with the observations, i.e.,

ϒi i = Yi . The diagonal matrix Dλ has zeros and ones on the diagonal. The ones

correspond to nonzero coefficients in the thresholded MLPT decomposition.
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6 Illustration and Concluding Discussion

Ongoing research concentrates on motivating choices for the tuning parameters in the

proposed data transformation and processing. In particular, the data transformation

depends on the choice of the finest resolution bandwidth h J , the degree of the local

polynomial in the prediction step, the precise design of the updated step. Also, the

Unbalanced Haar prefilter is parametrized by a fine scale h J,0. Processing parameters

include the threshold value, which is selected using the AIC approach of Sect. 5, and

the sizes of the blocks in the block threshold procedure.

For the result in Fig. 2, the MLPT adopted a local linear prediction step. In the

wavelet literature, the transform is said to have two dual vanishing moments, i.e.,

p̃ = 2, meaning that all detail coefficients of a linear function are zero. The MLPT for

the figure also includes an update step designed for two primal vanishing moments,
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Fig. 2 Panel (a): power law and its estimation from n = 2000 observations using the MLPT pro-

cedure of this paper. Panel (b): estimation from the same observations using a probit transform

centered around the location of the singularity, thus hinges on the knowledge of this location.

Panel (c): estimation using the finest possible Haar wavelet transform. This transform involves full

processing of many resolution levels. Panel (d): estimation using straightforward uniscale kernel

density estimation
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meaning that
∫ ∞

−∞
� j (x)xr dx = 0 for r = 0 and r = 1. Block sizes were set to one,

i.e., classical thresholding was used.

The density function in the simulation study is the power law fX (x) = K |x −

x0|
k on the finite interval [0, 1], with a singular point x0 = 1/2 in this simulation

study and k = −1/2. The sample size is n = 2000. The MLPT approach, unaware

of the presence and location of x0, is compared with a kernel density estimation

applied to a probit transform of the observations, Y = �−1(X − x0) for X > x0

and Y = �−1(X − x0 + 1) for X < x0. This transform uses the information on the

singularity’s location, in order to create a random variable whose density has no end

points of a finite interval, nor any singular points inside. In this experiment, the MLPT

outperforms the Probit transformed kernel estimation, both in the reconstruction of

the singular peak and in the reduction of the oscillations next to the peak. With the

current procedure, this is not always the case. Further research concentrates on the

design making the MLPT analyses as close as possible to orthogonal projections,

using appropriate update steps. With an analysis close to orthogonal projection, the

variance propagation throughout the analysis, processing, and reconstruction can

be more easily controlled, thereby reducing spurious effects in the reconstruction.

Both MLPT and Probit transformation outperform a straightforward uniscale kernel

density estimation. This estimation, illustrated the Fig. 2d, oversmooths the sharp

peaks of the true density.

References

1. Burt, P.J., Adelson, E.H.: Laplacian pyramid as a compact image code. IEEE Trans. Commun.

31(4), 532–540 (1983)

2. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constructive Approx-

imation 5, 49–68 (1989)

3. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Density estimation by wavelet

thresholding. The Annals of Statistics 24(2), 508–539 (1996)

4. D. L. Donoho and T.P.Y. Yu. Deslauriers-Dubuc: ten years after. In S. Dubuc and G. Deslauriers,

editors, Spline Functions and the Theory of Wavelets, CRM Proceedings and Lecture Notes.

American Mathematical Society, 1999

5. Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Chapman and Hall,

London (1996)

6. Hall, P., Patil, P.: Formulae for mean integrated squared error of nonlinear wavelet-based density

estimators. The Annals of Statistics 23(3), 905–928 (1995)

7. Jansen, M.: Multiscale local polynomial smoothing in a lifted pyramid for non-equispaced

data. IEEE Transactions on Signal Processing 61(3), 545–555 (2013)

8. M. Jansen. Non-equispaced B-spline wavelets. International Journal of Wavelets, Multireso-

lution and Information Processing, 14(6), 2016

9. Jansen, M.: Density estimation using multiscale local polynomial transforms. Technical report,

Department of Mathematics, ULB (2019)

10. Jansen, M., Amghar, M.: Multiscale local polynomial decompositions using bandwidths as

scales. Statistics and Computing 27(5), 1383–1399 (2017)



260 M. Jansen

11. Jansen, M., Nason, G., Silverman, B.: Multiscale methods for data on graphs and irregular

multidimensional situations. Journal of the Royal Statistical Society, Series B 71(1), 97–125

(2009)

12. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math.

Anal. 29(2), 511–546 (1998)



On Sensitivity of Metalearning: An
Illustrative Study for Robust Regression

Jan Kalina

Abstract Metalearning is becoming an increasingly important methodology for
extracting knowledge from a database of available training datasets to a new (inde-
pendent) dataset. While the concept of metalearning is becoming popular in statistical
learning and readily available also for the analysis of economic datasets, not much
attention has been paid to its limitations and disadvantages. To the best of our knowl-
edge, the current paper represents the first illustration of metalearning sensitivity
to data contamination by noise or outliers. For this purpose, we use various linear
regression estimators (including highly robust ones) over a set of 24 datasets with
economic background and perform a metalearning study over them as well as over the
same datasets after an artificial contamination. The results reveal the whole process
to remain rather sensitive to data contamination and some of the standard classifiers
turn out to yield unreliable results. Nevertheless, using a robust classification method
does not bring a desirable improvement. Thus, we conclude that the task of robus-
tification of the whole metalearning methodology is more complex and deserves a
systematic future research.

Keywords Linear regression · Automatic method selection · Contamination ·
Sensitivity · Robustness

1 Metalearning

Metalearning can be characterized as a methodology for extracting knowledge from
a database of training datasets with the ability to apply the knowledge to new inde-
pendent (validation) datasets. It can be perceived as learning to learn or learning of
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metaknowledge, which is defined as knowledge about whole datasets which serve as a
prior knowledge rather than measured values contained in these datasets. Metalearn-
ing represents an approach to machine learning (i.e., automated statistical learning)
popular in recent computer science and data mining [13, 15]. It also starts to penetrate
to economic applications [1], not limited to big data analysis [14].

While the most renowned works on metalearning principles [4, 12] appraise met-
alearning and list its appealing properties, a truly critical evaluation of metalearning
seems to be still missing. It is mainly the fully automatic characteristic of the met-
alearning process which hinders a profound interpretation of the results, which would
standard in the statistical community but not in computer science usually exploiting
heuristics and black-box procedures. Other important issues include stability and
robustness, while these two concepts do not actually coincide. The instability of
metalearning, manifested, e.g., as different recommendations for two rather similar
datasets, has been reported with a recommendation for using ensemble methods [4].
However, we are not aware of any discussion of the presence of noise and outlying
measurements (outliers) in the data and their influence of the metalearning process,
nor we have found any attempts to robustify the metalearning against outliers.

In the current paper, we illustrate the sensitivity of metalearning as its weak point
deserving further attention of researchers. The novelty of the current paper is also
considering the promising (but not much known) least weighted squares estimator
[10, 17] and also a robust version of linear discriminant analysis.

Section 2 of this paper describes principles of our study of metalearning sensitivity,
which is performed on 24 real datasets as well as on their artificially contaminated
versions by noise or outliers. Section 3 presents results of primary learning as well
as metalearning and, finally, Section 4 presents a discussion and conclusions.

2 Description of the Study

We proposed and performed a metalearning study with the aim to compare various
linear regression estimators and to find a classification rule allowing to predict the
best one for a given (new) dataset. It remains namely unknown (and too difficult to
study theoretically) which of the methods should be used for a particular dataset or
under particular conditions or which are the most relevant criteria for determining
the most suitable method.

The primary learning task is to fit various linear regression estimators for each
of the given datasets. The best estimator is found using a specified characteristic of
goodness of fit. The subsequent metalearning part has the aim to learn a classification
rule allowing to predict the best regression method for a new dataset not present in
the training database. Its input data are only selected features of individual datasets
together with the result of the primary learning, which typically has the form of the
index of the best method for each of the training datasets.

In general, the user of metalearning must specify a list of essential components
(parameters), which have been systematically described by [12] and denoted as P,
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A, F, Y, and S, where some (P, A, Y) are used in the task of primary learning
(base learning) and the remaining ones (F, S) in the subsequent metalearning. Their
meaning and our specific choices will be now described.

2.1 Primary Learning

(P) Datasets. Metalearning should always use real datasets because any random
generation of data is performed in a too specific (i.e., non-representative, biased)
way. However, we are not aware of any public repository of metadata (at least
for a regression task). Therefore, we use 24 datasets listed in Table 1, which are
publicly available datasets investigated primarily with economic motivation. In
addition, we also modified the datasets by artificially added contamination as
described below.

(A) Algorithms. In each of the datasets, we consider the standard linear regression
model

Yi = β0 + β1 X i1 + · · · + βp X i p + ei , i = 1, . . . , n, (1)

where there are p regressors and n observations. We use four different estimators
of the parameters:

– Least squares,
– Hampels’s M-estimator [6],
– Least trimmed squares (LTS), investigated, e.g., in [16] defined as

arg minb∈Rp+1

h∑

i=1

u2
(i)(b), (2)

where ui (b) is a residual corresponding to the i-th observation for a given
b ∈ R

p+1 and u2
(1)(b) ≤ · · · ≤ u2

(n)(b) are values arranged in ascending order.

We use the probably most common choice h = " 3n
4 ", where "x" denotes the

integer part of x .
– Least weighted squares (LWS) of [17] with linearly decreasing weights wi =

1 − (i − 1)/n for i = 1, . . . , n of [10] is defined using the same notation as

arg minb∈Rp+1

n∑

i=1

wi u
2
(i)(b). (3)

(Y) Prediction measure. We use the prediction mean square error (PMSE) in the
form

∑n
i=1(Yi − Ŷi )

2/n, where Ŷi denotes the fitted value of the i-th observation
(in each of the datasets).
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Except for the least squares, the regression estimators presented under (A) were
proposed as its robust alternatives [6]. Robust statistics, which gradually becomes
important for the analysis of economic data [2, 8], distinguishes between local and
global robustness (resistance, insensitivity). From the set of four estimators described
above, only Hampel’s M-estimator and the LWS are robust in the local sense and
only the LTS estimator is highly robust in the global sense; we may refer to [6, 17]
for a deeper explanation of the concepts, which are to a large extent contradictory.

We considered two types of data contamination. These can be characterized as
a local (i.e., aiming at local sensitivity) and a global (corresponding to global sen-
sitivity) contamination of regressors of individual datasets. For both cases, we will
need the following notation. Each measured value will be denoted as X i jk , where
i corresponds to a particular dataset, j to an observation within this dataset, and
k to a particular variable. The idea is to replace X i jk by X i jk + εi jk , where ε’s are
(mutually) independent random variables independent on the given data and εi jk is
generated from normal distribution N(0, sσ̂ 2

i jk), where σ̂ 2
i jk is an estimated variance

of the j-th variable within the i-th dataset and s is a chosen constant.

1. Local contamination. Each observation in each dataset is contaminated by a slight
noise, i.e., with a small s.

2. Global contamination. A small percentage of observations is contaminated by
severe noise, while the remaining ones are retained. Particularly, c × 100 % of
the values are randomly chosen for each dataset across all relevant features for a
given (and rather large) s.

In the primary learning task, we find the best method for each dataset. This is
done using PMSE in a leave-one-out cross-validation, which represents a standard
attempt for independent validation. Then, the output of the primary learning is the
knowledge (i.e., factor variable, index) of the best method for each of the datasets.

2.2 Metalearning

The subsequent metalearning task exploits nine features for each dataset and the
factor variable of Table 1 denoting the index of the best method. Parameters of the
metalearning will be now described again using the P–A–F–Y–S notation [12].

(F) Features of datasets. We select nine features, which can be (avoiding details)
for each of the datasets characterized as

1. The number of observations n,
2. The number of regressors p (excluding the intercept),
3. The ratio n/p,
4. Normality of residuals of the least squares evaluated as the p-value of the

Shapiro–Wilk test for the least squares,
5. Skewness of residuals of the least squares,
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6. Kurtosis of residuals of the least squares,
7. Coefficient of determination R2 for the least squares,
8. Percentage of outliers estimated by the LTS,
9. Heteroscedasticity of residuals evaluated as the p-value of the Breusch–Pagan

test for the least squares.

(S) Metalearning method. We exploit the following classification methods:

– Support vector machines (SVM),
– Linear discriminant analysis (LDA),
– MWCD-LDA with linearly decreasing weights, i.e., a robust version of LDA

defined in [9], where it was proposed as a linear classification rule based on
the minimum weighted covariance determinant (MWCD) estimator of [8, 11],

– k-nearest neighbors for various values of k.

We note that three features, namely n, p, and their ratio, are retained as fixed even
if the data are contaminated, while each of the remaining ones is influenced (less or
more) by data contamination.

3 Results

3.1 Primary Learning

Table 1 contains together with the list of datasets also the estimated values of σ 2,
which were used for obtaining the contaminated datasets as described in Section 2.1.
Further, Table 1 shows the best method for raw datasets. Particularly, the best regres-
sion method is shown in the table for each of the datasets. Finally, the results are
given for datasets modified by each of the two different types of contamination (for
different parameters).

Global contamination seems to influence the results of primary learning in a
stronger way compared to local contamination. A more detailed analysis, however,
reveals that individual features are influenced remarkably in both situations and we
can perceive both types of contamination (with selected parameters) to be compa-
rable in terms of severity. We can also say that under global contamination, robust
estimators become more commonly the best method with an increasing c, while no
clear tendency can be observed for the local contamination.

We also inspected features those are mostly influenced by the contamination.
These are features 4 and 9 for the local contamination and features 7 and 9 for the
global one. These (and mainly normality and heteroscedasticity of residuals) are,
however, crucial ones for the choice of the appropriate regression estimator. Thus,
the whole primary learning is influenced strongly by the contamination. While three
features remain to be the same under every contamination, these are not so important
for the resulting classification rule.
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Table 1 Results of primary learning for 24 investigated datasets (raw or contaminated). The best
method was found according to the smallest PMSE in a leave-one-study cross-validation study.
Columns of the table with the best method serve as factors (responses) for the subsequent classifica-
tion task of metalearning. Regression methods include (1) least squares, (2) Hampel’s M-estimator,
(3) LTS with h = "0.75n", and (4) LWS with linearly decreasing weights

Dataset σ̂ 2 Raw
data

Best method

Local contam. Global contam.

with s = with s = 9 and c =

0.1 0.2 0.3 0.06 0.12 0.18

1 Aircraft 57.8 3 3 3 3 4 3 3

2 Ammonia 8.9 4 4 3 3 4 4 4

3 Auto MPG 17.9 3 3 3 3 3 4 3

4 Cirrhosis 103 1 2 3 3 1 3 3

5 Coleman 3.2 1 1 1 1 1 1 1

6 Delivery 9.7 2 3 3 2 3 3 3

7 Education 1537 2 2 2 3 2 4 3

8 Electricity 0.85 2 2 2 2 2 2 4

9 Employment 55463 3 4 3 3 3 3 3

10 Furniture 1 0.0019 2 2 2 2 2 3 2

11 Furniture 2 0.056 3 3 3 4 3 3 3

12 GDP growth 9467 2 2 2 2 2 2 3

13 Houseprices 14.6 4 4 3 3 3 3 3

14 Housing 54.3 2 2 2 3 2 4 3

15 Imports 4.2 3 3 3 3 3 3 3

16 Kootenay 22.0 1 1 3 2 1 1 2

17 Livestock 29.4 3 3 3 3 3 4 4

18 Machine 3495 3 3 3 3 3 3 3

19 Murders 17.7 4 4 4 4 4 4 4

20 NOx 0.30 2 3 3 3 4 3 3

21 Octane 0.19 2 2 2 2 2 2 2

22 Pasture 75.4 4 4 4 4 4 4 3

23 Pension 0.24 3 3 3 3 3 3 3

24 Petrol 4022 2 3 3 3 2 3 3

3.2 Metalearning

The results of metalearning are overviewed in Table 2, namely as classification per-
formances of the classification rules learned withing the metalearning tasks. There,
the performance is evaluated as a classification correctness in a leave-one-out cross-
validation study. Comparing both types of contamination, the classification perfor-
mance remains to be low.
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Table 2 Results of metalearning for 24 investigated datasets (raw or contaminated) evaluated as
classification correctness in a leave-one-out cross-validation study. The classification rule for the
best regression estimator is learned not over the original datasets, but using 9 features of each dataset
together with the indicator of the best method obtained from Table 1. The best result in each column
is shown in boldface

Classification
method

Best method

Raw data Local contam. with Global contam. (s = 9)

s = 0.1 s = 0.2 s = 0.3 c = 0.06 c = 0.12 c = 0.18

SVM (linear) 0.38 0.38 0.38 0.38 0.38 0.38 0.38

LDA 0.29 0.29 0.29 0.25 0.17 0.29 0.38

MWCD-LDA 0.33 0.33 0.33 0.33 0.29 0.33 0.33

k-NN (k=1) 0.29 0.25 0.21 0.25 0.29 0.33 0.29

k-NN (k=3) 0.29 0.29 0.25 0.25 0.33 0.29 0.25

k-NN (k=5) 0.33 0.33 0.33 0.29 0.38 0.33 0.38

For the local contamination, SVM turns out to be the best method. For most meth-
ods, we can observe only small changes (typically a decrease of performance) with
an increasing c. A closer analysis exceeding the scope of this paper shows instability
again. MWCD-LDA seems robust, but is not very reliable in the classification task,
perhaps because MWCD-LDA is reliable in classification tasks to two groups and
loses much efficiency with an increasing number of groups. The k-nearest neighbors
classifiers suffer from the most dramatic loss of performance, although the method
is very common (perhaps the most common) in the metalearning task.

For the global contamination, SVM is again the winner, although its performance
is reached also by other methods. With an increasing s, the changes in the best method
are quite unpredictable, unstable. SVM seems very robust. It may be a preferable
method, although not much used in the metalearning context.

Let us also point out at the increasing performance with an increasing global
contamination, e.g., for the standard LDA, which is known as very non-robust (see
e.g., [7]). Its performance is improving with an increasing contamination, but this
advantage is only illusionary due to excessive effect of outliers.

4 Conclusions

To the best of our knowledge, none of the available metalearning studies has focused
on the influence of noise or outliers on the results. Thus, such a unique sensitivity
study, which reveals the vulnerability of metalearning, is presented in the current
paper. The metalearning task itself, which has the aim to predict the most suitable
linear regression estimator for new datasets, is accompanied by a study over datasets
with economic background contaminated in two different possible ways.
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The SVM is the best method for raw data as well as for any contamination. Its
classification performance, although rather low, is not deteriorated by the contamina-
tions under consideration. This cannot be, however, said about most of the remaining
classifiers.

The local contamination has the idea to slightly modify each observed value of
all training datasets. It is true that the best method shown in Table 1 is retained to a
large extent with a similar performance to that obtained for raw (non-contaminated)
datasets. However, our further analysis shows individual features to be rather remark-
ably influenced by the contamination, which is consequently manifested on the met-
alearning results, e.g., on very different sets of wrongly classified datasets.

The global contamination has another idea to greatly modify a small percentage
of selected observed values. Already a smaller percentage of severe outliers has a
remarkable influence on the results of metalearning. The results for some of the
regression estimators change dramatically in an unpredictable way, which is not
monotonous with increasing contamination. The classification rules of non-robust
classifiers (such as LDA) are then formally successful, while a more detailed analysis
reveals the success to be putting too much influence on outliers, i.e., more information
is drawn from errors and randomness than from the signal whose influence on the
resulting classification rule is decreased. This idea is supported by the fact that it
happens exclusively for a larger percentage of severe outliers that LDA outperforms
MWCD-LDA. The classification rule is arbitrary (i.e., useless) determined primarily
by outliers.

Thus, the study reveals a weak point of metalearning and motivates a possible
future critical evaluation of the metalearning process. Let us now try to list all possible
factors which contribute to the sensitivity of metalearning:

• The choice of datasets. We use rather a wide spectrum of datasets with different
characteristics from different research tasks, while metalearning is perhaps more
suitable only for more homogeneous data (e.g., with analogous dimensionality) or
for data from a specific narrow domain.

• Difficult (and unreliable) extrapolation for a very different (outlying) dataset.
• The prediction measure. In our case, PMSE is very vulnerable to outliers.
• The number of algorithms/methods. If their number is larger than very small,

we have the experience that learning the classification rule becomes much more
complicated and less reliable.

• The classification methods for the metalearning task depend on their own param-
eters or selected approach, which is another source of uncertainty and thus insta-
bility.

• Solving the metalearning method (S) by classification tools increases the vul-
nerability as well because only the best regression estimator is chosen ignoring
information about the performance of other estimators.

• The process of metalearning itself is too automatic so the influence of outliers
is propagated throughout the process and the user cannot manually perform an
outlier detection or deletion.
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Let us also particularly discuss the performance of robust methods withing the
metalearning study.

• The LWS estimator turns out to be the best method for some datasets, which is
a novel argument in favor of the method. This is interesting because the LWS is
using simplistic weights, which could be actually further improved.

• The study presents also a unique comparison of MWCD-LDA with standard LDA.
While the robust approach does not improve the performance compared to LDA, its
results are not misleading the presence of contamination. MWCD-LDA together
with the SVM classifier is the only method with this property, which brings a novel
argument in favor of the MWCD-LDA.

Finally, there remain some topics for future research, which can be listed from
the simplest to the most difficult (and most important):

• The study can be extended by considering also noise added to the response or
additional features, e.g., a robust test of heteroscedasticity.

• A detailed interpretation of the classification rules of metalearning; especially
we expect to find arguments that the effect of outliers, although it improves the
classification performance, is detrimental.

• Ensemble classification can be used for the metalearning task, which could hope-
fully improve stability and robustness. In fact, robustness in the task of statistical
learning was introduced by Breiman [5], whose ideas have not been exploited in
the metalearning context yet.

• We are interested in extending metalearning tasks to extracting association rules
from data in the spirit of [3].

• The whole metalearning methodology should be robustified, which remains a more
complex task than just a robustification of each of its individual steps.
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Function-Parametric Empirical
Processes, Projections
and Unitary Operators

Estáte Khmaladze

Abstract We describe another approach to the theory of distribution free testing.

The approach uses geometric similarity within various forms of empirical processes:

whenever there is an empirical object (like the empirical distribution function) and

theoretical parametric model (like a parametric model for distribution function) and a

normalised difference of the two, then substitution of estimated values of the param-

eters leads to projection of this difference. Then one can bring some system in the

multitude of these projections. We use unitary operators to describe classes of sta-

tistical problems, where one can “rotate” one projection into another, thus creating

classes of equivalent problems. As a result, behaviour of various test statistics could

be investigated in only one “typical” problem from each class. Thus, the approach

promises economy in analytic and numerical work. We also hope to show that the

unitary operators involved in “rotations” are of simple and easily implementable

form.

Keywords Distribution free testing · Discrete distributions · Uniform empirical

process in [0, 1]d · Linear regression · Equivalence of testing problems

1 Basic Setup

Consider a function parametric empirical process based on a sample (Xi)
n
i=1 of F-i.i.d.

random variables,

vn,F (φ) = 1√
n

n∑

i=1

[
φ(Xi) −

∫
φ(x)dF(x)

]
, φ ∈ L2(F),

or its point parametric version, i.e. with φx(Xi) = I(Xi ≤ x),
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vn,F (x) = 1√
n

n∑

i=1

[I(Xi ≤ x) − F(x)] , x ∈ R
d .

The following problem of weak convergence: “describe the class Ψ ⊂ L2(F),

on which {vn,F (φ), φ ∈ Ψ } converges to F-Brownian bridge {vF(φ), φ ∈ Ψ }” is an

extremely important problem, with broad and interesting mathematical theory behind

it, see, for example [19]. However, in this short overview, we want to focus on

somewhat different direction concerning function parametric empirical processes.

The question we ask is “for K a linear operator on L2(F), find what new processes

can be obtained as

K∗vn,F (φ) = vn,F (Kφ), (1)

and why can they be interesting”. “Linear operator”, however, seems too general for

specific results, and everywhere below we consider only unitary operators; for the

general theory of unitary operators we refer, e.g., to [3].

It is not immediately obvious that the question is sensible. Indeed, the covariance

operators of the processes vn,F and K∗vn,F are unitary equivalent, which, with some

freedom of speech, is the same as to say they are equal, and therefore the second order

properties of the two processes will be the same. Why such thing will be useful?

Nevertheless, we will see that the construction can be applied to various forms of

empirical processes in different parts of statistics and lead to a general approach to

distribution free testing theory.

Sections 2–4 below contain a review, much shorter, and hopefully clearer, of some

of the results already published. Section 5 contains short presentation of new material

described in [10]. Farther developments, for example on point processes, also new,

will appear in [11].

2 Discrete Distributions

We start with the situation, which will allow us to explain the main point of this

approach in a very simple way. Consider a finite-dimensional discrete distribution

p = (p(k))m
k=1, p(k) > 0,

m∑

k=1

p(k) = 1, m < ∞,

and let νkn denote the frequency of the outcome k in n independent trials. Further,

consider the vector of “components” of the χ2-test statistic:

Yn = (Ykn)
m
k=1, Ykn = νkn − np(k)√

np(k)
,
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so that the χ2-statistic itself is

�Yn, Yn� =
m∑

k=1

Y 2
kn ∼ χ2

m−1, n → ∞.

Thus, asymptotic distribution of χ2-test statistic is free from p.

At the same time, analogues of Kolmogorov-Smirnov statistics, such as

max
1≤j≤m

j∑

k=1

Ykn

will have a limit distribution very much dependent on p. As a matter of fact, it is only

the χ2-statistic, if we do not count asymptotically equivalent forms of it, which leads

to reasonable goodness of fit test and is, at the same time, asymptotically distribution

free. This situation is in contrast with what we have for continuous distributions,

where, from the very beginning, we have had a class of distribution free goodness of

fit test statistics, see, e.g. [1, 13, 17].

However, the choice of asymptotically distribution free statistics in the discrete

case can be broadened to its full extent.

With
√

p = (
√

p(k))m
k=1, we know that

Yn
D−→ Y , Y = X − �X ,

√
p�√p, (2)

where X = (Xk)
m
k=1 is the vector with independent coordinates with standard normal

distribution each. The vector
√

p is vector of unite length. Now let
√

r be another

vector of unit length, and put

Zn = Yn − �Yn,
√

r� 1

1 − �√p,
√

r�
(
√

r − √
p). (3)

The transformation of Yn into Zn is one-to-one: it is unitary transformation which

maps
√

p to
√

r and vice versa. That is why, being applied to the projection Y , it

maps it into projection Z .

Theorem 1 Khmaladze [7] If Yn
D−→ Y , then

Zn
D−→ Z, Z = X − �X ,

√
r�

√
r. (4)

Although the proof of the theorem is immediate, it lies at the heart of very wide

possibilities of extension, some of which we demonstrate below.

For discrete distribution it implies the following: the transformation (2) of X to Y

is a projection; it projects X parallel to the vector
√

p. If we had a different discrete

distribution, say, q = (q(k))m
k=1, then the vector, parallel to which we project, will be
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different. Theorem 1 above allows us to choose any vector of unit length, and switch

from projection Y to projection Z.

In more detail, consider the class of discrete distributions of the same dimension

m. The vector of components of χ2-statistic corresponding to each of them, say, to

distribution p, can be thus mapped to the vector with the same limit distribution as the

vector of components of χ2-statistic for any other distribution, say, for distribution

q. Or any of them can be mapped into vector Zn corresponding to some, fixed,

distribution, say, to uniform distribution on m disjoint events. Therefore, statistics

for testing p which are based on the transformed vector Zn will have limit distribution

completely free from this p. At the same time, since the correspondence between Yn

and Zn is one-to-one, the “statistical information”, whichever way we measure it, in

both vectors is the same.

It is shown in [7] that the approach can be used in testing hypothesis about para-

metric families of discrete distributions. It seems to work for quite high dimensions

of the parameter. In [15] it was shown how to apply this method to test hypothesis

in contingency tables, when parameters can be of dimension 20–25, and the sample

size not too large, about n = 400 − 500.

3 Uniform Empirical Process on [0, 1]d

Let us use notation vF for F-Brownian bridge, and wF for F-Brownian motion, and

consider F , which lives on [0, 1]d and has positive density. Then, see, e.g., [4, 16],

vF(x) = wF(x) − F(x)wF (1),

where 1 denotes the vector with all d coordinates equal 1. This process can not be

normalized to something standard:

dvF (x)√
f (x)

= dwF (x)√
f (x)

− dF(x)√
f (x)

wF (1),

and although dwF (x)/
√

f (x) behaves in distribution as differential of the standard

Brownian motion, this is not enough to standardize dvF (x) as there is another differ-

ential on the right hand side, dependent on F . However, with use of one extra Winer

stochastic integral, the normalisation becomes possible.

Theorem 2 Khmaladze [9] (i) The process with differential

u(dx) = vF(dx)√
f (x)

−
∫

[0,1]d

vF (dy)√
f (y)

(1 −
√

f (x))

1 −
∫
[0,1]d

√
f (y)dy

dx

is the standard Brownian bridge on [0, 1]d .
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(ii) If G � F and l(x) =
√

dG(x)/dF(x), then the process with differential

vG(dx) = l(x)vF(dx) −
∫

[0,1]d

l(y)vF(dy)
l2(x) − l(x)

1 −
∫
[0,1]d l(y)dF(y)

dx

is G-Brownian bridge.

Being applied to empirical process vn,F based on a sample form distribution F

the transformation in part (i) will transform it into a process, un, with the same limit

distribution as the uniform empirical process, that is the one, based on uniform ran-

dom variables on [0, 1]d , although in the transformation there are no other random

variables, but those with distribution F. Transformation of vn,F as in (ii) will map it

into a process vn,G , with the same limit distribution as the empirical process based

on sample from the distribution G.

In order to show how this theorem follows from the general construction of (1)

consider the subspace of functions L(G) = {³ ∈ L2(G) : �³, 1�G = 0}, where 1

stands for function identically equal to number 1. This is the subspace on which the

process vG “lives”: Brownian bridge vG is Brownian motion wG restricted to L(G),

see, e.g., [8]; for Gaussian measures on Hilbert spaces see also [14]. Similarly,

the process vF lives on the subspace L(F) = {³ ∈ L2(F) : �³, 1�F = 0}. If G ∼
F, the operator of multiplication by l, i.e. l³(x) = l(x)³(x) will map L2(G) into

L2(F) isometrically, so that the function 1 (from L2(G)) is mapped into function l,

while the subspace L(G) is mapped into the subspace of functions, orthogonal to l.

What remains is to rotate this latter subspace into L(F), the subspace of functions,

orthogonal to 1 (from L2(F)). For this we use appropriate unitary operator in L2(F):

K´ = ´ − (l − 1)
1

�l, l − 1�F

�´, l − 1�F .

If ´ ⊥ l, 1, then K´ = ´, while Kl = 1, and K1 = l. Therefore, as a result,

vG(³) = vF(Kl³),

and this is equivalent to statement (ii).

Shifting orthogonality constrain. We know that a Brownian bridge vF is a Brownian

motion, subjected to orthogonality condition vF(1) = 0, or, equivalently, restricted

to the subspace L(F). We can, however, use unitary operator to “move” this orthogo-

nality condition “further away”, which may lead to unexpected results. We illustrate

the fact in Theorem 3 although we did not investigate statistical implications of these

possibilities enough.

Choose ηA to be a density on “small” set A ⊂ [0, 1]d . For ψ ∈ L(U ), choose

KAψ = ψ√
f

− (

√
ηA

f
− 1)

1

1 − �√ηA,
√

f �
�√ηA −

√
f , ψ� ∈ L(F).
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Consider

b(ψ) = vF(KAψ).

In the statement below, we can use ψ equal indicator function of [0, x] and thus

speak about differential of b(ψ).

Theorem 3 The process with differential

b(dx) = vF (dx)√
f (x)

−
∫

y∈A

√
ηA(y)

f (y)
vF(dy)

(
√

ηA(x) −
√

f (x))

1 −
∫

y∈A

√
ηA(y)f (y)dy

dx

is a standard Brownian motion on [0, 1]d \ A, while

∫

y∈A

ηA(y)b(dy) = 0.

On the interval [0, 1], A = [0,Δ] and uniform F it takes the form

b(dt) = u(dt) − u(Δ)

Δ
dt, t ≤ Δ,

b(dt) = u(dt) + u(Δ)√
Δ − Δ

dt, t > Δ,

and represents b(x) as Brownian bridge on [0,Δ] and Brownian motion on [Δ, 1].
This is very different from the usual form

w(dt) = u(dt) + u(t)

1 − t
dt,

with w also a Brownian motion.

4 Parametric Hypotheses in R
d

Let F = {Fθ (x), x ∈ R
d , θ ∈ Θ ⊆ R

m} be a parametric family of distributions in R
d ,

which depend on m-dimensional parameter θ . Suppose we need to test hypothesis

that an unknown distribution F belongs to this family. Let vn,F (x, θ) = √
n[Fn(x) −

Fθ (x)] be empirical process where we have to substitute an estimation for θ based

on the sample, and let θ̂ be the MLE for θ .

The first order Taylor expansion in θ of the parametric empirical process vn,F (x, θ̂ )

produces

vn,F (x, θ̂ ) = vn(x, θ) − ∂

∂θ
Fθ (x)

√
n(θ̂ − θ) + Rn(x),
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where, for a regular family F, the residual Rn is asymptotically negligible [2, 4, 16].

With notation Γθ for Fisher information matrix, and notation

a(x) = Γ
−1/2
θ

ḟθ

fθ
(x)

for the orthonormal version of the score function, the function parametric version of

vn,F can be written as

v̂n,F (φ) = vn,F (φ, θ̂) = vn,F (φ) − �φ, a�T vn,F (a) + Rn(φ).

As a result, one can see that the limit in distribution for v̂n,F is the process

v̂F (φ) = vF(φ) − �φ, a�T vF(a) = vF (φ − �φ, a�T a). (5)

It is easy to verify that v̂F is projection of vF . This fact was shown in more general

context in [5], and was subsequently, to some surprise, often overlooked. It explains,

however, interesting phenomena in asymptotic behaviour of empirical processes

with estimated parameters—for example, that even if one knows the value of true

parameter, it is usually better to substitute an estimator, because the power of a test

based on v̂n,F will be higher than of the same tests based on vn,F .

The projection structure of the right hand side in (5) can therefore be established for

any regular parametric family, and, generally, at any particular value of the parameter

within the same family. Therefore, we end up with lots of projections; distribution

of a tests statistic based on one of them will differ from that based on another one.

There seems to be endless need for numerical approximations of these distributions.

However, there is a way to glue wide classes of them all in one single problem, as

explained below.

From one parametric hypotheses to another. With F = Fθ , a = aθ and similarly

G = Gϑ , b = bϑ , consider

L(F, a) = {φ ∈ L2(F) : �φ, 1�F = �φ, a�F = 0},

L(G, b) = {φ ∈ L2(G) : �φ, 1�G = �φ, b�G = 0}

Similarly to what we said about vF and vG in Sect. 3, the limiting processes v̂F and

v̂G live on these subspaces, respectively. On these subspaces, their distribution is the

same as corresponding Brownian motions. Therefore, in order to transform v̂F into

v̂G one needs unitary operator, which maps one subspace into another:

Ub,a : Lb(G) −→ La(F),
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and, consequently,

v̂G(ψ) = v̂F(Ub,aψ).

Consider again Hellinger function

l(x) =
√

dGϑ (x)

dFθ (x)
,

and denote a0(x) = 1 and b0(x) = 1, the same function but considered as elements of

different spaces. Then the operator K of the previous section, which we now denote

Ka0,lb0
will rotate the function lb0 into a0, but it will not necessarily rotate lb1 into a1,

but only into some l̃b1. Here a1 and b1 denote first coordinates of normalized score-

functions a and b. In general, ak and bk , k = 1, . . . , m, will denote their respective

k-th coordinates.

Since Ka0, lb0
is a unitary operator, it preserves norms and angles, and therefore

l̃b1 ⊥ a0. Now we can rotate l̃b1 further into a1 using operator Ka1, l̃b1
, and then

consider the product

Ua, b, 1(φ) = Ka0, l̃b1
Ka0, lb0

(lφ).

As a product of unitary operators, it is a unitary operator itself. It maps b0 into a0

and b1 into a1, and it will leave all functions orthogonal to a1 and l̃b1 unchanged, see

[9], Sect. 4, or [11], Sect. 3.

For parametric families with m-dimensional parameter, we use induction. Given

j ∈ {0, 1, . . . , m}, suppose we have a unitary operator Ua, b, j that maps lbi to ai for

0 ≤ i ≤ j. For example, we have constructed above Ua, b, 0 = Ka0, lb0
and Ua, b, 1 =

Ka1, l̃b1
Ka0, lb0

. Now define the function

l̃bj+1 := Ua, lb,jlbj+1,

and introduce

Ua, lb, j+1 = Kaj+1, l̃bj+1
Ua, lb. j.

Then Ua, lb, j+1 is a unitary operator that maps lbi to ai for 0 ≤ i ≤ j + 1. Continuing

in this fashion, we see that Ua, lb, m is a unitary operator that maps lbi to ai for all

i = 0, . . . , m. Therefore by an analogous argument as in the case of Brownian bridge

we have the following theorem:

Theorem 4 Khmaladze [9] Suppose v̂F is projected Brownian bridge, parallel to an

(orthonormal) m-dimensional vector-function a, and, similarly, suppose v̂G is pro-

jected Brownian bridge, parallel to an (orthonormal) m-dimensional vector-function

b. If measures F and G are equivalent (mutually absolutely continuous), then v̂F can

be unitarily mapped into v̂G as follows:

v̂F(Ua, lb, m lψ)
d= v̂G(ψ). (6)
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5 Distribution Free Testing for Linear Regression

A wider version of this section, although still in a draft form, can be found in [10].

It includes general parametric regression models and multi-dimensional covariates.

Consider a sequence of pairs (Xi, Yi)
n
i=1, where Yi is a “response variable” and

Xi is the corresponding “covariate”. We, basically, will not assume anything about

probabilistic nature of (Xi)
n
i=1, except that their empirical distribution function weakly

converges to some distribution function:

Fn(x) = 1

n

n∑

i=1

I(Xi≤x), and Fn
w→ F .

About (Yi)
n
i=1 we assume, that given (Xi)

n
i=1, they are independent, and moreover,

that there exists a function m(x), such that the differences, or “errors” (εi)
n
i=1, with

εi = Yi − m(Xi), are G- i.i.d. random variables.

How shall we test a simple linear regression, which states, that m(x) = xT θ or

Yi = X T
i θ + εi, i = 1, . . . , n,

with some constant θ? Here not any test will do. Tests we want should have two

properties: they should be able to detect all contiguous alternatives to the linearity,

i.e. the local deviations form linearity of order 1/
√

n, and they should have limit

distribution independent from the vector of covariates (Xi)
n
i=1 and the distribution

G of G-i.i.d. errors εi. One method to create class of such tests was described in

[12] and in [18]. Both of these papers have been based on the approach suggested

in [6], although in several respects they are technically different from each other. In

this section we outline another method, which is much simpler. Its implementation

is straightforward.

In vector form, one can write the regression above as

Y = X T θ + ε, θ ∈ R
d ,

where X T is a matrix, with i-th row X T
i . The residuals can be written as

ε̂ = Y − X T θ̂ with θ̂ = (XX T )−1XY ,

or, using normalised vector of residuals z = (XX T )−1/2X ,

ε̂ = Y − zT zY = ε − zT z ε. (7)
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The empirical regression process (partial sum process)

R̂n,ε(x) = 1√
n

n∑

i=1

ε̂iI(Xi≤x)

is the natural object to base test statistics upon, cf. [12] and in [18]. Therefore, we

should be interested in asymptotic behaviour of this process.

Let

wε,n(x) = 1√
n

n∑

i=1

εiI(Xi≤x).

It is clear that if the errors εi have finite variance, the process wε,n converges weakly

to a Brownian motion wF in time F . Then it is possible to describe the process R̂n,�

as asymptotically one-dimensional projection of wε,n, cf. [10]. However, R̂n,� is not

a Brownian bridge. Indeed, its variance is

ER̂2
n,�(x) = Fn(min(x, y)) − 1

n

n∑

i=1

zT
i zi I(Xi≤x),

which, clearly, is not of the form Fn(x) − F2
n (x). Thus, the limit distribution of R̂n,�

depends on values of the covariates, and that in unfamiliar fashion. The covariance

matrix of ε̂ also depends on covariates:

Eε̂ ε̂T = I − zzT .

Therefore, limit distribution of tests statistics based on R̂n,� needs to be calculated

anew for new values of the covariates.

To present the main step below, we do not need Xi ∈ R
d , d > 1, it is enough that

d = 1. Consider the operator in R
n,

Ua,b = I − �a − b, · �Fn

1 − �a, b�Fn

(a − b) with �a� = �b� = 1.

This operator is unitary, and (cf., e.g., [7])

Ua,ba = b, Ua,bb = a, Ua,bc = c, if c ⊥ a, b.

Now choose a = z and choose b equal r = (1, . . . , 1)T /
√

n, the vector not depend-

ing on covariates at all. Since ε̂ ⊥ z we obtain:

ê = Uz,r ε̂ = ε̂ − �ε̂, r�
1 − �z, r� (r − z),
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or

êi = ε̂i −
∑n

j=1 ε̂j/
√

n

1 − 1√
n

∑n
j=1 zj

(
1√
n

− zi).

The new residuals have covariance matrix

EêêT = I − rrT .

This would be the covariance matrix of the residuals in the problem of testing

Yi = θ + ei, i = 1, 2, . . . , n, (8)

which is completely free from covariates.

For the partial sum process based on the new residuals,

R̂n,e(x) = 1√
n

n∑

i=1

êiI(Xi≤x),

we have

ER̂2
n,e(x) = Fn(x) − F2

n (x).

Thus, this process is asymptotically Brownian bridge in time F and the class of

distribution free test statistics based on R̂n,e is broad and well known.

Linear regression with constant term. This extension can be made with no extra

difficulty. Let now

Y = θ01 + (X − X̄ 1)θ1 + ε,

(here 1 stands for the n-dimensional vector with all coordinates equal number 1).

Substituting the usual least square estimators for θ0 and θ1 and using again notation

r and notation

z̃ = 1√∑n
j=1(Xj − X̄ )2

(X − X̄ ),

one can write the residuals in succinct form

ε̂ = Y − �Y , r�r − �Y , z̃�z̃ = ε − �ε, r�r − �ε, z̃�z̃.

From this it follows that the covariance matrix of �̂ is

Eε̂ε̂T = I − rrT − z̃z̃T ,

and it still depends on the values of the covariates. The regression process with these

residuals,
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R̂n,ε(x) = 1√
n

n∑

i=1

ε̂iI(Xi≤x),

will, therefore, have asymptotic distribution which depends on z̃.

Vector r is, obviously, free from covariates and there is no reason to replace it,

but it will be useful to replace the vector z̃. Introduce another vector r̃, different

from z̃, which also has unit norm and is orthogonal to r. It is simpler to arrange the

coordinates of both vectors z̃ and r̃ in increasing order. As an example of r̃ consider

the function

r̃

(
i

n

)
=

√
12

[
i

n
− n + 1

2n

]
and let Qn(t) =

nt∑

i=1

r̃

(
i

n

)
/n, (9)

where now i equals the rank of Xi. What we will do now is to rotate z̃ into r̃, leaving

vectors orthogonal to them unchanged. Define

ê = Uz̃,r̃ ε̂ = ε̂ − �ε̂, r̃ − z̃�
1 − �z, r� (r̃ − z̃) = ε̂ − �ε̂, r̃�

1 − �z̃, r̃� (r̃ − z̃). (10)

Thus calculation of new residuals in this case is as simple as in the previous one.

Theorem 5 Khmaladze [10] (i) Covariance matrix of residuals ê in (10) is

EêêT = I − rrT − r̃r̃T .

(ii) The regression process based on ê,

R̂n,e(x) = 1√
n

n∑

i=1

êiI(Xi≤x),

has the covariance function

ER̂n,e(x)R̂n,e(y) = Fn(min(x, y)) − Fn(x)Fn(y) − Qn(Fn(x))Qn(Fn(y)) + O(1/n),

As a corollary of (ii), the process R̂n,e, with change of time t = F(x), converges in

distribution to projection of standard Brownian motion on [0,1] parallel to functions

t and Q:

R̂e(x) = w(x) − tw(1) − Q(t)

∫
r̃(s)dw(s),

and statistics based on R̂n,e, invariant under the time transformation above, will be

asymptotically distribution free.



Function-Parametric Empirical Processes, Projections and Unitary Operators 283

References

1. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain “Goodness of Fit” criteria based

on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)

2. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press (1942)

3. Glazman, I.M., Ljubich, JuI.: Finite-Dimensional Linear Analysis. MIT Press, Cambridge,

Mass (1974)

4. Janssen, A.: Asymptotic properties of Neyman-Pearson tests for infinite Kullback-Leibler infor-

mation. Ann. Stat. 14, 1068–1079 (1986)

5. Khmaladze, E.: The use of ω2-tests for testing parametric hypotheses. Theory Probab. Appl.

24, 280–297 (1979)

6. Khmaladze, E.: Goodness of fit problem and scanning innovation martingales. Ann. Stat. 21,

798–830 (1993)

7. Khmaladze, E.: Note on distribution free testing for discrete distributions. Ann. Stat. 41, 2979–

2993 (2013)

8. Khmaladze, E.: Some new connections between the Brownian bridges and the Brownian

motions. Commun. Stoch. Anal. 9, 401–412 (2015)

9. Khmaladze, E.: Unitary transformations, empirical processes and distribution free testing.

Bernoulli 22, 563–599 (2016)

10. Khmaladze, E.: Distribution free approach to testing linear regression using unitary transfor-

mations. Extension to general parametric regression, Research Report, SMS VUW (2019).

http://sms.victoria.ac.nz/Main/ResearchReportSeries

11. Khmaladze, E.:Towards asymptotically distribution-free testing for point processes, SMS VUW

(2019). http://homepages.ecs.vuw.ac.nz/Users/Estate/WebHome

12. Khmaladze, E., Koul, H.L.: Martingale transform goodness of fit tests in regression models.

Ann. Stat. 32, 955–1034 (2004)

13. Kolmogorov, A.: Sulla determinazione empirica di una legge di distribuzione. Ital. Attuari.

Giorn. 4, 1–11 (1933)

14. Kuo, H.-H.: Gaussian measures in Banach spaces, 463, Lecture Notes in Mathematics, Springer

(2006)

15. Nguien, T.M.: A new approach to distribution-free goodness of fit test in in contingency tables.

Metrika 80, 153–170 (2017)

16. Shorack, G.R., Wellner, J.A.: Empirical Processes with Applications to Statistics. Wiley, New

York (1986)

17. Smirnov, N.V.: On the distribution of von Mises ω2 test. Mat. Sbornik 2, 973–993 (1937)

18. Stute, W., Thies, S., Zhu, L.-X.: Model checks for regression: an innovation process approach.

Ann. Stat. 26, 1916–1934 (1998)

19. van der Vaart, A., Wellner, J.A.: Weak Convergence of Empirical Processes. Springer (1996)

http://sms.victoria.ac.nz/Main/ResearchReportSeries
http://homepages.ecs.vuw.ac.nz/Users/Estate/WebHome


Rank-Based Analysis of Multivariate
Data in Factorial Designs and Its
Implementation in R

Maximilian Kiefel and Arne C. Bathke

Abstract Recently, a completely nonparametric rank-based approach for inference

regarding multivariate data from factorial designs has been introduced, with theoreti-

cal results for two different asymptotic settings. Namely, for the situation of few factor

levels with large sample sizes at each level, and for the situation of a large number

of factor levels with small sample sizes in each group. In this article, we examine in

detail how this theory can be translated into practical application. A challenge in this

regard has been feasibly implementing consistent covariance matrix estimation in

the setting of small sample sizes. The finite sampling distributions are approximated

using moment estimators. In order to make the results widely available, we intro-

duce the R package nparMD which performs nonparametric analysis of multivariate

data in a two-way layout. Multivariate data in a one-way layout have already been

addressed by the npmv package. Similar to the latter, within the nparMD package,

there are no assumptions met about the underlying distribution of the multivariate

data. The components of the response vector do not necessarily have to be measured

on the same scale, but they have to be at least binary or ordinal. Due to the factorial

design, hypotheses to be tested include the main effects of both factors, as well as

their interaction. The new R package is equipped with two versions of the testing

procedure, corresponding to the two asymptotic situations mentioned above.

Keywords Nonparametric model · Multivariate test · Rank statistic · MANOVA ·
Factorial design · Non-normalitt

1 Introduction

This paper demonstrates how to perform nonparametric inference on multivariate

responses in factorial designs. In order to allow for immediate application to real
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data, we introduce the R [15] package nparMD [10], which performs fully nonpara-

metric, rank-based analysis of multivariate data samples with two fully crossed design

factors. The package is available at the Comprehensive R Archive Network (CRAN)

under https://CRAN.R-project.org/package=nparMD. While the results presented

here pertain to a design with two factors, a generalization to higher-way layouts is

methodologically straightforward but rather technical.

The underlying asymptotic theory which is related to semiparametric

heteroscedastic two-factor MANOVA (see [8]) has largely been described in [1,

2, 5, 9, 12]. However, translating this theory into applicable procedures requires

three major steps. The first one is to find a feasible way to estimate the covariance

matrix in the setting of several samples with small sample sizes each. The second one

is to devise reasonable finite-sample approximations to the sampling distributions

of the test statistics considered. And the final step is to provide an effective way

for researchers to actually apply these methods to their data—that is, developing an

adequate statistical software package.

As the methods considered here present a generalization of the multivariate non-

parametric inference procedures described by [2–4, 7, 9, 11], the implementation in

R is also partially related to the methods used in the corresponding npmv package

[6] which is designed for comparing multivariate data samples in a one-way layout.

Similarities appear, for example, in terms of the classes of test statistics known as

Wilk’s Lambda (LR), the ANOVA-type or Dempster’s (D), the Lawley–Hotelling

(LH), and the Bartlett–Nanda–Pillai (BNP) criteria which are used frequently in this

context. The nonparametric versions and finite approximations of these test statistics

have been investigated and discussed in the publications cited above.

However, differences between the setting considered in the present paper and the

one-way layout discussed in the above publications appear in many aspects regarding

hypotheses to be tested and their interpretation, estimation of covariance matrices,

asymptotics, and further details including computational challenges. An essential

part of the nonparametric model is their reliance on the nonparametric relative effect

as a statistical functional and the subsequent construction of relative effect estima-

tors which are based on midranks. In contrast to methods where longitudinal data are

examined for simple factor effects [13], the current method is based on variablewise

ranks. This means that separate rankings are performed for each component within

the p-dimensional observation vector Xi jr = (X
(1)

i jr , . . . , X
(p)

i jr )�, where i = 1, . . . , a

and j = 1, . . . , b denote the factor levels, while r = 1, . . . , ni j denotes the experi-

mental units (subjects) or replications within a certain factor level combination. The

underlying model states that for each value of i and j , all ni j observations within

the group (i, j) follow the same p-variate distribution Xi jr ∼ Fi j . All observation

vectors Xi jr are also stated to be independent while the components of the response

vector are allowed to be dependent with arbitrary dependence structure. Let Id be

the d × d identity matrix, Jd be the d × d matrix of ones, and Pd = Id − d−1Jd .

Then, the hypotheses of interest can be formulated via the vector of cumulative dis-

tribution functions F = (F11, . . . , F1b, F21, . . . , Fab) and a suitable contrast matrix

as CF ≡ 0, with the following choices of C.

https://CRAN.R-project.org/package=nparMD
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CA = Pa ⊗ 1

b
Jb (no main effect of factor A)

CB = 1

a
Ja ⊗ Pb (no main effect of factor B)

CAB = Pa ⊗ Pb (no interaction effect between A and B).

Note that A ⊗ B denotes the Kronecker product and A
⊕

B will denote a block

diagonal matrix with blocks A and B. Let c(x) = 0, 1
2
, 1 if x <,=,> 0. For l =

1, . . . , p let R
(l)
i jr = 1

2
+

∑a

i �=1

∑b

j �=1

∑ni � j �

r �=1
c(X

(l)
i jr − X

(l)
i � j �r �) denote the midrank

among all N =
∑a

i=1

∑b
j=1 ni j observations X

(l)
111, . . . , X

(l)
abnab

which is equal to row-

wise ranking when all observations are arranged into a p × N -matrix. Define

H(A) = b

(a − 1)N 2

a∑

i=1

(R̃i.. − R̃...)(R̃i.. − R̃...)
�

H(B) = a

(b − 1)N 2

b∑

j=1

(R̃. j. − R̃...)(R̃. j. − R̃...)
�

H(AB) = 1

(a − 1)(b − 1)N 2

a∑

i=1

b∑

j=1

(R̄i j. − R̃i.. − R̃. j. + R̃...)(R̄i j. − R̃i.. − R̃. j. + R̃...)
�

Ŝi j = 1

(ni j − 1)N 2

ni j∑

k=1

(Ri jk − R̄i j )(Ri jk − R̄i j )
�

G = 1

ab

a∑

i=1

b∑

j=1

1

ni j

Ŝi j ,

where Ri jr = (R
(1)

i jr , . . . , R
(p)

i jr )�, R̄i j. = 1
ni j

∑ni j

k=1 Ri jk, R̃i.. = 1
b

∑b
j=1 R̄i j , R̃. j. =

1
a

∑a
i=1 R̄i j , R̃... = 1

ab

∑a
i=1

∑b
j=1 R̄i j . In the definition of H(·) and Si j , the sums

of squares and cross-product matrices are divided by N 2 indicating the use of rank

transforms (RT) Ŷ
(l)
i jr = N−1(R

(l)
i jr − 1

2
) which themselves are related to asymptotic

rank transforms (ART) Y
(l)
i jr = H (l)(X

(l)
i jr ). Here, H (l)(x) = 1

N

∑a
i=1

b∑
j=1

ni j F
(l)
i j (x) is

defined as average cdf for variable (l) of the response vector. It would also be possible

to directly formulate the test statistics using RT instead of original ranks (Ŷ
(l)
i jr instead

of R
(l)
i jr and without division by N 2). However, ranks are more intuitive, due to their

straightforward interpretation.
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Now let ψ = (A, B, AB). The nparMD package uses the following core test

statistics which are based in construction on the homonymous classical parametric

test statistics that had been proposed for the analysis of multivariate data in the normal

model.

ANOVA Type (Dempster’s) criterion : TD = tr(H(ψ))/tr(G) (1)

Wilk’s Lambda (Likelihood Ratio) criterion : TL R = log |I + H(ψ)G−| (2)

The Lawley–Hotelling criterion : TL H = tr(H(ψ)G−) (3)

The Bartlett–Nanda–Pillai criterion : TB N P = tr(H(ψ)G−(I + H(ψ)G−)−). (4)

As non-singularity of G or I + H(ψ)G− can not be assumed in general we use a

so-called pseudoinverse, the Moore–Penrose generalized inverse which is defined

as matrix satisfying the Penrose conditions [14]. For each of these types of tests,

nparMD provides two testing procedures tailored to the two different asymptotic

settings mentioned above.

2 Large Sample Sizes ni j

The nparMD package provides a function for the large sample case (at least seven

observations per factor-level combination are recommended), where the hypothe-

ses are tested by nonparametric analogs to Dempster’s ANOVA and the Lawley–

Hotelling criterion. Following the recommendations of [5, 12], the distribution of

the ANOVA-type statistic TD is approximated by a central F( f̂ψ , f̂0)
distribution with

estimated degrees of freedom, as follows.

f̂ A = (a − 1)2 N 2tr(V̂N )2

(abN )2tr(TAV̂N TAV̂N )
(5)

f̂B = (b − 1)2 N 2tr(V̂N )2

(abN )2tr(TBV̂N TBV̂N )
(6)

f̂ AB = (a − 1)2(b − 1)2 N 2tr(V̂N )2

(abN )2tr(TABV̂N TABV̂N )
(7)

f̂0 = N 2tr(V̂N )2

N 2
∑a

i=1

∑b
j=1

1
ni j −1

tr
(

Ŝi j

ni j

) , (8)

where

TA = Pa ⊗ 1

b
Jb ⊗ Ip (9)

TB = 1

a
Ja ⊗ Pb ⊗ Ip (10)
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TAB = Pa ⊗ Pb ⊗ Ip (11)

V̂N = N ·
a⊕

i=1

b⊕

j=1

Ŝi j · 1

ni j

. (12)

As f̂0 tends to be very large in this setting, an F( f̂ψ ,∞) approximation is actually

used in the implementation. The distribution of the Lawley–Hotelling type criterion

TL H as defined before is approximated by a central χ2-distribution since gT
(ψ)

L H

is approximately χ2
f distributed [8], where g = (a − 1, b − 1, (a − 1)(b − 1)) and

f = g · p.

Table 1 shows the results of a simulation study that has been carried out in order

to demonstrate the actual performance of the test under several conditions, that is,

different underlying distributions and different sample size settings. The simulated

power of the test is shown in Fig. 1. Alternatives were formulated as location shifts

for the first level of factor A (see also figure captions for details). Underlying distribu-

tions were homo- and heteroscedastic multivariate normal, as well as multinomial.

Heteroscedasticity and response dependency were modeled by symmetric p × p

covariance matrices Σi j with off-diagonal elements ρi j =
√

i j/(1 + i j) and diago-

nal elements 1 − ρi j .

In order to simulate the power for underlying ordinal response data, includ-

ing dependency of the components, we drew samples from a multinomial distri-

bution with parameters n = 5 and p = (0.2, 0.3, 0.5) (if i ≥ 2) and p = (0.2 −
δp, 0.3, 0.5 + δp) (if i = 1). δp denotes the probability shift inducing a main effect

Table 1 Simulated α (nominal α = 5%); a = 3; b = 2; p = 3

Underlying

distribution

ψ T
(ψ)

D T
(ψ)

L H T
(ψ)

D T
(ψ)

L H T
(ψ)

D T
(ψ)

L H

7 ≤ ni j ≤ 12 15 ≤ ni j ≤ 20 25 ≤ ni j ≤ 30

mvrnorm A 0.043 0.078 0.050 0.065 0.049 0.060

AB 0.047 0.084 0.045 0.062 0.047 0.060

B 0.050 0.077 0.050 0.059 0.047 0.054

ordinal A 0.049 0.082 0.052 0.068 0.050 0.062

AB 0.046 0.077 0.050 0.066 0.046 0.056

B 0.048 0.072 0.049 0.058 0.049 0.054

lognormal A 0.047 0.078 0.051 0.068 0.053 0.063

AB 0.051 0.080 0.050 0.068 0.051 0.059

B 0.050 0.071 0.054 0.066 0.050 0.054

mvrnorm

(high correla-

tion)*

A 0.057 0.081 0.054 0.069 0.060 0.057

AB 0.058 0.077 0.058 0.066 0.057 0.055

B 0.053 0.068 0.056 0.063 0.051 0.055

∗covariance matrix (σmn) with diagonal entries 1 and off-diagonal entries 1–0.1·|m − n|
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(a) Multivariate normal data (b) Multivariate normal data

(c) Multivariate normal data; het-

eroscedasticity and response dependency

modeled by Σ i j

(d) Multinomial (ordinal) data

Fig. 1 Simulated power

of A. As shown in Fig. 1 δp ranges from 0 to 0.14. Sample sizes were chosen randomly

between 7 and 12 (discrete uniform distribution).

3 Small Sample Sizes ni j , Large Number a of Samples

The setting described in this section applies to small samples, but with a minimum

requirement of four observations per factor-level combination. Asymptotics in this

situation rely on the number of samples, that is, the number of levels of one factor

(here, without loss of generality, a being large). A semiparametric approach to the

small sample case has been described in [8]. Under suitable centering and scaling, all

four test statistics are shown to have an asymptotic normal distribution for increasing

number of factor levels a. The covariance matrix estimation, which has to be done

for each group individually, is one of the main challenges within the theoretical part

but also in terms of implementation. Bathke and Harrar [1] proposed a consistent

variance and covariance matrix estimator based on the theory of U-statistics. For
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practical reasons it is formulated in terms of RT Ŷi jr = (Ŷ
(1)

i jr , . . . , Ŷ
(p)

i jr )—recall that

ART are not observable. Define

Ψ i j (Ω) = 1

4ci j

ni j∑

(k1,k2,k3,k4)∈K

Ω(Ŷi jk1
− Ŷi jk2

)(Ŷi jk1
− Ŷi jk2

)�×

Ω(Ŷi jk3
− Ŷi jk4

)(Ŷi jk3
− Ŷi jk4

)�, (13)

where K is the set of all quadruples κ = (k1, k2, k3, k4) without replication, ci j =
ni j (ni j − 1)(ni j − 2)(ni j − 3) and Ω a matrix of constants with dimension p × p.

Obviously, this construction requires ni j ≥ 4 while |K | is growing very fast for

increasing ni j which might lead to high computational cost in practice. Therefore,

the nparMD package performs a randomized covariance matrix estimation if the

groupsize ni j exceeds a default limit nmax for a certain factor-level combination.

If necessary, K is replaced by a random subset K � ⊂ K , where |K �| = cmax =
nmax (nmax − 1)(nmax − 2)(nmax − 3). Within the simulation study, a default limit

of nmax = 6 has proved as an appropriate tradeoff between computational cost and

estimation accuracy. To avoid misunderstanding, this procedure is not equivalent to

drawing 6 observations for the covariance matrix estimation of larger groups since

that would lead to high loss of information. An example to demonstrate the runtime

difference and results in a difference between using full K and using K � instead

is shown in Table 2. Without explicit functional modeling of the actual runtime with

regard to the sample size, it appeared to improve from approximately exponential to

linear within the simulation study.

The underlying asymptotic theorem of the inference procedure requires cen-

tering and scaling of the four test statistics such that a unified null distribu-

tion can be obtained:
√

a("T
(ψ)

G
+ h) = √

a tr(H(ψ) − G)Ω + oP(1), where " =
1, 2, 1, 4, h = 1, 2p log 2, p, 2p and Ω = ( 1

trG
)Ip, G−, G−, G− for G = D, L R,

L H, B N P . Then the null distribution is given by the following theorem.

Theorem 1 ([1]) Let ψ = A, AB. Under the null hypothesis (no ψ effect) and for

any fixed matrix of constants Ω
√

a tr(H(ψ) − G)Ω τ−1
ψ (Ω)

L→ N (0, 1) as a → ∞ and ni j and b bounded,

where τ 2
ψ =

{
2
b
{ν1(Ω) + ν2(Ω)

(b−1)2 } when ψ = AB
2
b
{ν1(Ω) + ν2(Ω)} when ψ = A.

Here, ν1(Ω) = 1
ab

∑a
i=1

∑b
j=1

1
ni j (ni j −1)

tr(Ψ i j (Ω)),

and ν2(Ω) = 1
ab

∑a
i=1

∑b
j �= j �

tr(Ω Si j Ω Si j � ))

ni j ni j �
.

Figure 2 shows the actual size of α (desired size α = 0.05) of the test for different

values of the number a of factor levels when Theorem 1 is applied.

Figure 3 shows the simulated power of the test under true alternatives. 1 denotes

the p-dimensional vector of ones. The true main effect of factor A is modeled by mul-

tivariate normal distributions of the form N (1 · δ,Σi j ) (if i < 10) and N (−1 · δ,Σi j )
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Table 2 Example: elapsed time and results difference (error)

ni j t∗1 t∗2 Error TD Error TL R Error TL H Error TB N P

≤ 6 0.32 0.28 0 0 0 0

≤10 2.64 0.42 0.00012 0.00137 0.00022 0.00056

≤15 14.12 0.64 0.00062 0.00044 0.00026 0.00014

≤20 45.66 1.03 0.00075 0.00021 <10−5 0.00023

∗ t1 versus t2 show the elapsed time (stated in seconds) of the testing procedure using full K (t1)

versus K
� (t2) with nmax = 6

Fig. 2 Simulated α under null hypothesis (b = 3, p = 3, 4≤ ni j ≤ 10)

(else) with location shift δ, where Σi j , as defined above, induces heteroscedasticity

and response dependency. A true interaction is simulated in a similar way, that is

N (1 · δ,Σi j ) (if i < 10 and if j < 2) and N (−1 · δ,Σi j ) (else). As shown in Fig. 3, δ

ranges from 0 to 0.5 It appeared that Σi j did not affect the actual size of the test when

there was no true effect in terms of location shift. See Fig. 2 at a = 20. Again, to simu-

late the power for underlying ordinal response data, including dependency of the com-

ponents, we drew samples from a multinomial distribution with parameters n = 5 and

p = (0.2 − δp, 0.3, 0.5 + δp) (if i ≤ 10) and p = (0.2 + δp, 0.3, 0.5 − δp) (else)

with δp denoting a shift in probability again. In order to induce an interaction effect

the setting is changed to p = (0.2 − δp, 0.3, 0.5 + δp) (if i ≤ 10 and j ≤ 2) and

p = (0.2 + δp, 0.3, 0.5 − δp) (else).
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(a) Multivariate normal data (b) Multivariate normal data

(c) Multinomial (ordinal) data (d) Multinomial (ordinal) data

Fig. 3 Simulated Power of all four test statistics (a = 20, b = 3, p = 3, 4 ≤ ni j ≤ 10)

Within this setting of small sample sizes, but many samples (large a setting),

the null hypothesis “no main effect of factor B” is not considered explicitly, as this

situation would actually correspond to having several observations for each level

of factor B. Thus, by relabeling the factors, it fits into the previously discussed

asymptotic framework.

4 Conclusion

Nonparametric rank-based inference procedures for multivariate data in two-way

factorial designs have been developed by adapting theoretical results from [1]. This

includes the development of an R package nparMD. Note that the response variables

are not required to be metric—in fact, a mix of metric, ordinal, and binary responses

is just fine.

At a glance, the R package nparMD consists of two major functions (nparml

and nparms), and it is designed to cover a large number of situations in which

multivariate data occur, as, for example, in many biological, biomedical, behavioral,
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and clinical studies. The function nparml should be used for larger samples, that

is, at least seven observations per factor-level combination according to recommen-

dations and simulation results. In case of smaller samples, the nparms function can

be used—provided that, with regard to one of the explanatory factors, there are many

samples available.

Future versions of the package will include the Wilk’s Lambda and the Bartlett–

Nanda–Pillai criteria also for the large sample case as well as for explicitly testing

the main effect of factor B in the small sample case.

Acknowledgments The research was supported by Austrian Science Fund (FWF) I 2697-N31.
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Tests for Independence Involving
Spherical Data

Pierre Lafaye De Micheaux, Simos Meintanis, and Thomas Verdebout

Abstract We propose consistent procedures for testing the independence of circular

variables based on the empirical characteristic function. The new methods are first

specified for observations lying on a torus, i.e., for bivariate circular data, but it

is shown that these methods can readily be extended to arbitrary dimension. The

large-sample behavior of the test statistic is investigated under fixed alternatives.

Finite-sample results are also presented.

Keywords Empirical distribution function · Directional statistics · L2-type test

1 Introduction

Circular distributions naturally arise in many areas of applied research such as biol-

ogy, meteorology, animal behavior, geology, etc. Realizations of such random vectors

are interpreted as directions, and analogously to the problem with conventional mul-

tivariate random vectors there exist circumstances where two or more directions may

or may not be independent. An obvious way to go about testing independence is to use

methods for classical (non-circular) random variables, such as the correlation coef-

ficient. Due to the periodicity through classical methods do not automatically carry

over from the linear domain, and need to be properly modified for circular obser-
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vations. In this connection, Watson and Beran [20] propose a correlation coefficient

for circular time series data and calibrate the test via the permutation distribution of

this coefficient, while Epp et al. [5] provide a large-sample normal approximation of

the distribution of this test criterion. Likewise, the standard Cramér–von Mises has

been adapted to the circular case by Rothman [18], whereas Shieh et al. [19] employ

a version of Kendall’s tau statistic. There are also a number of (semi)parametric

approaches such as testing independence under axial symmetry or testing indepen-

dence with von Mises marginals; see Rao and Puri [16] and Mardia and Puri [13],

respectively. For testing independence as well as for general treatment of statistical

problems associated with the circular domain, the readers are referred to the mono-

graphs of Jammalamadaka and SenGupta [9] and Ley and Verdebout [12]. Recently,

there is also some interest in testing independence between a spherical random vari-

able in general dimension and a corresponding univariate linear random variable as

in the case of the statistic suggested by García–Portugués et al. [8] and calibrated in

García–Portugués et al. [7].

While the aforementioned procedures for independence are either tailored to the

bivariate case and/or often test for lack of linear association rather than independence

and in the spherical/linear case employ smoothing techniques, our approach is meant

for general dimension and is consistent against arbitrary deviations from indepen-

dence (not just correlation), and makes no use of smoothing techniques with the

familiar problems associated to bandwidth selection and slow convergence. Specif-

ically, we suggest a test for independence for a pair of random variables Z1 and Z2

with arbitrary distributions. The test statistic utilizes the familiar factorization prop-

erty of the joint characteristic function (CF) into the product of the corresponding

marginals. In this connection note that while for general random variables uniqueness

requires that the CF be computed over all possible arguments, as it will be argued

further down the paper the circular domain is exceptional in this respect, and thus

we adopt as a population measure of discrepancy from independence

Tw =
�

r1

�

r2

|ϕ(r1, r2) − ϕ1(r1)ϕ2(r2)|2 w(r1, r2), (1)

where ϕ(·, ·) denotes the joint CF of Z1 and Z2, and ϕi (·), i = 1, 2, the corresponding

marginal CFs. The probability measure w(·, ·), as well as the range of summation,

will be specified later.

While the test statistics considered herein may be referenced to the general formu-

lation (1), we emphasize particular convenient instances which regardless of dimen-

sion are shown to be free of the usual computational difficulties arising from the

inherent multivariate nature of the problem.

The remainder of this work is outlined as follows. In Sect. 2, we state the null

hypothesis and the suggested new criteria in the bivariate case. Corresponding com-

putations are presented in Sect. 3 where we also carry out an extension to more

general situations and show the consistency of our test. Finally, the finite-sample

properties of the methods are investigated by means of a simulation study in Sect. 4.
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2 Testing Independence in the Bivariate Case

Let Θ := (Θ (1),Θ (2))�, denote an arbitrary pair of circular random variables with

a joint distribution function (DF) F(ϑ (1), ϑ (2)) = P(Θ (1) ≤ ϑ (1),Θ (2) ≤ ϑ (2)). We

wish to test the null hypothesis of independence

H0 : F(ϑ (1), ϑ (2)) = F1(ϑ
(1))F2(ϑ

(2)),∀(ϑ (1), ϑ (2)) ∈ (0, 2π) × (0, 2π), (2)

where Fi (·), i = 1, 2, denote the corresponding marginal DFs.

By the well-known factorization property of CFs, it follows that the null hypothesis

H0 in (2) may equivalently be stated as

ϕ(r1, r2) = ϕ1(r1)ϕ2(r2),∀(r1, r2) ∈ R × R, (3)

where ϕ(r1, r2) := E(ei(r1Θ
(1)+r2Θ

(2))), i =
√

−1 defines the (joint) CF of Θ and

ϕi (r) := E(eirΘ (i)

), r ∈ R stands for the marginal CF of Θ (i), i = 1, 2. While for

conventional random variables on the real line, the CF needs to be defined for all

real r , due to periodicity, in the case of circular random variables, it is sufficient to

consider the marginal CF only for integer values of the corresponding argument; see

Jammalamadaka and SenGupta [9, Sect. 2.1]. Hence, the null hypothesis is equiv-

alent to (3) being true for (r1, r2) ∈ Z × Z, where Z = {0,±1,±2, . . .}. Suppose

ϑ j := (ϑ
(1)

j , ϑ
(2)

j ), j = 1, . . . , n are independent copies of the spherical random

variable Θ . Then the joint CF figuring in the left-hand side of (3) may be estimated

by means of the empirical CF

�ϕ(r1, r2) =
1

n

n�

j=1

ei(r1ϑ
(1)
j +r2ϑ

(2)
j ), (4)

while the marginal empirical CF �ϕ1(r1) (resp. �ϕ2(r2)) can be obtained by setting

r2 = 0 (resp. r1 = 0) in (4).

In view of (1), we employ the quantity

Dn(r1, r2) = �ϕ(r1, r2) − �ϕ1(r1)�ϕ2(r2), (5)

which if (3) holds true should be close to zero as n→∞, for all r1, r2 = 0,±1,

±2, . . . . This leads us to suggest the test statistic

Tn,w = n

∞�

r1=−∞

∞�

r2=−∞
|Dn(r1, r2)|2 w(r1, r2), (6)

which is an estimated version of the population counterpart figuring in (1) specified

to the bivariate case with integration taking place on point masses over Z × Z, with



298 P. Lafaye De Micheaux et al.

respect to the measure w(·, ·) (to be further particularized below). Clearly, rejection

of the null hypothesis H0 of independence stated in (2) is for large values of Tn,w.

We close this section by noting that the use of the CF in order to test inde-

pendence is not new in the literature. In fact, there are several works dealing with

CF-based methods for testing independence with conventional (non-spherical) ran-

dom variables; see for instance Csörgő [4], Kankainen and Ushakov [10], Bilodeau

and Lafaye de Micheaux [1], Székely et al. [17], Meintanis and Iliopoulos [14], and

Fan et al. [6]. These methods are very convenient from the computational point of

view, a feature which is particularly important in the multivariate context where the

corresponding methods based on the DF, apart from being computationally demand-

ing, suffer from the lack of definite order in R
p, p > 1. On top of this, CF-based

procedures for independence have proved to compete well and often outperform

DF-based methods even when the latter methods are available.

3 Computations and Extensions

3.1 Test on the Torus

We first study the computational aspects of the test statistic figuring in (6). Specifi-

cally, following some algebra we have from (4) to (5)

|Dn(r1, r2)|2 =
1

n2

n�

j,k=1

cos
�

r1ϑ
(1)

jk + r2ϑ
(2)

jk

�
(7)

+
1

n4

n�

j,k,�,m=1

cos
�

r1ϑ
(1)

jk + r2ϑ
(2)

�m

�

−
2

n3

n�

j,k,�=1

cos
�

r1ϑ
(1)

jk + r2ϑ
(2)

j�

�

with ϑ
(i)
jk = ϑ

(i)
j − ϑ

(i)
k , j, k = 1, . . . , n, i = 1, 2. Clearly, then the test statistic is

invariant with respect to origin. Expression (7) also shows that Tn,w involves peri-

odic components, and hence clarifies the need for introducing a probability measure

w(·, ·), such that
�

r1

�
r2

w(r1, r2) < ∞, in order to temper these periodic compo-

nents of the test statistic figuring in (6).

Moreover, by straightforward algebra and, by using (7) in (6), we readily obtain

the test statistic in the form
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Tn,w =
1

n

n�

j,k=1

Cw(ϑ
(1)

jk , ϑ
(2)

jk ) +
1

n3

n�

j,k,�,m=1

Cw(ϑ
(1)

jk , ϑ
(2)

�m ) (8)

−
2

n2

n�

j,k,�=1

Cw(ϑ
(1)

jk , ϑ
(2)

j� )

where

Cw(x, y) =
∞�

r1=−∞

∞�

r2=−∞
cos(r1x + r2 y)w(r1, r2). (9)

A little reflection on (9) shows that if w(r1, r2) is a symmetric around zero prob-

ability mass function (PMF) in the domain (r1, r2) ∈ Z × Z, then the infinite sum

figuring in the right-hand side of this equation may be interpreted as the CF corre-

sponding to this PMF computed at the argument (x, y). In order to construct such a

PMF, we choose any univariate PMF f (r) defined on the non-negative integers, and

obtain a new symmetrized PMF, say v(·), on Z by setting

v(±r) = (1/2) f (r), r = 1, 2, . . . , (10)

v(0) = f (0).

Clearly, the new PMF v(·) so constructed is symmetric around zero and, hence, the

imaginary part of its CF vanishes identically; see Meintanis and Verdebout [15]. In

fact, it may easily be shown that v(·) has as CF the real part of the CF corresponding

to the PMF f (r), which will be henceforth denoted by c f (·).
From this observation and adopting the decomposition w(r1, r2) = v(r1)v(r2) for

the probability measure w(·, ·), we deduce from (9) by means of the trigonometric

identity cos(x + y) = cos(x) cos(y) − sin(x) sin(y), that Cw(x, y) = c f (x)c f (y),

which renders the test statistic in the following convenient form

Tn,w =
1

n

n�

j,k=1

c f (ϑ
(1)

jk )c f (ϑ
(2)

jk ) +
1

n3

⎛
¿

n�

j,k=1

c f (ϑ
(1)

jk )

À
⎠

⎛
¿

n�

j,k=1

c f (ϑ
(2)

jk )

À
⎠ (11)

−
2

n2

n�

j,k,�=1

c f (ϑ
(1)

jk )c f (ϑ
(2)

j� ).

A standard example is to choose the Poisson distribution as the ‘core’ PMF f (r),

in which case the test statistic results from (11) with c f (θ) = cos(λ sin θ)eλ(cos θ−1),

where λ > 0 denotes the Poisson parameter.
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3.2 Extension to Arbitrary Dimension

Suppose now that Θ := (Θ (1)�,Θ (2)�)� is composed of two random vectors, Θ (1)

and Θ (2) of dimensions p1 and p2, respectively. By analogous reasoning, it follows

that the null hypothesis of independence reduces to

ϕ(r1, r2) = ϕ1(r1)ϕ2(r2),∀(r1, r2) ∈ Z
p1 × Z

p2 , (12)

where Z
p denotes the Cartesian product space resulting from the set of integers Z.

Along the lines of Sect. 3.1, we suggest the test criterion

Tn,w = n
�

r1

�

r2

|Dn(r1, r2)|2 w(r1, r2), (13)

with summation taking place on point masses over Z
p1 × Z

p2 , with respect to the

measure w(·, ·).
The line of reasoning of the previous subsection follows through and the test

statistic referring to the population distance defined by (1) reduces to (8) with

CW (x, y) =
�

r1∈Zp1

�

r2∈Zp2

cos(r�
1 x + r�

2 y)W (r1, r2), (14)

where W (·, ·) is a point mass measure over Z
p1 × Z

p2 . Let again f (r) be a uni-

variate core PMF and adopt the decomposition W (r1, r2) = V1(r1)V2(r2), and the

independent-marginal factorizations Vi (ri ) =
�pi

s=1 v(rsi ), where rsi , s = 1, . . . , pi ,

stand for the components of the vector ri , and where v(r) is constructed as in (10).

Then proceeding from (14), we have

CW (x, y) =
�

r1∈Zp1

cos(r�
1 x)V1(r1)

�

r2∈Zp2

cos(r�
2 y)V2(r2) (15)

−
�

r1∈Zp1

sin(r�
1 x)V1(r1)

�

r2∈Zp2

sin(r�
2 y)V2(r2)

=
�

r1∈Zp1

cos(r�
1 x)V1(r1)

�

r2∈Zp2

cos(r�
2 y)V2(r2),

with the last equation justified because the PMFs V1 and V2 so constructed are

symmetric around their origins.

To proceed further, we invoke the trigonometric identity

cos

�
p�

�=1

θ�

�
=

� p

2
��

q=0

(−1)q
�

1≤ j1< j2...< j2q≤p

2q�

k=1

sin θ jk

p�

� �= j1, j2,..., j2q

cos θ�. (16)
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A little reflection on this identity shows that the only terms of (16) that ‘survive’

when plugged in (15) are those that contain only products of cosines, while the

products in (16) that contain even a single sine factor vanish when plugged in (15)

since s(x) :=
�∞

r=−∞ sin(r x)v(r) = 0, due to the fact that s(x) is by definition the

imaginary part of the CF corresponding to the symmetric around zero PMF v(·), and

hence s(x) vanishes at each argument x ∈ R. Consequently, the sum in the right-hand

side of (15) reduces to

CW (x, y) =
p1�

s=1

c f (xs)

p2�

s=1

c f (ys), (17)

where xs, s = 1, . . . , p1 and ys, s = 1, . . . , p2, stand for the components of the

vectors x and y, respectively.

Clearly, then we have arrived at a particularly user-friendly expression for the test

statistic which we report below for definiteness:

n−1Tw =
1

n2

n�

j,k=1

C f (ϑ
(1)
jk

)C f (ϑ
(2)
jk

) +
1

n4

⎛
¿

n�

j,k=1

C f (ϑ
(1)
jk

)

À
⎠

⎛
¿

n�

j,k=1

C f (ϑ
(2)
jk

)

À
⎠ (18)

−
2

n3

n�

j,k,�=1

C f (ϑ
(1)
jk

)C f (ϑ
(2)
j�

),

where

C f (ϑ
(i)
jk ) =

pi�

s=1

c f (ϑ
(i)
s, jk), (19)

with ϑ
(i)
s, jk, s = 1, . . . , pi , being the components of the vector ϑ

(i)
jk , i = 1, 2.

3.3 Consistency

In the following proposition, we consider the limit behavior of the test statistic against

arbitrary deviations from independence.

Proposition 1 Let Tn,w be the the test statistic in (13) with w(·, ·) being a given

PMF. Then
Tn,w

n
−→ Tw, a.s. as n → ∞, (20)

with Tw defined in (1).
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Proof From the strong law of large numbers (see also Csörgő [3]) for more refined

limit results on the empirical CF process), we have for each (r1, r2) ∈ Z
p1 × Z

p2 ,

�ϕ(r1, r2) −→ ϕ(r1, r2), a.s. as n → ∞,

and likewise for the marginal empirical CFs. Therefore, (20) follows from the

Lebesque’s dominated convergence theorem since |Dn(r1, r2)|2 ≤ 4. Moreover, in

view of (12), the almost sure limit Tw in the right-hand side of (20) is positive unless

H0 holds true, which in turn implies that under alternatives

Tn,w −→ ∞, a.s. as n → ∞,

and, consequently, (20) is equivalent to the strong consistency of the test which rejects

the null hypothesis H0 of independence for large values of Tn,w �

4 Simulations

The bivariate von Mises cosine distribution vMc
2(μ1, μ2, κ1, κ2, κ3) with mean

parameters μ1, μ2, concentration parameters κ1, κ2, and association parameter κ3

has the following density function

fvMc
2
(θ1, θ2|μ1, μ2, κ1, κ2, κ3) ∝ exp[κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2) + κ3 cos(θ1 − μ1 − θ2 + μ2)].

It is thus easily seen that a value of κ3 = 0 means independence while increasing

κ3 creates more dependence between two random variable Θ (1) and Θ (2) from this

distribution.

In order to confirm that our test is able to capture dependence for spherical data, we

generated observations from the above density using the rvmcos() function from

the BAMBI R package; see [2]. We kept the default values κ1 = 1, κ2 = 1, μ1 = 0

and μ2 = 0.

First, we generated M = 10,000 samples of size n = 100 under the null hypothe-

sis of independence (i.e., with κ3 = 0). The 5% critical value for the test (0.511) was

computed as the 95% empirical quantile of the corresponding 10,000 test statistic

values of (18). As a first approximation, we assumed that this critical value is valid

for any value of κ3 (i.e., that it is independent of the marginal distributions).

Next, we computed the proportion of times (over M = 10,000) that our test statis-

tic Tn,w (with a Poisson weight with parameter λ = 1) exceeds this critical value,

namely the empirical power of the test, for 10 increasing equispaced values of κ3,

ranging from 0 to 1. Results, displayed in Table 1, confirm that our test behaves as

expected. In this limited simulation study, we used the knowledge of the underlying

distribution of (Θ (1),Θ (2)) which in practice is rarely available. In a future version of

this work, we will explore numerically the potential of our test to detect dependence

in a purely non-parametric way; we will resort to permutations.



Tests for Independence Involving Spherical Data 303

Table 1 Empirical power of our new test for increasing values of κ3. Number of Monte Carlo

replications: M = 10,000. Sample size: n = 100. Total computation time: 92 mn

κ3 0/9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9

Power 0.047 0.058 0.100 0.187 0.307 0.452 0.612 0.740 0.847 0.911

All simulations were done on a DELL XPS13 laptop, equipped with a 64-bit

Linux Debian 10 operating system. We used R version 3.6.1 and set the seed to the

value 1. Our test of independence was programmed in C/C++ following guidelines

from [11].
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3. Csörgő, S.: Multivariate empirical characteristic functions. Z. Wahr. Verw. Geb. 55, 203–229

(1981)
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Interval-Wise Testing of Functional Data

Defined on Two-dimensional Domains

Patrick B. Langthaler, Alessia Pini, and Arne C. Bathke

Abstract Functional Data Analysis is the statistical analysis of data sets composed
of functions of a continuous variable on a given domain. Previous work in this area
focuses on one-dimensional domains. In this work, we extend a method developed
for the one-dimensional case, the interval-wise testing procedure (IWT), to the case
of a two-dimensional domain. We first briefly explain the theory of the IWT for
the one-dimensional case, followed by a proposed extension to the two-dimensional
case. We also discuss challenges that appear in the two-dimensional case but do not
exist in the one-dimensional case. Finally, we provide results of a simulation study
to explore the properties of the new procedure in more detail.

Keywords Functional Data Analysis · Type I Error Control · Rectangular Domain

1 Introduction

Functional Data Analysis is the statistical analysis of data sets composed of functions
of a continuous variable (time, space, …), observed in a given domain (see Ramsay
and Silverman [8]). In this work, we focus on the inference for functional data,
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a particularly challenging problem since functional data are objects embedded in
infinite-dimensional spaces, and the traditional inferential tools cannot be used in
this case. The challenge of deriving inference for functional data is currently tackled
by literature from two different perspectives: global inference involves testing a
(typically simple) null hypothesis against an alternative extending over the whole
(remaining) domain of the parameter space (see e.g. Benko et al. [1], Cuevas et al. [2],
Hall and Keilegom [4], Horváth et al. [5], Horváth and Kokoszka [5]); local inference
instead addresses the problem of selecting the areas of the domain responsible for
the rejection of the null hypothesis, assigning a p-value to each point of the domain
(see e.g. Pini and Vantini [6, 7]).

Here, we take the second line of research as a starting point. More precisely,
Pini and Vantini [6] suggest performing inference on the coefficients of a B-spline
basis expansion, while in extension of the previous work, the same authors propose
the interval-wise testing procedure (IWT) which performs inference directly on the
functional data (without requiring a basis expansion) [7]. Both methods propose
to adjust local p-values in order to control the interval-wise error rate, that is, the
probability of wrongly rejecting the null hypothesis in any interval.

In this paper, we extend the IWT to functional data defined in two-dimensional
domains. Indeed, all current works addressing local inference deal with one-
dimensional domains. Their extension to two (or more) dimensions is not trivial
since it would require to define a proper notion of ‘interval’ in two dimensions. We
start from a brief overview of the IWT and its properties (Sect. 2, then we discuss
how to extend this approach to two-dimensional domains (Sect. 3). Finally, we report
in Sect. 4 on a simulation study investigating the properties of this new method, and
draw some conclusions (Sect. 5).

2 Previous Works: The IWT for Functional Data Defined

on One-Dimensional Domains

We give here a brief overview of the IWT. For a thorough treatment of the method,
see Pini and Vantini [6, 7]. The setting in which the IWT can be used is this: assume
that for each unit of analysis (a subject, mechanical object, etc.) we have observed
a function xi (t), i = 1, . . . , N , t ∈ D = [a, b], with a, b ∈ R. For ease of notation,
we assume here that functional data are continuous. However, this assumption can
be relaxed (see Pini and Vantini [7]).

Assume that we aim at locally testing, for each point of the domain, a null hypothe-
sis H t

0 against an alternative H t
1 . For example, assume that the sample is divided into

a different groups. We indicate our functional data as xi j (t), where j = 1, . . . , a

denotes the group, and i = 1, . . . , n j denotes the units in group j . We could be
interested in testing mean differences between the groups:

H t
0 : µ1(t) = µ2(t) = · · · = µa(t), H t

1 = H C
0 , (1)
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where µ j (t) = E[xi j (t)]. Testing each hypothesis (1) is straightforward since it
involves univariate data. The challenge is to adjust the results in order to take the
multiplicity of tests into account. The IWT executes this as follows: First, we test
each hypothesis (1) separately, and denote the corresponding p-value as p(t). This
is an unadjusted p-value function defined for all t ∈ D. Next, we test the null and
alternative hypotheses over each interval I = [t1, t2] ⊆ D and the complementary
set of each interval I C = D \ I :

H
(I )

0 :
�

t∈I

H
(t)
0 : µ1(t) = µ2(t) = ... = µa(t) ∀t ∈ I ; H

(I )

1 = H
(I )C

0 ; (2)

H
(I C )

0 :
�

t∈I C

H
(t)
0 : µ1(t) = µ2(t) = ... = µa(t) ∀t ∈ I

C ; H
(I C )

1 = H
(I C )C

0 .

(3)

Denote the p-values of test (2) and (3) as pI and pI C

, respectively.
For each point t ∈ D, we now define an adjusted p-value for interval-wise testing

as the maximum p-value of all tests including the point t :

�pI W T (t) := max

�
max

I :t∈I

pI ; max
I C :t∈I C

pI C

�
. (4)

These p-values provide interval-wise control of the type 1 error rate, that is,

∀α ∈ (0, 1) : ∀I : PHI
0

�
�

t∈I

{�pI W T (t) ≤ α}

�
≤ α.

In practice, it is obviously not possible to perform a statistical test in every point of
the domain, and in every interval and complementary interval. So, the implementation
of the IWT requires discretizing functional data on a dense grid of p equally sized
subintervals. Functional data are approximated with a constant in each subinterval.
Then, the unadjusted p-value is computed on each subinterval, and the p-value of
tests (2) and (3) is computed for every interval and the complementary interval that
can be created as a union of the p subintervals. Finally, the adjusted p-value �pI W T (t)

is computed applying formula (4) on the performed tests. For details, see Pini and
Vantini [7].

3 Methods

The primary task in extending the IWT to functional data defined on two-dimensional
domains is to find a suitable neighbourhood over which the tests are performed
(corresponding to the intervals in the one-dimensional case). If one has decided
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on a neighbourhood, the very same principle of p-value adjustment as in the one-
dimensional case applies. Instead of interval-wise control, we then get control for
every neighbourhood of the specified type. What constitutes a good neighbourhood
can depend on the specific data one wants to analyse. If there is reason to believe that
the two-dimensional subset of the domain in which there is a significant difference
between groups takes on a certain shape, then it is reasonable to take this kind of
shape as the neighbourhood. The choice of neighbourhood might also depend on
the shape of the domain of the functional data. In this contribution, we will try
to stay as general as possible and make no assumptions about the area in which
significant differences may be found. We do however have to make an assumption
about the shape of the two-dimensional domain. We will assume that the data have
been recorded on a rectangular grid. This shape makes the use of rectangles or squares
as neighbourhoods plausible.

Before we continue, we would like to make one important remark: When using
intervals as neighbourhoods in the one-dimensional case, the complement of an
interval can be seen as an interval that wraps around. When using rectangles or
squares in the two-dimensional scenario, this is not the case. A rectangle that leaves
the domain on the right or top and comes in on the left or bottom can not necessarily be
described as the complementary set of a rectangle fully contained in the domain. For
ease of computation, we decided to test for all possible squares and the complements
thereof and to not test squares that wrap around.

Here, we describe the extension of IWT to the two-dimensional domain D, starting
from a general definition of neighbourhood. In the following subsection, we discuss
instead different possible choices of neighbourhoods.

3.1 The Extension of the IWT to Functional Data Defined on

Two-Dimensional Domains

Assume to observe functional data xi (t), with t ∈ D = [a1, b1] × [a2, b2], and i =

1, . . . , n. Assume that the functions xi (t) are continuous on D. Also, in this case, we
aim at locally testing a null hypothesis against an alternative, and selecting the points
of the domain where the null hypothesis is rejected. For instance, assume again that
units belong to a groups, and that we aim at testing mean equality between the groups
(1).

The two-dimensional extension of the IWT requires defining a notion of ‘inter-
val’ in two dimensions, or neighbourhood. Let us assume that a proper family of
neighbourhoods has been defined (e.g. all rectangles and rectangles’ complements
included in the domain), and denote as N a generic neighbourhood. Then, the
two-dimensional IWT requires testing the null and alternative hypotheses on every
possible neighbourhood, and on every complement of it, i.e. performing the tests
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H
(N )

0 :
�

t∈N

H
(t)
0 : µ1(t) = µ2(t) = · · · = µa(t) ∀t ∈ N ; H

(N )

1 = H
(N )C

0 ;

(5)

H
(N C )

0 :
�

t∈N C

H
(t)
0 : µ1(t) = µ2(t) = ... = µa(t) ∀t ∈ N

C ; H
(N C )

1 = H
(N C )C

0

(6)

for all N ∈ F . Let us denote with pN the p-value of such test. Then, the adjusted
p-value at point t ∈ D can be computed as

�pI W T (t) := max

�
max

N :t∈N

pN ; max
N C :t∈N

pN

�
. (7)

It is then straightforward to prove, extending the result of IWT for one-dimensional
data, that such p-values provide interval-wise control of the type 1 error rate over all
neighbourhoods, that is,

∀α ∈ (0, 1) : ∀N : PHN
0

�
�

t∈N

{�pI W T (t) ≤ α}

�
≤ α.

3.2 The Problem of Dimensionality in the Choice of the

Neighbourhood

In the one-dimensional case, we have two parameters that fully characterise an inter-
val: the starting point of the interval and its length. There are p different starting
points and p different lengths. There is, however, only one interval of length p,
giving us a total of p2 − p + 1 possible intervals for which p-values need to be com-
puted. Thus, the computational cost is of order p2. If we want to use rectangles as
neighbourhoods in the two-dimensional case, we can first freely chose the lower left
corner of the rectangle, giving us p1 p2 possibilities, where p1 is the number of grid
points on the x-axis and p2 is the number of grid points on the y-axis. Once the lower
left corner is chosen, the rectangle can then be fully characterised by its length in
the x-direction and its length in the y-direction. These can however not be chosen
freely since the rectangle has to remain inside the domain. Overall, this puts us as
p1(p1−1)p2(p2−1)

2 possible neighbourhoods, setting the computational cost to the order
of p2

1 p2
2 .

If we are content with only using squares, assuming for now that the domain D

is observed on a square grid discretised in p × p points, we only need to test for
p(p−1)(2p−1)

6 neighbourhoods. The computational cost is thus of the order p3, an order
lower than the one of the rectangle case.
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What if we want to have the benefit of lower computational cost but our domain
is a rectangular grid? In this case, we can simply rescale the grid: assume we start
from a p1 × p2 grid and assume p1 �= p2. We fix p := min{p1, p2}. Let, w.l.o.g,
p1 < p2. We then rescale the axis with the p2 observations by using new points
with coordinates a2 + i(b2−a2)

p−1 , i = 0, ..., p − 1. If p2−1
p1−1 is not an integer, then the

functions were not observed at the resulting new grid points. We can however use
a simple nearest neighbour imputation, using only the nearest neighbour. Note that
when we speak of squares and rectangles, we mean in terms of the grid, not in terms
of the physical units of the observations. Accordingly, by the nearest neighbour, we
mean the nearest observation, assuming that the distance between two adjacent grid
points is the same for the two dimensions. Our squares thus can be thought of as
rectangles whose sides have the same ratio as the sides of the original domain.

4 Simulation Study

We chose to conduct a simulation study looking at the following scenarios:

• (S0) The grid is quadratic and the null hypothesis is true everywhere. In this case,
we should see that we have weak control of the error rate.

• (S1) The grid is quadratic and the null hypothesis is violated on a square region.
In this case, we should have our square-wise control of the error rate.

• (S2) The grid is quadratic and the null hypothesis is violated on a region that is
not a square but a rectangle with unequal sides. Thus, we have no control of the
FWER in this scenario.

• (S3) The grid is rectangular and the null hypothesis is violated on a rectangular
region, the ratio of the sides of which is the same as the ratio of the sides of the
grid. If our rescaling works as is should, we should see the same results as in (S1).

4.1 Simulation Settings

For all our simulation scenarios, we followed the following scheme: First, we created
two mean functions on some domain. We discretised the mean functions by evaluating
them on a grid. We created observations by adding a realisation of a random variable

y = (y1,1, y1,2, . . . , y1,p2 , y2,1, . . . , yp1,1, . . . , yp1,p2) (8)

to each mean grid. This realisation was drawn from a multivariate Gaussian distri-
bution with mean zero and covariance function

Cov(Yi, j , Yi �, j �) = 0.1 · e−10((i−i �)2+( j− j �)2). (9)
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This simulates data that come from an infinitely differentiable stochastic process
(see Ramussen and Williams [9] pp. 83). Between subjects and groups, the errors
were uncorrelated. We did this 10 times for the first mean function and 10 times
for the second, giving us a sample of 20 observations divided into two groups. The
hypothesis of interest was the equality of distribution between the two groups, and
the specific test used was a permutation test by Hall and Tajvidi [3]. In scenarios
(S0), (S1) and (S2), the domain was the square [0, 1] × [0, 1]. In (S3), the domain
was [0, 2] × [0, 1]. The first mean function was always a constant zero. The second
mean function was as follows:

• (S0) The second mean function was also a constant zero.
• (S1) The second mean function was defined as

f (x, y) =

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

0 if x ≤ 0.25 or x ≥ 0.75 or y ≤ 0.25 or y ≥ 0.75
x−0.25

0.25 if 0.25 < x ≤ 0.5 and x ≤ y ≤ 1 − x
0.75−x

0.25 if 0.5 < x < 0.75 and x ≤ y ≤ 1 − x
y−0.25

0.25 if 0.25 < y ≤ 0.5 and y ≤ x ≤ 1 − y
0.75−y

0.25 if 0.5 < y < 0.75 and ≤ x ≤ 1 − y

This is a quadratic pyramid of height 1 and with base [0.25, 0.75] × [0.25, 0.75].
• (S2) The second mean function was defined as

f (x, y) =

⎧
⎪«
⎪¬

0 if y ≤ 0.25 or y ≥ 0.75
y−0.25

0.25 if 0.25 < y ≤ 0.5
0.75−y

0.25 if 0.5 < y < 0.75

This is a triangular prism of height 1 and with base [0, 1] × [0.25, 0.75].
• (S3) The second mean function was defined as

f (x, y) =

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

0 if x ≤ 0.5 or x ≥ 1.5 or y ≤ 0.25 or y ≥ 0.75

2x − 1 if 0.5 < x ≤ 1 and 0.5x ≤ y ≤ 1 − 0.5x

3 − 2x if 1 < x < 1.5 and 0.5x ≤ y ≤ 1 − 0.5x
y−0.25

0.25 if 0.25 < y ≤ 0.5 and 2y ≤ x ≤ 2 − 2y
0.75−y

0.25 if 0.5 < y < 0.75 and 2y ≤ x ≤ 2 − 2y

This is a pyramid of height 1 with base [0.5, 1.5] × [0.25, 0.75].

As to the number of grid points, we used 21 × 21 grid points in scenarios (S0), (S1)
and (S2), and 41 × 21 grid points in scenario (S3). The mean functions for the second
group for the scenarios (S1), (S2) and (S3) are illustrated in Figure 1
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Fig. 1 Perspective plots of the mean functions used in scenarios (S1), (S2) and (S3) (from left to
right)

Table 1 FWER estimated over 1000 runs in scenarios (S0), (S1), (S2) and (S3)

Scenario 0 Scenario 1 Scenario 2 Scenario 3

FWER 0.014 0.021 0.21 0.032

4.2 Results of Simulation Study

For each scenario, we estimated the FWER of the IWT and the pointwise probability
of rejection over 1000 simulation runs. The nominal FWER level was set to α = 0.05.
The estimated FWER is reported in Table 1, and the probability of rejection in Fig. 2.
Since the estimated probability of rejection was zero in all points in (S0), we decided
to show in the figure only the results of (S1), (S2) and (S3). Looking at the FWER, the
simulations confirmed what was expected from the theory. When the null hypothesis
was true over the whole domain (S0) when it was violated on a square (S1), and
when it was violated on a rectangle with the same aspect ratio as the domain (S3),
the FWER was controlled, and in fact, the procedure was conservative (the actual
FWER was significantly lower than its nominal value in all three cases). However,
when the null hypothesis was violated on a region that was different from a square
(S2), the FWER was not controlled. Indeed, in this scenario, it was slightly higher
than its nominal level.

Regarding the power, we can see that the two-dimensional IWT was able to
correctly detect the portions of the domain where the null hypothesis was false with
a reasonably good power (see Figure 2). As expected, the power was relatively low
at the boundary between the region where the null hypothesis was true and the region
where it was false, but it reached the value 1 inside the latter region.

5 Discussion

In this paper, we extended the IWT by Pini and Vantini [7] to two-dimensional func-
tional data defined on a rectangular domain. We performed a simulation study to
assess the performance of the method when using squares and/or rectangles with the
same ratio of sides as the domain and the complement of such shapes as neighbour-
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Fig. 2 Probability of rejection of each grid point estimated over 1000 runs in scenarios (S1), (S2)
and (S3) (from left to right)

hoods. The results of the simulation study show that the FWER is controlled when
the null hypothesis is true in such neighbourhoods, but not necessarily when it is true
on neighbourhoods of a different shape. The simulation also shows that the method
can be quite conservative in some instances. Future work will target further improv-
ing the respective performance of the method in these situations while keeping the
computational complexity manageable.

Acknowledgements The presented research was funded by the Austrian Science Fund (FWF):
KLI657-B31 and I 2697-N31 and by PMU-FFF: A-18/01/029-HÖL.

References

1. Benko, M., Härdle, W., Kneip, A., et al.: Common functional principal components. Annal. Stat.
37(1), 1–34 (2009)

2. Cuevas, A., Febrero, M., Fraiman, R.: An anova test for functional data. Comput. Stat. Data
Anal. 47(1), 111–122 (2004)

3. Hall, P., Tajvidi, N.: Permutation tests for equality of distributions in high-dimensional settings.
Biometrika 89(2), 359–374 (2002)

4. Hall, P., Van Keilegom, I.: Two-sample tests in functional data analysis starting from discrete
data. Statistica Sinica, pp. 1511–1531 (2007)

5. Horváth, L., Kokoszka, P., Reeder, R.: Estimation of the mean of functional time series and a
two-sample problem. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 75(1), 103–122 (2013)

6. Pini, A., Vantini, S.: The interval testing procedure: a general framework for inference in func-
tional data analysis. Biometrics 73(3), 835–845 (2016)

7. Pini, A., Vantini, S.: Interval-wise testing for functional data. J. Nonparametric Stat. 29(2),
407–424 (2017)

8. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, second edn. Springer (2005)
9. Edward Rasmussen, C., Williams, C.K.I.: Gaussian Processes in Machine Learning. MIT Press

(2006)



Assessing Data Support for the
Simplifying Assumption in Bivariate
Conditional Copulas

Evgeny Levi and Radu V. Craiu

Abstract The paper considers the problem of establishing data support for the sim-

plifying assumption (SA) in a bivariate conditional copula model. It is known that

SA greatly simplifies the inference for a conditional copula model, but standard tools

and methods for testing SA in a Bayesian setting tend to not provide reliable results.

After splitting the observed data into training and test sets, the method proposed will

use a flexible Bayesian model fit to the training data to define tests based on random-

ization and standard asymptotic theory. Its performance is studied using simulated

data. The paper’s supplementary material also discusses theoretical justification for

the method and implementations in alternative models of interest, e.g. Gaussian,

Logistic and Quantile regressions.

Keywords Calibration function · Conditional copula · Permutation · Simplifying

assumption

1 Introduction

A copula is a mathematical concept often used to model the joint distribution of

several random variables. The applications of copula models permeate a number of

fields where of interest is the simultaneous study of dependent variables, e.g. [8,

10, 13, 17]. The propagation of copula-related ideas in probability and statistics

started with [19] which proved that for a random vector (Y1, . . . , Yk) with cumu-

lative distribution function (CDF) H(y1, . . . , yk) and marginal continuous CDFs

Fi (yi ), i = 1, . . . , k, there exists a unique copula C : [0, 1]k → [0, 1] such that

H(y1, . . . , yk) = C(F1(y1), . . . , Fk(yk)). For statistical modelling, it is also use-

ful to note that a k-dimensional copula C and marginal continuous CDFs Fi (yi ), i =
1, . . . , k are building blocks for a valid k-dimensional CDF, C(F1(y1), . . . , Fk(yk))
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with i th marginal CDF equal to Fi (yi ), thus providing much-needed flexibility in

modelling multivariate distributions. The previous construction can be extended

when conditioning on a covariate vector X ∈ Rq [14, 17] so that

H(y1, . . . , yk |X) = CX (F1(y1|X), . . . , Fk(yk |X)), (1)

where all CDFs and the copula are conditional on X . For the rest of this paper, we

follow [16] and assume: (1) that the copula in (1) belongs to a parametric family

that remains the same across the whole range of X , and (2) its one-dimensional

parameter depends on X through some unknown function θ(X) : Rq → Θ ⊂ R.

The range of θ(X) is usually restricted, so we introduce a known one-to-one link

function g : Θ → R such that the calibration function, η : Rq → R, defined as

η(X) = g(θ(X)) has unrestricted range. Sometimes, it is convenient to parametrize

a copula family in terms of Kendall’s tau, τ(X) : Rq → [−1, 1], which, for any given

value of X , is in one-to-one correspondence with θ(X) when the copula parameter

is one-dimensional. Thus, there is also a known one-to-one function g"(·) such that

η(X) = g"(τ (X)).

The simplifying assumption (SA) [5] states that copula CX in (1) is indepen-

dent of X , or that η(X) is constant. Clearly, SA greatly simplifies the estimation in

conditional copula models, including their use in vines (see, for instance, [1]). Acar

et al. [2] showed that assuming SA when the data generative process has non-constant

calibration may bias the inference, while Levi and Craiu [16] showed that SA is vio-

lated when important covariates are not included in the model (1). In light of these

results, there is a genuine demand for strategies that effectively test whether the

SA is appropriate or not. A number of research contributions address this issue for

frequentist analyses, e.g. [3, 6, 9, 11].

This contribution belongs within the Bayesian paradigm, following the general

philosophy expounded also in Klein and Kneib [12]. In this setting, it was observed

in Craiu and Sabeti [4] that generic model selection criteria tend to choose a more

complex model even when SA holds. In the next section, we present the problem

in mathematical terms and review some of the Bayesian model selection procedures

used for SA. A new approach, based on permutations, is described in Sect. 3. The

Appendix contains a theoretical justification of the proposed algorithm and a dis-

cussion of extensions to other regression problems. A merit of the proposal is that it

is quite general in its applicability, but this comes, unsurprisingly, at the expense of

power. In order to investigate whether the trade-off is reasonable, we design a sim-

ulation study and present its conclusions in Sect. 4. The paper ends with a summary

and discussion of future work.
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2 Problem Setup

We consider observed data that consist of n independent triplets D = {(xi , y1i , y2i ),

i = 1, . . . , n} where y j i ∈ R, j = 1, 2, and xi ∈ Rq . Denote y1 = (y11, . . . , y1n),

y2 = (y21, . . . , y2n) and X ∈ Rn×q the matrix with i th row equal to xT
i . We rely on

(1) to express the full conditional model density for Y1 and Y2 given X

p(y1, y2|X, ω) =
n

�

i=1

f1(y1i |ω, xi ) f2(y2i |ω, xi )cθ(xi ) (F1(y1i |ω, xi ), F2(y2i |ω, xi )) ,

(2)

where f j , F j are the density and, respectively, the CDF for Y j , and ω denotes all

the parameters and latent variables in the joint and marginals models. The copula

density function is denoted by c, and it depends on X through unknown function

θ(X) = g−1(η(X)). The copula family can be selected using several model selection

criteria (e.g. [16, 18]). Once the copula family is selected, the objective is to check

whether the SA is valid, in other words whether (2) becomes the reduced model

P(y1, y2|X, ω) =
n

�

i=1

f1(y1i |ω, xi ) f2(y2i |ω, xi )cθ (F1(y1i |ω, xi ), F2(y2i |ω, xi )) ,

(3)

in which the copula depends only on one parameter, θ . Flexible Bayesian models

usually yield posteriors that are analytically intractable, so their characteristics will be

estimated using draws {ω(t)}M
t=1 obtained via a Markov chain Monte Carlo (MCMC)

algorithm (e.g. [16, 18]). Data support for the full and reduced models, (2) and (3),

may be established using predictive power as a criterion.

2.1 The Cross-Validated Pseudo Marginal Likelihood and Its

Conditional Variant

The cross-validated pseudo marginal likelihood (CVML) [7] calculates the average

(over parameter values) prediction power for model M via

CVML(M ) =
n

�

i=1

log (P(y1i , y2i |D−i ,M )) , (4)

where D−i is the data set from which the i th observation has been removed. An

estimate of (4) for a given model is estimated using posterior draws ω(t) given the

whole data set D , (detailed derivations can be found in Levi and Craiu [16]) via
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CVMLest (M ) = −
n

�

i=1

log

�

1

M

M
�

t=1

P(y1i , y2i |ω(t),M )−1

�

. (5)

The model with the largest CVML is preferred.

The conditional CVML (CCVML), introduced by Levi and Craiu [16] specifically

for copula models, exploits conditional rather than joint predictions

CCVML(M ) = 1

2

§

¨

©

n
�

i=1

log
�

P(y1i |y2i ,D−i , M )
�

+
n

�

i=1

log
�

P(y2i |y1i , D−i ,M )
�

«

¬

­

.

Again this criterion can be estimated from posterior samples using

CCVMLest (M ) = − 1
2

�n
i=1

�

log
�

1
M

�M
t=1

P(y2i |ω(t),M )

P(y1i ,y2i |ω(t),M )

�

+ log
�

1
M

�M
t=1

P(y1i |ω(t),M )

P(y1i ,y2i |ω(t),M )

��

. (6)

Similar to CVML, the model with the largest CCVML is selected.

2.2 Watanabe–Akaike Information Criterion

The Watanabe–Akaike Information Criterion [21] is an information-based criterion

that is closely related to CVML, as discussed in [20]. The WAIC is defined as

WAIC(M ) = −2fit(M ) + 2p(M ), (7)

where the model fitness is

fit(M ) =
n

�

i=1

log E [P(y1i , y2i |ω,M )] , (8)

and the penalty

p(M ) =
n

�

i=1

Var[log P(y1i , y2i |ω,M )]. (9)

The expectation in (8) and the variance in (9) are with respect to the conditional

distribution of ω given the data and can easily be estimated using the ω(t) draws. The

model with the smallest WAIC measure is preferred.
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3 Detecting Data Support for SA

As will be shown in Sect. 4, the criteria described above exhibit unsatisfactory per-

formances when the reduced model is the generative one. While it is expected that

the flexibility of the full model will yield good predictions even when SA holds, it

was surprising to see that the penalty term in (9) is not large enough to downgrade

the full model under the SA null. Therefore, we base our diagnostics on some of the

properties that are invariant to the group of permutations when SA holds.

In the first stage, we randomly divide the data D into training and test sets, D1 and

D2, with n1 and n2 sample sizes, respectively. The full model defined by (2) is fitted

on D1, and we denote ω(t) the t th draw sampled from the posterior. For the i th item

in D2, compute point estimates η̂i and Ûi = (Û1i , Û2i ), where Û j i = F j (y j i |ω̂ j , xi ),

j = 1, 2, i = 1, . . . , n2, and ω j denotes the vector of all the parameters and latent

variables related to the j th marginal distribution. The marginal parameter estimates,

ω̂ j , are obtained from the training data posterior draws. For instance, if the marginal

models are Y1i ∼ N ( f1(xi ), σ
2
1 ) and Y2i ∼ N ( f2(xi ), σ

2
2 ), then each of the MCMC

sample ω(t) leads to an estimate f̂ t
1 (xi ), f̂ t

2 (xi ), σ̂
t
1, σ̂

t
2, η̂

t (xi ). Then Ûi = (Û1i , Û2i )

are obtained using

(Û1i , Û2i ) = (Φ((y1i − f̂1(xi ))/σ̂1),Φ((y2i − f̂2(xi ))/σ̂2)),

where the overline a signifies the averages of Monte Carlo draws at .

Given the vector of calibration function evaluations at the test points, η̂ =
(η̂1, . . . , η̂n2

), and a partition min(η̂) = a1 < . . . < aK+1 = max(η̂) of the range of

η into K disjoint intervals, define the set of observations in D2 that yield calibration

function values between ak and ak+1, Bk = {i : ak ≤ η̂i < ak+1} k = 1, . . . , K . We

choose the partition such that each “bin” Bk has approximately the same number of

elements, n2/K .

Under SA, the bin-specific estimates for various measures of dependence, e.g.

Kendall’s τ or Spearman’s ρ, computed from the samples Ûi , are invariant to permu-

tations, or swaps across bins. Based on this observation, we consider the procedure

described in Table 1 for identifying data support for SA. The distribution of the result-

ing test statistics obtained in Method 1 is determined empirically, via permutations.

Alternatively, one can rely on the asymptotic properties of the bin-specific depen-

dence parameter estimates and construct a Chi-square test. Specifically, suppose the

bin-specific Pearson correlations ρ̂k are computed from samples {Ûi : i ∈ Bk}), for

all k = 1, . . . , K , and let ρ̂ = (ρ̂1, . . . , ρ̂K )T and ñ = n2/K be the number of points

in each bin. It is known that ρ̂k is asymptotically normal distributed for each k so

that √
ñ(ρ̂k − ρk)

d→ N (0, (1 − ρ2
k )2),

where ρk is the true correlation in bin k. If we assume that {ρ̂k : k = 1, . . . , K } are

independent, and set ρ = (ρ1, . . . , ρK )T and " = diag((1 − ρ2
1 )2, . . . , (1 − ρ2

K )2),

then we have
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Table 1 Method 1: A permutation-based procedure for assessing data support in favour of SA

√
ñ(ρ̂ − ρ)

d→ N (0, ").

In order to combine evidence across bins, we define the matrix A ∈ R(K−1)×K as

A =

£

¤

¤

¤

¥

1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

...
...

0 0 · · · 1 −1

¦

§

§

§

¨

. (10)

Since under the null hypothesis SA holds, one gets ρ1 = . . . = ρK , implying

ñ(Aρ̂)T (A" At )−1(Aρ̂)
d→ χ2

K−1.

Method 2, with its steps detailed in Table 2, relies on the ideas above to test SA.

Method 1 evaluates the p-value using a randomization procedure [15], while the

second is based on the asymptotic normal theory of Pearson correlations. To get

reliable results, it is essential to assign test observations to “correct” bins which is

true when calibration predictions are as close as possible to the true unknown values,

i.e. η̂(xi ) ≈ η(xi ). The latter heavily depends on the estimation procedure and sample

size of the training set. Therefore, it is advisable to apply very flexible models for the

calibration function estimation and have enough data points in the training set. The

trade-off we notice is that as more observations are assigned to D, the calibration

test predictions improve, even as power decreases due to a smaller sample size in

D2. For our simulations, we have used n1 ≈ 0.5n and n2 ≈ 0.5n, and K ∈ {2, 3}.
Remarks: The equivalence between SA and equality of η(x) across bins is central

to both methods and requires some discussion. Below, we assume that only two bins

are used and that the estimation is based on very large data so that finite-sample

variability is ignored.

1. Necessity If SA is true then indeed η must be constant across bins as long as the

copula family is the same across the whole range of X .
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Table 2 Method 2: A Chi-square test for assessing data support in favour of SA

2. Sufficiency If SA does not hold, assume that the calibration function takes two

values. Assuming consistency of the calibration’s estimator, it is expected that

bin 1 and bin 2 will contain pairs (u1, u2) following distributions π1(u1, u2)

and π2(u1, u2) with corresponding correlations ρ1 < ρ2, respectively. After

a random permutation, pairs in each bin will follow a mixture distribution

λπ1(u1, u2) + (1 − λ)π2(u1, u2) and (1 − λ)π1(u1, u2) + λπ2(u1, u2) in bins 1

and 2, respectively, with λ ∈ (0, 1). Thus, the post-permutation correlations in

bins 1 and 2 are λρ1 + (1 − λ)ρ2 and (1 − λ)ρ1 + λρ2. Observe that each corre-

lation is between ρ1 and ρ2 which implies that the absolute difference between

them will be less than ρ2 − ρ1, so we expect to reject the null. This argument offers

heuristic support for the method, but obviously cannot be extended to cases where

η is non-constant in each bin and finite sample variability must be accounted for.

A theoretical justification for Method 2 and extensions of this idea to other models

are available in Appendix.

4 Simulations

In this section, we present the performance of the proposed methods and comparisons

with generic CVML and WAIC criteria on simulated data sets. Different functional

forms of calibration function, sample sizes and magnitude of deviation from SA will

be explored.

4.1 Simulation Details

We generate samples of sizes n = 500 and n = 1000 from 3 scenarios described

below. For all scenarios, the Clayton copula will be used to model dependence

between responses, while covariates are independently sampled from U [0, 1]. For

all scenarios, the covariate dimension q = 2. Marginal conditional distributions Y1|X
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and Y2|X are modelled as Gaussian with constant variances σ 2
1 , σ 2

2 and conditional

means f1(X), f2(X), respectively. The model parameters must be estimated jointly

with the calibration function η(X). For convenience, we parametrize calibration on

Kendall’s tau τ(X) scale.

Sc1 f1(X) = 0.6 sin(5x1) − 0.9 sin(2x2),

f2(X) = 0.6 sin(3x1 + 5x2),

τ(X) = 0.5,σ1 = σ2 = 0.2.

Sc2 f1(X) = 0.6 sin(5x1) − 0.9 sin(2x2),

f2(X) = 0.6 sin(3x1 + 5x2),

τ(X) = δ + γ × sin(10X T β)

β = (1, 3)T /
√

10, σ1 = σ2 = 0.2.

Sc3 f1(X) = 0.6 sin(5x1) − 0.9 sin(2x2),

f2(X) = 0.6 sin(3x1 + 5x2),

τ(X) = δ + γ × 2(x1 + cos(6x2) − 0.45)/3

σ1 = σ2 = 0.2.

Sc1 corresponds to SA since Kendall’s τ is independent of covariate level. The

calibration function in Sc2 has single index form for the calibration function, while

in Sc3 it has an additive structure on τ scale (generally not additive on η scale); these

simulations are useful to evaluate performance under model misspecification. We

note that τ in Sc2 and Sc3 depends on parameters δ (average correlation strength)

and γ (deviation from SA), which in this study take values δ ∈ {0.25, 0.75} and

γ ∈ {0.1, 0.2}, respectively.

4.2 Simulation Results

For each sample size and scenario, we have repeated the analysis using 250 indepen-

dently replicated data sets. For each data, the GP-SIM model suggested by Levi and

Craiu [16] is fitted. This method implements sparse Gaussian Process (GP) priors

for marginal conditional means and sparse GP-Single Index for calibration function.

These non-parametric models are more flexible than parametric ones and can effec-

tively capture various patterns. The inference is based on 5000 MCMC samples for all

scenarios, as the chains were run for 10,000 iterations with 5000 samples discarded

as burn-in. The number of inducing inputs was set to 30 for all GP. For generic SA

testing, GP-SIM fitting is done for the whole data sets, and posterior draws are used

to estimate CVML and WAIC. Since the proposed methods requires data splitting,

we first randomly divide the data equally into training and testing sets. We fit GP-
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Table 3 Simulation results: generic, proportion of rejection of SA for each scenario, sample size

and model selection criterion

Scenario n = 500 n = 1000

CVML

(%)

CCVML

(%)

WAIC

(%)

CVML

(%)

CCVML

(%)

WAIC

(%)

Sc1 33.3 31.1 34.7 38.2 37.3 37.8

Sc2 (δ = 0.75, γ = 0.1) 99.1 98.7 99.1 100 100 100

Sc2 (δ = 0.75, γ = 0.2) 100 100 100 100 100 100

Sc2 (δ = 0.25, γ = 0.1) 80.1 84.4 80.1 99.1 100 99.1

Sc2 (δ = 0.25, γ = 0.2) 100 100 100 100 100 100

Sc3 (δ = 0.75, γ = 0.1) 76.9 73.3 77.8 85.7 82.2 85.8

Sc3 (δ = 0.75, γ = 0.2) 99.1 97.3 99.1 99.1 97.8 99.1

Sc3 (δ = 0.25, γ = 0.1) 54.7 56.4 55.6 65.3 68.4 64.9

Sc3 (δ = 0.25, γ = 0.2) 89.8 92.0 91.1 99.6 100 99.6

SIM on the training set and then use the obtained posterior draws to construct point

estimates of F1(y1i |xi ), F2(y2i |xi ) and η(xi ) for every observation in the test set. In

Method 1, we used 500 permutations. Table 3 shows the percentage of SA rejections

for generic Bayesian selection criteria. The presented results clearly illustrate that

generic methods have difficulties identifying SA. This leads to a loss of statistical

efficiency since a complex model is selected over a much simpler one. Moreover,

CVML or CCVML fails to identify SA as both measures do not penalize directly for

the complexity of the model. The simulations summarized in Table 4 show that the

proposed methods (setting α = 0.05) have much smaller probability of Type I error

which vary around the threshold of 0.05. It must be pointed, however, that under SA

the performance of χ2 test worsens with the number of bins K , which is not sur-

prising since as K increases, the number of observations in each bin goes down, and

normal approximation for the distribution of Pearson correlation becomes tenuous,

while the permutation-based test is more robust to small samples. The performance

of both methods improves with sample size. We also notice a loss of power between

Scenarios 2 and 3, which is due to model misspecification, since in the latter case

the generative model is different from the postulated one. All methods break down

when the departure from SA is not large, e.g. γ = 0.1. Although not desirable, this

has limited impact in practice since, in our experience, in this case the predictions

produced by either model are very similar.
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Table 4 Simulation results: proposed method, proportion of rejection of SA for each scenario,

sample size, number of bins (K ) and method

Scenario Permutation test χ2 test

n = 500 n = 1000 n = 500 n = 1000

K = 2

(%)

K = 3

(%)

K = 2

(%)

K = 3

(%)

K = 2

(%)

K = 3

(%)

K = 2

(%)

K = 3

(%)

Sc1 4.9 6.2 3.5 5.3 9.7 11.1 10.7 13.7

Sc2(δ = 0.75, γ = 0.1) 90.2 80.4 99.6 99.1 94.7 94.2 99.6 99.1

Sc2(δ = 0.75, γ = 0.2) 100 100 100 100 100 100 100 100

Sc2(δ = 0.25, γ = 0.1) 25.8 18.7 55.1 47.1 30.2 21.8 58.7 53.8

Sc2(δ = 0.25, γ = 0.2) 91.6 84.9 99.6 99.6 92.4 91.1 99.6 99.6

Sc3(δ = 0.75, γ = 0.1) 28.0 24.0 57.3 52.9 41.3 45.8 72.4 72.9

Sc3(δ = 0.75, γ = 0.2) 88.4 85.8 98.7 98.7 94.2 92.0 100 99.1

Sc3(δ = 0.25, γ = 0.1) 8.0 7.5 11.1 10.7 9.8 10.7 15.1 12.9

Sc3(δ = 0.25, γ = 0.2) 19.6 18.2 63.6 60.9 24.9 23.6 70.2 69.3

5 Conclusion

We propose two methods to check data support for the simplifying assumption in

conditional bivariate copula problems. Both are based on data splitting into training

and test sets, partitioning the test set into bins using calibration values obtained

in training and using randomization or χ2 tests to determine if the dependence is

constant across bins. Empirically, it was shown that the probability of Type I error is

controlled when SA holds. When the generative process does not satisfy SA, these

two methods also perform well, showing larger power than generic model selection

criteria. Future work will address questions related to the proportion of data that

should be assigned to training and test sets as well as bin sizes.
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Appendix

Theoretical Discussion

In this section, we prove that under canonical assumptions, the probability of Type

I error for Method 2 in Sect. 3 converges to α when SA is true.
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Suppose we have independent samples from K populations (groups),

(u1
1i , u1

2i )
n1

i=1 ∼ (U 1
1 , U 1

2 ),…,(uK
1i , uK

2i )
nK

i=1 ∼ (U K
1 , U K

2 ), the goal is to test ρ1 = · · · =
ρK (here ρ is Pearson correlation).

To simplify notation, we assume n1 = . . . , nK = n. Let ρ̂ = (ρ̂1, . . . , ρ̂K ) be

the vector of sample correlations , " = diag((1 − ρ2
1 )2, . . . , (1 − ρ2

K )2) and (K −
1) × K matrix A as defined in Sect. 3, then canonical asymptotic results imply that

if ρ1 = · · · = ρK and as n → ∞,

T = n(Aρ̂)T (A" AT )−1(Aρ̂)
d→ χ2

K−1. (11)

Based on the model fitted on D1, we define estimates of F1(y1i |xi ) and F2(y2i |xi ) by

Û = {Ûi = (F̂1(y1i |xi ), F̂2(y2i |xi ))}n2

i=1. Note that Û depends on D1 and X . Given a

fixed number of bins K and assuming, without loss of generality, equal sample sizes

in each bin ñ = n2/K , we define a test statistic T (Û ) as in (11) with ρ̂ j estimated

from {Û( j−1)ñ+1, . . . , Û j ñ}, for 1 ≤ j ≤ K .

Note that in Method 2, test cases are assigned to “bins” based on the value of

predicted calibration function η̂(xi ) which is not taken into account in the generic

definition of test statistic T (Û ) above. To close this gap, we introduce a permutation

λ∗ : {1, . . . , n2} → {1, . . . , n2} that “sorts” Û from smallest η̂(x) value to largest,

i.e. Ûλ∗ = {Ûλ∗(i)}n2

i=1 with η̂(xλ∗(1)) < η̂(xλ∗(2)) < · · · < η̂(xλ∗(n2)). Hence, the test

statistic in Method 2 has the form T (Ûλ∗) as in (11) but in this case test cases with

smallest predicted calibrations are assigned to the first group, or bin, and with largest

calibrations to the K th group/bin. Finally, define a test function φ with specified

significance level α to test SA:

φ(Û |λ∗) =
�

1 if T (Ûλ∗) > χ2
K−1(1 − α),

0 if T (Ûλ∗) ≤ χ2
K−1(1 − α).

(12)

Intuitively, if SA is false then we would expect T (Ûλ∗) to be larger then the critical

value χ2
K−1(1 − α).

The goal is to show that this procedure have probability of type I error equal to

α, which is equivalent to the expectation of the test function:

P(Type I error) =
�

φ(Û |λ∗)P(λ∗|D1, X)P(Û |D1, X)P(D1)P(X)dÛdD1d Xdλ∗.

(13)

Note that λ∗ does not depend on Û because of the data splitting to training and test

sets. Also usually P(λ∗|D1, X) is just a point mass at some particular permutation.

In general the above integral cannot be evaluated, however if we assume that for all

test cases:

F̂1(y1i |xi )
p→ F1(y1i |xi ) as n → ∞ ∀i,

F̂2(y2i |xi )
p→ F2(y2i |xi ) as n → ∞ ∀i,

(14)
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then under SA and as n → ∞, P(Û |D1, X) = P(Û ) ≈
�n2

i=1 c(û1i , û2i ) where c is

a copula density and the expectation becomes

P(Type I error) =
�

φ(Û |λ∗)P(λ∗|D1, X)P(Û )P(D1)P(X)dÛdD1d Xdλ∗ =

=
� ��

φ(Û |λ∗)P(Û )dÛ

�

P(λ∗|D1, X)P(D1)P(X)dD1d Xdλ∗ = α.

(15)

Since if SA is true,
�

φ(Û |λ∗)P(Û )dÛ = α for any λ∗. Therefore, if marginal CDF

predictions for test cases are consistent then this procedure has the required proba-

bility of Type I error for sufficiently large sample size.

Extensions to Other Models

The proposed idea of dividing the data into training and test subsets, splitting the

observations on the test set to bins defined in first stage and then using a test to

check distributional difference between bins can be extended to other models. For

example, one can use a similar construction in a regression problem with conditional

mean f (X) and constant variance. First assign test cases to bins by the values of

f̂ (X), and then compare means in each bin either by randomization procedures or

using χ2 test. This approach can be especially useful when f (X) is assumed to

have a complex form, such as generalized additive models, including additive tree

structures, splines or based on Bayesian non-parametric methods. Simulations we

conducted (not reported here) suggest that for large covariate dimensions, standard

F-tests for Gaussian error regression yield large Type I error probabilities, a problem

that is attenuated using the permutation-based ideas described in the paper.
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Semiparametric Weighting Estimations

of a Zero-Inflated Poisson Regression

with Missing in Covariates

M. T. Lukusa and F. K. H. Phoa

Abstract We scrutinize the problem of missing covariates in the zero-inflated Pois-

son regression model. Under the assumption that some covariates for modeling the

probability of the zero and the nonzero states are missing at random, the complete-

case estimator is known to be biased and inefficient. Although the inverse probabil-

ity weighting estimator is unbiased, it remains inefficient. We propose four types of

semiparametric weighting estimations where the conditional probabilities and the

conditional expected score functions are estimated either by using the generalized

additive models (GAMs) and the Nadaraya kernel smoother method. In addition, we

allow the conditional probabilities and the conditional expectations to be either of

the same types or of different types. Moreover, a Monte Carlo experiment is used to

investigate the merit of the proposed method.

Keywords Excess zeroes · Nonparametric selection probability · Generalized

additive models · Augmentation part · Missing at random · Estimating equation

1 Preliminaries

Zero-inflated data are quite common in various sectors in the real world such as

ecology, manufacturing, medicine, agriculture, and transportation, [18]. In the pres-

ence of the zero-inflated feature, the traditional count regression models, i.e., Poisson

regression model and the negative binomial regression model may fail to provide

an adequate fit of the data set. Differently, the zero-inflated (ZI) models naturally

become the best tools in this situation. ZI models can accommodate the excess zeros

feature and other features that lead to the overdispersion. Among many ZI mod-

els, zero-inflated Poisson (ZIP) model is the most popular one [6]. In practice, the
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parameters of a ZIP regression model are functions of covariates, but some covari-

ates may be missing at random (MAR) [12]. The complete case estimation is reliable

only when missings are completely at random (MCAR) [12]. Missing data problem

in ZI models has not received much attention in the literature. Following [15], we

extend [7] that proposed a semiparametric inverse probability method (IPW). To

gain efficiency, [11] proposed the augmentation inverse probability method estima-

tion. There are many works about semiparametric estimations in the presence of the

missing data, for instance, [2, 9, 14, 16, 17]. These works are mostly kernel-based

approaches, and a few are the generalized additive models based for missing data.

Note that the generalized additive models (GAMs) proposed by [5] appear to be

flexible, easier to implement, and help to reduce the curse of dimensionality. We

propose four estimators where the selection probability and the augmentation term

to be plugged in the estimating equations (EE) are both estimated by the Nadaraya

kernel function [8, 19] or the GAMs. In two EEs, the selection probability and the

augmentation term are of the same nature, and in the other two, they are of different

nature. Numerical results revealed that our proposed estimators are unbiased, con-

sistent, and perform all better than the IPW estimator proposed by [7]. The rest of

this work is as follows. A brief review of the ZIP distribution and the missing data

problem is given in Sect. 2. In Sect. 3, we develop the augmentation semiparametric

IPW methods for the ZIP regression model. In Sect. 4, we conduct some numerical

experiments. Finally, Sect. 5 provides a summary.

2 Review of Zero-Inflated Model and Naive Estimation

Let

Y = 0ω + (1 − ω)U

with ω = Bin(p), p = H (γ T
0 X1), H (u) = [1 + exp(−u)]−1, U = Pois(λ), and λ =

Pois(βT
0 X2). Denote with θ0 =

(
γ T

0 ,βT
0

)T
the vector parameters to estimate. More-

over, X1 and X2 are subsets of X which is the design matrix. Here, X = (X , Z),

where X is the covariate subject to missingness whereas Z is another covariate that

is always observed. Let V = (Z, W ), with W a surrogate variable of X . A ZIP ran-

dom variable (Y) can be seen as a mixture of two populations which is given by the

following expression:

Y =
{

y = 0, the subject is in the group not at risk with probability ω

y > 0, the subject is in the group at risk with probability 1 − ω.
(1)

Then, the parametric ZIP regression model developed by [6] is

P(Y = y|X ) = H (γ T
X1i)I(y=0) + I(Y>0)[1 − H (γ T

X1i)]U. (2)
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Let {(Yi,Xi) : i = 1, . . . , n} be a sample of independent observations of (Y ,X ).

Then, the likelihood function of a ZIP model [7] is expressed by

L (θ) =
∏n

i=1

[
H

(
γ T X1i

)
H−1

(
γ T X1i + exp(βT X2i)

)]I(Yi=0)

∏n
i=1

{[
1 − H (γ T X1i)

] exp[− exp(βT X 2i)][exp(βT X 2i)]
Yi

Yi !

}I(Yi>0)

.

By applying the natural logarithm to L (θ), we obtained the log-likelihood function

of ZIP distribution which is log [L (θ)] = �(θ) =
∑n

i=1 �i(θ),

�i(θ) = I(Yi = 0)
{
log

[
H

(
γ T X1i

)]
− log

[
H

(
γ T X1i + exp(βT X2i)

)]}

I(Yi > 0)
{
log

[
1 − H (γ T X1i)

]
+ Yiβ

T X2i − exp(X 2i)
}
. (3)

In the absence of missing data and by optimizing �(θ), we can obtain θ̂ , the ZIP

unbiased estimator of θ . Following [7], we assume that some covariates that model

ω and λ are missing at random (MAR) [12]. Let δ be the missing indicator such that

δ = 1 if X is observed, and 0 otherwise. We aim at obtaining θ̂ , which is a robust

and unbiased estimator of θ =
(
γ T ,βT

)T
. A naive estimation method refers to the

complete case (CC) estimating equation (EE) given by

UCC,n(θ) = 1√
n

n∑

i=1

δiSi(θ), (4)

where Si(θ) = ∂�i(θ)/∂θ , and where Si1(θ) = ∂�i(θ)/∂γ and Si2(θ) = ∂�i(θ)/∂β

are the components of the score function (Si(θ)), respectively, expressed by

Si1(θ) = ∂
∂γ

I(Yi = 0)
{
log

[
H (γ T X1i)

]
− log

[
H

(
γ T X1i + exp(βT X2i)

)]}

+ ∂
∂γ

I(Yi > 0)
{
log

[
1 − H (γ T X1i)

]
+ Yiβ

T X2i − exp(βT X2i)
}

and

Si2(θ) = ∂
∂β

I(Yi = 0)
{
log

[
H (γ T X1i)

]
− log

[
H

(
γ T X1i + exp(βT X1i)

)]}

+ ∂
∂β

I(Yi > 0)
{
log

[
1 − H (γ T X1i)

]
+ Yiβ

T X1i − exp(βT X2i)
}
.

For simplicity, we choose X1 = X2. By solving UCC,n

(
θ
)

= 0, we obtain θ̂CC,n

(naive solution), which is a biased and not efficient estimator of θ . Under MAR

assumption, E
[
UCC,n

(
θ
)]

�= 0. Besides the CC method, [7] proposed a semipara-

metric IPW of ZIP model with missings1 whose estimating equation is

1IPW denotes the inverse probability weighting. When π is known in preliminary stage, Eq. (5)

refers to true IPW estimating equation (see, [7]), and its solution is θ̂W t .
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UW s,n

(
θ , π̂

)
= 1√

n

n∑

i=1

δi

π̂(Yi, Vi)
Si(θ). (5)

Here π̂ is the Nadaraya kernel estimator [8] of π given by

π̂k = π̂(y, v) =
∑n

k=1 δkKh(Yk = y, Vk − v)∑n
i=1 Kh(Yi = y, Vi − v)

, (6)

where Kh(u) is a specific kernel function and h is the bandwidth parameter. When V

is categorical, (6) π̂(y, v) =
∑n

k=1 δk I(Y = yk , Vk = v)
∑n

i=1 I(Y = yi, Vi = v) as

in [7]. By solving UW s,n(θ , π̂) = 0, we obtain θ̂W s as a semiparametric estimator of

θ . Since UW s,n(θ , π̂) does not use all data, θ̂W s is less efficient in general. Hence, (5)

needs to incorporate all available data to become more efficient.

3 Proposed Methods

Robins et al. [11] proposed the augmentation inverse probability weighting (AIPW)

estimator where the selection probability (π ) and the augmentation term (A ) were

estimated parametrically. Often, A refers to the conditional expectation of the score

function given the observed data. It is expressed as A = E[S1(θ)|Y , V ]. When π

and A are known (true), the general form of AIPW estimating equation is

UW a,n

(
θ, π,A

)
= 1√

n

n∑

i=1

[ δi

π
(
Yi, Vi

)Si

(
θ
)
+

(
1 − δi

π
(
Yi, Vi

))
A (Yi, Vi)

]
. (7)

In general (7) is not available because the knowledge ofπ andA is often hypothetical.

When the distribution assumptions are not well understood, the parametric estimators

of π and A may not be a good idea. Thus, we propose four semiparametric double

robust AIPW estimating equations.2

3.1 Fully Kernel-Assisted Estimation

The fully kernel-assisted estimating equation of a ZIP regression model is

2Double robustness feature [10, 13]. These properties prevent the covariance matrix from suffering

from misspecification provided that at least one of the preliminary estimates including πg or Ag

plugged in Eq. (7) is correct. Only in this way, all ASEs and 95% CP of the proposed estimators are

valid for inference.
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UW a1,n

(
θ , π̂k , ˆAk

)
= 1√

n

n∑

i=1

[
δi

π̂k

(
Yi, Vi

)Si

(
θ
)
+

(
1 − δi

π̂k

(
Yi, Vi

) ) ˆAk(Yi, Vi)

]
, (8)

where π̂k is given in (6) and ˆAk is expressed in (9) by

ˆAk = ˆAk(y, v) =
∑n

i=1 δiSi(θ)Kh

(
Yi = y, Vi − v

)
∑n

i=1 δiKh

(
Yi = y, Vi − v

) , (9)

where Kh is the kernel function and h is the bandwidth parameter. Here π̂ and ˆA

are both the Nadaraya estimators [8, 19]. When V is categorical, ˆAk =
∑n

i=1 δiSi(θ)

I
(
Yi = y, Vi = v

)
|
∑n

i=1 δiI
(
Yi = y, Vi = v

)
, where I (.) is an indicator function as

it is in [14].

3.2 Fully GAMs-Assisted Estimation

The generalized additive models (GAMs) method is one of the popular nonparametric

techniques [5]. The GAMs regression in the sense of [5] is

η = a0 +
m∑

k=1

βkXk +
q∑

j=m+1

sj(Xj), (10)

where η = g[E(Y ∗|X))] is the mean function, X = (X1, . . . , Xm+1, . . . , Xq)
T are

covariates without missings, g is a link function, sj(Xj) are arbitrary unknown smooth

functions, a0 is the intercept term, and βk are regression coefficients. We assume that

(10) is identifiable by imposing E[Y ∗] = a0 and E[sj(Xj)] = 0 hold for all j. We

obtain π̂(Y , Z, W ) by fitting a binary GAMs regression given by

logit(π) = log

(
π

1 − π

)
= a0 + s1(Y ) + s2(Z) + β1(W ), (11)

where π = P(δ = 1|Y , Z, W ) and δ is the MAR indicator variable.3 To obtain ˆAg ,

we implement model (10) where the response variable is Y ∗ = E
[
S
(
θ
)
|Y , Z, W

]
.

Both π̂g and ˆAg are the GAMs estimators of π and A , respectively. Then the AIPW

fully GAMs estimating equation of a ZIP model is expressed by

UW a2,n

(
θ , π̂g, ˆAg

)
= 1√

n

n∑

i=1

[
δi

π̂g

(
Yi, Vi

)Si

(
θ
)
+

(
1 − δi

π̂g

(
Yi, Vi

)
) ˆAg(Yi, Vi)

]
.

(12)

3With regard to Eq. (11), δ is used as the outcome variable.
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The natural spline functions are used to estimate s1 and s2. Since X is the observed

data, the R package mcgv is used to obtain π̂g and ˆAg . In (8), π̂k and ˆAk are nuisance

components, whereas in (12), π̂g and ˆAg are nuisance components.

3.3 Mixed Nuisance Functions-Assisted Estimation

Similar to (8) and (12), we construct two mixed estimating equations. The first one

is obtained by plugging in π̂g and ˆAk in (7). We have

UW a3,n

(
θ , π̂g, ˆAk

)
. (13)

The second one is obtained by plugging in π̂k and ˆAg in (7). We have

UW a4,n

(
θ, π̂k , ˆAg

)
. (14)

Here, UW a1,n

(
θ , π̂k , ˆAk

)
, UW a2,n

(
θ , π̂g, ˆAg

)
, UW a3,n

(
θ , π̂g, ˆAk

)
, and UW a4,n

(
θ , π̂k ,

ˆAg

)
differ only in terms of their plugged-in estimators. By solving UW a1,n

(
θ , π̂k , ˆAk

)

= 0, UW a2,n

(
θ, π̂g, ˆAg

)
= 0, UW a3,n

(
θ , π̂k , ˆAg

)
= 0, and UW a4,n

(
θ, π̂g, ˆAk

)
= 0,

we obtain, respectively, θ̂Wπk Ak
, θ̂Wπg Ag

, θ̂Wπg Ak
, and θ̂Wπk Ag

. These solutions are the

semiparametric and double robust estimators of θ in the sense of [10, 13]. Compared

to other proposed estimators, the fully kernel-assisted estimator [14] θ̂Wπk Ak
is well

known in the literature of missing data. Details about the fully GAMs asymptotic

variance are derived from [1].4

4 Large Sample

Main results

Theorem 1 5 Under some specific regularity conditions and provided that nh2r → 0

and nh2d → ∞ as n → ∞, θ̂Wπk Ak
→ θ , θ̂Wπg Ag

→ θ , θ̂Wπg Ak
→ θ , and θ̂Wπk Ag

→
θ in probability. Then

√
n(θ̂Wπk Ak

− θ),
√

n(θ̂Wπg Ag
− θ),

√
n(θ̂Wπg Ak

− θ), and
√

n

(θ̂Wπk Ag
− θ) are all asymptotic N (0,"wa), where

"W a = G−1
F (θ)

{
V ar

[
UW a,n

(
θ , π,A

)]}
[G−1

F (θ)]T ,

4The theoretical substance of GAMs framework follows from the general discussion of 2-step

semiparametric estimations from [1].
5The proof of Theorem 1 follows along the same lines related to Theorem 2 from [15]. Also, the

proof uses some previous results from [7].
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and where V ar
[
UW a

(
θ , π,A

)]
= E

[{
UW a

(
θ , π,A

)}⊗2
]

and GF(θ) = E
[
− ∂S(θ)

∂θT

]
. This is the background of our asymptotic. Following [7, 9, 15], a con-

sistent asymptotic variance of "W a is given by

"̂W a = G−1
F,n(θ̂, π̂ , ˆA )

{
V ar

[
UW a,n

(
θ̂ , π̂ , ˆA

)]}
[G−1

F,n(θ̂ , π̂ , ˆA )]T , (15)

where GF,n(θ̂ , π̂ , ˆA ) = ∂
∂θT UW aj,n

(
.
)

with j = 1, 2, 3, 4.Here, V ar
[
UW a

(
θ , π,A

)]

is explicitly estimated by {Ĵ (.) − (Ĵ ∗(.) − Ĵ ∗∗(.))},where Ĵn(θ , π)= 1
n

∑n
i=1

δi

π2(Yi,Vi)

[Si(θ)]⊗2, Ĵ ∗
n (θ, π,A ) = 1

n

∑n
i=1

δi

π2(Yi,Vi)

[
Ŝ∗

i (θ)

]⊗2

, and Ĵ ∗∗
n (θ , π,A ) = 1

n

∑n
i=1[

Ŝ∗
i (θ)

]⊗2

. Here, Ŝ∗
i (θ) =

∑n
j=1 δjSj(θ)Kh(Yj=Yi,Vj−Vi)∑n

k=1 δk Kh(Yj=Yi,Vk−Vi)
with i = 1, . . . , n for fully-kernel

model [15]. As for the AIPW GAMs idea, its asymptotic properties are based on the

idea from [1]. Thus, we notice that

1. The asymptotic variances (ASV) "W a of
√

n(θ̂Wπk Ak
− θ),

√
n(θ̂Wπg Ag

− θ),
√

n(θ̂Wπg Ak
− θ), and

√
n(θ̂Wπk Ag

− θ), respectively, are all similar in structure.6

2. The consistent ASV estimators of "wa ("̂W a) are both sandwich types.

3. The ASV "W a is known to be relatively more efficient than "W s ("̂W s) which

refers to the ASV of semiparametric IPWs provided in [7].

4. θ̂Wπk Ak
, θ̂Wπg Ag

, θ̂Wπg Ak
, and θ̂Wπk Ag

are all asymptotically equivalent and double

robust, whereas θ̂W s is robust only.

5 Simulation Study

We investigate the performance of the proposed semiparametric estimators using

two different cases. In Case 1, X is U (−2, 2), Z is U (−2, 2), and t is N (0, 1), W is

1 if (X − σ ∗ t) < 0 or 0 elsewhere with σ = 0.75. Since Z is continuous, we use

uniform kernel defined by Kh(u) = 0.5 if u ∈ (−1, 1) or 0 elsewhere. The bandwidth

(h) is h = 1/3 σ̂Zywn−1/3 as in [20]. In Case 2, X is U (−2, 1), Z is a multinomial

(0, 1, 2, 3) with probability (0.1, 0.4, 0.3, 0.2) respectively, and W is 1 if X ≤ 0, and

0 otherwise. Unlike in Case 1, in Case 2, V = (Z, W )T is categorical. Moreover, Y is

obtained as Y = 0 ∗ ω + (1 − ω)P(λ), where ω = H (γ T X ) and λ = exp(βT X ),

where X = (1, X , Z)T . We define δ such that δ = 1 if X is observed and δ = 0 oth-

erwise. Under MAR assumption, the selection probability P(δ|Y , V, W ) is π(α) =(
1 − exp(α0 + α1Y + α2V )

)−1
, where α the nuisance parameter. We compare the

performance of θ̂Wπk Ak
, θ̂Wπg Ag

, θ̂Wπg Ak
, θ̂Wπk Ag

, θ̂W s, θ̂W , and θ̂CC computationally

6Contrarily to the approach used in [3, 4, 10, 13], etc., the asymptotic variance we propose follows

from [1, 7, 15]. In the proposed framework, the preliminary nonparametric functions contribute

implicitly to sandwich-type covariance matrix via the augmentation term A(Y , V ) and S∗
i (θ).
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via their Bias of the estimator (Bias), asymptotic standard errors (ASE), standard

deviations (SD), and coverage probabilities (CP) of their 95% confidence inter-

vals. The true values are θ0 = (γ0, γ1, γ2, β0, β1, β2)
T and α = (α0, α1, α2, α3, α4)

T .

With regard to Case 1, θ0 = (γ T
0 ,βT

0 ) = (1.0, 0.5, 0.5, 1.0, 0.7, 1.0)T and α =
(−.5, 0.3, 10,−0.5, 1)T . The true values, θ0 and α, in Case 2 are set as follows:

θ0 = (−1,−1, 0.5, 1, 0.7, 1)T and α = (0.5, 0.5, 0.5, 1.0, 0.7, 1.0)T . In both cases,

the sample size is 750 and the number of repetitions is 500. Regarding the GAMs

implementation on the observed data, the natural spline functions are used to estimate

s1(.) and s2(.), and the R package mcgv is used to estimate π(Y , V ) and A (Y , V ).

Table 1 Simulation result Case 1 with bandwidth h = 4σ̂Zywn−1/3

Parameter n = 750 and mr=0.47

θ̂CC θ̂W t θ̂W s θ̂Wπk Ak
θ̂Wπg Ag

θ̂Wπk Ag
θ̂Wπg Ak

Logistic model

γ1 Bias −0.4570 0.0027 0.0395 0.0071 0.0037 0.0171 0.0013

SD 0.1335 0.1434 0.1226 0.1151 0.1189 0.1174 0.1153

ASE 0.1373 0.1489 0.1357 0.1334 0.1342 0.1337 0.1339

CP 0.0740 0.9640 0.9620 0.9860 0.9740 0.9820 0.9840

γ2 Bias −0.2790 0.0034 −0.0073 −0.0082 0.0062 0.0017 0.0054

SD 0.1202 0.1297 0.1188 0.1154 0.1159 0.1173 0.1144

ASE 0.1211 0.1286 0.1202 0.1174 0.1192 0.1186 0.1187

CP 0.3480 0.9500 0.9520 0.9540 0.9560 0.9560 0.9520

γ3 Bias −0.3982 0.0074 0.0021 0.0016 0.0086 0.0017 0.0013

SD 0.1337 0.1436 0.1214 0.1164 0.1173 0.1164 0.1153

ASE 0.1312 0.1407 0.1324 0.1290 0.1308 0.1300 0.1339

CP 0.1760 0.9520 0.9620 0.9680 0.9740 0.9700 0.9840

Poisson model

β1 Bias 0.0835 −0.0045 0.0067 0.0046 −0.0047 0.0069 −0.0050

SD 0.0644 0.0691 0.0648 0.0639 0.0660 0.0641 0.0652

ASE 0.0690 0.0715 0.0669 0.0651 0.0659 0.0651 0.0658

CP 0.7940 0.9500 0.9540 0.9520 0.9340 0.9520 0.9440

β2 Bias −0.0261 0.0008 −0.0056 −0.0046 0.0014 −0.0057 0.0014

SD 0.0384 0.0404 0.0390 0.0387 0.0393 0.0387 0.0391

ASE 0.0413 0.0413 0.0391 0.0375 0.0384 0.0382 0.0383

CP 0.9140 0.9520 0.9400 0.9360 0.9480 0.9420 0.9480

β3 Bias −0.0374 0.0036 0.0039 0.0042 0.0033 0.0026 0.0034

SD 0.0476 0.0505 0.0480 0.0475 0.0497 0.0478 0.0485

ASE 0.0500 0.0504 0.0478 0.0465 0.0475 0.0469 0.0474

CP 0.8840 0.9440 0.9480 0.9460 0.9360 0.9420 0.9420

1. On average 47% of X were missing in 500 replications

2. The average rate of Y = 0 was 81% in 500 fully simulated data sets

3. The average rate of Y = 0 was 72% in 500 validated simulated samples
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6 Discussion

The simulation result of Case 1 revealed that in 500 repetitions, the missing rate of

X was 0.47, and the rates of Y = 0 were 0.81 and 0.72 in simulated and validated

samples, respectively. Details about ZIP regression model fit are provided in Table 1.

Likewise, the simulation result of Case 2 revealed that in 500 repetitions, the missing

rate of X was 0.49, and the rates of Y = 0 were 0.71 and 0.53 in simulated and

validated samples, respectively. More details are given in Table 2.

We presented the numerical results as evidence for the main results. We found that

the complete case estimator (θ̂CC) is biased and its empirical 95% CP is significantly

far from nominal 95% CI. The true weight IPW estimator (θ̂W t) and semiparametric

Table 2 Simulation results Case 2 with categorical V

Parameter n = 750 and mr=0.49

θ̂CC θ̂W t θ̂W s θ̂Wπk Ak
θ̂Wπg Ag

θ̂Wπk Ag
θ̂Wπg Ak

Logistic model

γ1 Bias −0.3274 0.0055 0.0287 0.0122 −0.0005 0.0174 0.0053

SD 0.2582 0.2670 0.2273 0.2248 0.2351 0.2210 0.2226

ASE 0.2465 0.2524 0.2071 0.2043 0.2031 0.2027 0.2029

CP 0.7280 0.9360 0.9180 0.9260 0.9080 0.9300 0.9240

γ2 Bias −0.2712 0.0025 −0.0045 −0.0035 −0.0008 0.0067 0.0037

SD 0.1246 0.1280 0.1150 0.1146 0.1084 0.1054 0.1140

ASE 0.1260 0.1296 0.1135 0.1125 0.1115 0.1114 0.1118

CP 0.4100 0.9540 0.9560 0.9580 0.9560 0.9580 0.9460

γ3 Bias −0.4493 −0.0033 −0.0113 −0.0086 0.0008 −0.0037 −0.0010

SD 0.1278 0.1334 0.1099 0.1079 0.1182 0.1110 0.1079

ASE 0.1293 0.1329 0.1061 0.1044 0.1052 0.1051 0.1052

CP 0.0620 0.9480 0.9480 0.9460 0.9220 0.9360 0.9480

Poisson model

β1 Bias 0.0751 0.0026 0.0090 0.0095 0.0035 0.0056 0.0019

SD 0.0689 0.0738 0.0707 0.0703 0.0746 0.0721 0.0725

ASE 0.0706 0.0730 0.0685 0.0674 0.0672 0.0678 0.0672

CP 0.8040 0.9460 0.9320 0.9260 0.9240 0.9300 0.9260

β2 Bias −0.0204 −0.0010 −0.0035 −0.0035 −0.0010 −0.0030 −0.0007

SD 0.0273 0.0285 0.0280 0.0279 0.0275 0.0276 0.0284

ASE 0.0265 0.0266 0.0248 0.0244 0.0244 0.0246 0.0244

CP 0.8660 0.9220 0.8900 0.8840 0.9080 0.9000 0.8960

β3 Bias −0.0309 −0.0020 −0.0041 −0.0043 −0.0023 −0.0031 −0.0017

SD 0.0292 0.0305 0.0297 0.0296 0.0305 0.0301 0.0301

ASE 0.0304 0.0309 0.0293 0.0287 0.0289 0.0290 0.0290

CP 0.8380 0.9440 0.9300 0.9300 0.9400 0.9360 0.9360

1. On average 49% of X were missing in 500 replications

2. The average rate of Y = 0 was 71% in 500 full simulated data sets

3. The average rate of Y = 0 was 53% in 500 validated simulated samples
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IPW estimator (θ̂W s) yield good estimates, but they were still less efficient due to

listwise deletion. The θ̂Wπk Ak
, θ̂Wπg Ag

, θ̂Wπg Ak
, and θ̂Wπk Ag

performed much better than

θ̂W t and slightly better than θ̂W s. In addition, θ̂Wπk Ak
, θ̂Wπg Ag

, θ̂Wπg Ak
, and θ̂Wπk Ag

were

all double robust estimators [11]. Moreover, θ̂Wπk Ak
, θ̂Wπg Ag

, θ̂Wπg Ak
, and θ̂Wπk Ag

are

root-n consistent. Its related proof is beyond the scope of this work. Moreover, the

fully kernel- and fully GAMs- assisted estimations are well known in the semipara-

metric method for missing data literature, contrarily to the semiparametric mixed

Kernel-GAMs and GAMs-Kernel estimators which are novel ideas and should be

the object of further investigation. Although the focus was mostly methodological

than theoretical, our work shares many similarities with other studies, i.e., [3, 9] in

nature.
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The Discrepancy Method for Extremal

Index Estimation

Natalia Markovich

Abstract We consider the nonparametric estimation of the extremal index of

stochastic processes. The discrepancy method that was proposed by the author as a

data-driven smoothing tool for probability density function estimation is extended to

find a threshold parameter u for an extremal index estimator in case of heavy-tailed

distributions. To this end, the discrepancy statistics are based on the von Mises–

Smirnov statistic and the k largest order statistics instead of an entire sample. The

asymptotic chi-squared distribution of the discrepancy measure is derived. Its quan-

tiles may be used as discrepancy values. An algorithm to select u for an estimator of

the extremal index is proposed. The accuracy of the discrepancy method is checked

by a simulation study.

Keywords Nonparametric estimation · Discrepancy method · von

Mises–Smirnov statistic · Extremal index · Heavy-tailed distribution

1 Introduction

Let Xn = {X1, . . . , Xn} be a sample of random variables (rvs) with cumulative distri-

bution function (cdf) F(x). We consider the nonparametric estimation of the extremal

index (EI) of stochastic processes. There are nonparametric methods like the well-

known blocks and runs estimators of the EI which require the selection of two

parameters, where an appropriate threshold u is among them [3]. Modifications of

the blocks estimator [6, 20] and sliding blocks estimators [17, 19] require only the

block size without u. The intervals estimator depends only on u [9]. Less attention

is devoted to the estimation of parameters required for these estimators.

The discrepancy method was proposed and studied in [13, 23] as a data-driven

smoothing tool for light-tailed probability density function (pdf) estimation by inde-

pendent identically distributed (iid) data. The idea is to find a smoothing parameter
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(i.e., a bandwidth) h as a solution of the discrepancy equation:

ρ(�Fh, Fn) = δ.

Here, �Fh(x) =
� x

−∞
�fh(t)dt , f̂h(t) is some pdf estimate, and δ is a known discrepancy

value of the estimation of F(x) by the empirical distribution function Fn(t), i.e.,

δ = ρ(F, Fn), ρ(·, ·) is a metric in the space of cdf’s. Since δ is usually unknown,

some quantiles of limit distributions of von Mises–Smirnov (M-S)

ω2
n = n

� ∞

−∞
(Fn(x) − F(x))2 d F(x),

and Kolmogorov–Smirnov statistics were proposed as δ. Distributions of these statis-

tics are invariant regarding F(x), [4]. In practice the bandwidth h may be found as

a solution of the equation [13]

ω̂2
n(h) = 0.05, (1)

where

ω̂2
n(h) =

n�

i=1

�
�Fh(X i,n) − i − 0.5

n

�2

+ 1

12n

is based on the order statistics X1,n f · · · f Xn,n corresponding to the sample Xn .

The value 0.05 corresponding to the maximum (mode) of the pdf of the statistic ω2
n

was found by tables of statistic ω2
n [4] as the discrepancy value δ.

It is noted in [14, 16] that for heavy-tailed distributions, the statistic ω2
n may not

reach the value 0.05 and hence, the discrepancy equation (1) may have no solutions, or

the solutions provide too small values of h that are unsatisfactory for pdf estimation.

In order to estimate heavy-tailed pdf’s, the modification of the discrepancy method

based on the k largest order statistics instead of the entire sample was considered in

[16]. Namely, the statistic

ω̂2
n(h) =

n�

i=n−k+1

�
�Fh(X i,n) − i − 0.5

n

�2

+ 1

12n

was proposed to be used in (1). A similar idea was explored in [15] to estimate the

EI.

Definition 1 ([12, p. 67]) The stationary sequence {Xn}ng1 is said to have EI θ ∈
[0, 1] if for each 0 < τ < ∞ there is a sequence of real numbers un = un(τ ) such

that it holds

lim
n→∞

n(1 − F(un)) = τ, lim
n→∞

P{Mn f un} = e−τθ , (2)

where Mn = max{X1, . . . , Xn}.
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The EI reflects a cluster structure of a sequence. If X1, . . . , Xn are independent,

θ = 1 holds. One can determine the cluster as the number of consecutive observations

exceeding a threshold u between two consecutive non-exceedances, [9]. Then the

values of inter-cluster times T1(u) for a given threshold u are stated as the numbers

of consecutive non-exceedances between two consecutive clusters, [9]. We have

T1(u) = min{ j g 1 : M1, j f u, X j+1 > u|X1 > u},

M1, j = max{X2, . . . , X j }, M1,1 = −∞. Observations of T1(un) normalized by the

tail function {Yi = F(un)T1(un)i }, i = 1, . . . , L , L = L(un), L < n,1 are derived

to be asymptotically exponentially distributed with weight θ , i.e.,

P{F(un)T1(un) > t} → θ exp(−θ t) for t > 0

as n → ∞ under a specific mixing condition and un satisfying (2), [9].

The discrepancy equation may be based on the k, 1 f k f L − 1, largest order

statistics of a sample {Yi = (Nu/n)T1(u)i } as follows:

ω̂2
L(u) =

L�

i=L−k+1

�
�G(Yi,L) − i − 0.5

L

�2

+ 1

12L
= δ. (3)

Here, Nu =
�n

i=1 1{X i > u} is the number of observations which exceed a prede-

termined high threshold u. �G(Yi,L) is determined by G(t) = 1 − θ exp(−θ t) with

the replacement of θ by some estimate �θ(u) and t by the order statistic Yi,L , [15]. An

appropriate value of the threshold u can be found as a solution of the discrepancy

equation (3) with a predetermined value δ with regard to any consistent nonparamet-

ric estimator of EI. The calculation (3) by an entire sample may lead to the lack of

a solution of the discrepancy equation regarding u the same way as for the heavy-

tailed pdf estimation or to too large values u which may not be appropriate for the

estimation of θ . The selection of k and δ remains a problem. We aim to obtain a limit

distribution of the discrepancy statistic related to (3) depending on k and to use its

quantiles as δ.

The paper is organized as follows. In Sect. 2, related work is recalled. In Sect. 3,

a limit distribution of the normalized statistic ω̂2
L(u) is obtained, and an algorithm

of the discrepancy method based on the M-S statistic is given. Simulation study is

shown in Sect. 4. Conclusions are presented in Sect. 5.

1 L = 1 holds when θ = 0.
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2 Related Work

Our achievements are based on the following Lemmas 3.4.1, 2.2.3 by [7] concerning

limit distributions of the order statistics. They are recalled here.

Lemma 1 ([7, p. 89]) Let X, X1, X2, . . . , Xn be iid rvs with common cdf F, and

let X1,n f X2,n f · · · f Xn,n be the n order statistics. The joint distribution of

{X i,n}n
i=n−k+1 given Xn−k,n = t , for some k ∈ {1, . . . , n − 1}, equals the joint distri-

bution of the set of the order statistics {X∗
i,k}k

i=1 of iid rvs {X∗
i }k

i=1 with cdf

Ft (x) = P{X f x |X > t} = (F(x) − F(t))/(1 − F(t)), x > t. (4)

Lemma 2 ([7, p. 41]) Let U1,n f U2,n f · · · f Un,n be the n order statistics from a

standard uniform distribution. Then, as n → ∞, k → ∞, n − k → ∞,

(Uk,n − bn)/(an)

is asymptotically standard normal with

bn = (k − 1)/(n − 1), an =
"

bn(1 − bn)/(n − 1).

Definition 2 ([9]) For real u and integers 1 f k f l, let Fk,l(u) be the σ -field gen-

erated by the events {X i > u}, k f i f l. Define the mixing coefficients αn,q(u),

αn,q(u) = max
1fkfn−q

sup |P(B|A) − P(B)|,

where the supremum is taken over all A ∈ F1,k(u) with P(A) > 0 and B ∈
Fk+q,n(u) and k, q are positive integers.

Theorem 1 ([9, p. 547]) Let {Xn}ng1 be a stationary process of rvs with tail function

F(x) = 1 − F(x). Let the positive integers {rn} and the thresholds {un}, n g 1 be

such that rn → ∞, rn F(un) → τ , and P{Mrn
f un} → exp(−θτ) hold as n → ∞

for some τ ∈ (0,∞) and θ ∈ [0, 1]. If there are positive integers qn = o(rn) such

that αcrn ,qn
(un) = o(1) for any c > 0, then we get for t > 0

P{F(un)T1(un) > t} → θ exp(−θ t), n → ∞.

For declustering the sample into approximately independent inter-cluster times

{(T1(u))i }, one can take k − 1 = �θ
�n

i=1 1(X i > u)� of the largest inter-exceedance

times, [9]. The larger u corresponds to larger inter-cluster times whose number L(u)

may be small. This leads to a larger variance of the estimates based on {(T1(u))i }.
The intervals estimator of the EI follows from Theorem 1 and depends only on u.

It is defined as [3, p. 391],



The Discrepancy Method for Extremal Index Estimation 345

θ̂n(u) =
�

min(1, θ̂1
n (u)), if max{(T1(u))i : 1 f i f L − 1} f 2,

min(1, θ̂2
n (u)), if max{(T1(u))i : 1 f i f L − 1} > 2,

(5)

θ̂1
n (u) = 2(

�L−1
i=1 (T1(u))i )

2

(L − 1)
�L−1

i=1 (T1(u))2
i

,

θ̂2
n (u) = 2(

�L−1
i=1 ((T1(u))i − 1))2

(L − 1)
�L−1

i=1 ((T1(u))i − 1)((T1(u))i − 2)
.

The intervals estimator is derived to be consistent for m-dependent processes, [9].

Asymptotic normality of
√

kn(θ̂n(u) − θ), where kn = �n/rn� and rn → ∞, rn =
o(n) as n → ∞ is proved for the intervals estimator in [18].

3 Main Results

3.1 Theory

Let us rewrite the left-hand side of (3) in the following form:

ω̂2
L(u) =

L�

i=L−k+1

�
1 − θ exp(−Yi,Lθ) − i − 0.5

L

�2

+ 1

12L
.

We disregard the marginal distribution of the random number of inter-cluster times

L = L(u). This approach is referred to as a conditional one. This is possible since

the limit distribution of L(un) does not depend on un as n → ∞. Following [3],

Sect. 10.3.1, the probability P{L(un) = i} may be approximated by a binomial dis-

tribution with probability p∗
n = P{Mrn

f un} that tends to e−τθ by (2). Here, rn

denotes the length of a data block. The cluster is defined as a block of data with at

least one exceedance over un . The same is true for the cluster defined as in [9]. We

have

1 − θ exp(−Yi,Lθ) =d Ui,L , (6)

where {Ui,L} are order statistics derived from an iid uniform [0, 1] sample {Ui }L
i=1.

By Lemma 1, the joint distribution of upper order statistics (UL−k+1,L , . . . , UL ,L)

given UL−k,L = t , t ∈ [0, 1), for some k = 1, . . . , L − 1, equals the joint distribution

of order statistics (U ∗
1,k, . . . , U ∗

k,k) of associated iid rvs {U ∗
i }k

i=1 with cdf
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Ft (x) = (x − t)/(1 − t), 0 f t < x f 1. (7)

Lemma 3 derives the normal distribution of U ∗
i,k given UL−k,L = t after normaliza-

tion.

Lemma 3 Let U ∗
1,k f U ∗

2,k f · · · f U ∗
k,k be the k order statistics of iid rvs {U ∗

i }k
i=1

with cdf (7). Then, as k → ∞, i → ∞, k − i → ∞,

(U ∗
i,k − bi,k)/ai,k

is asymptotically standard normal with

b∗
i,k = i − 1

k − 1
= bi,k − t

1 − t
, ai,k = (1 − t)

�
b∗

i,k(1 − b∗
i,k)

k − 1
. (8)

Proof The pdf of (U ∗
i,k − bi,k)/ai,k is given by [2]

k!
(i − 1)!(k − i)! · f (ai,k x + bi,k)Ft (ai,k x + bi,k)

i−1(1 − Ft (ai,k x + bi,k))
k−i

= k!
(i − 1)!(k − i)! · ai,k

1 − t
·
�

xai,k + bi,k − t

1 − t

�i−1

·
�

1 − xai,k + bi,k − t

1 − t

�k−i

(9)

=
�

k!
(i − 1)!(k − i)! (b

∗
i,k)

i−1(1 − b∗
i,k)

k−i ai,k

1 − t

�

·
�

1 + xai,k

b∗
i,k(1 − t)

�i−1 �
1 − xai,k

(1 − b∗
i,k)(1 − t)

�k−i

.

In the same way as in the proof of Lemma 2.2.3 [7], we obtain

(i − 1) log

�
1 + xai,k

b∗
i,k(1 − t)

�
+ (k − i) log

�
1 − xai,k

(1 − b∗
i,k)(1 − t)

�

= (i − 1)

⎛
¿x

ai,k

b∗
i,k(1 − t)

− x2

2

�
ai,k

b∗
i,k(1 − t)

�2

+ · · ·

À
⎠

+ (k − i)

⎛
¿−x

ai,k

(1 − b∗
i,k)(1 − t)

− x2

2

�
ai,k

(1 − b∗
i,k)(1 − t)

�2

− · · ·

À
⎠ .

From (8) it follows (i − 1)

#
ai,k

b∗
i,k (1−t)

#2

+ (k − i)
#

ai,k

(1−b∗
i,k )(1−t)

#2

= 1. The other terms

are of smaller order. Using Stirlings’s formula for k! we find that the factor in the

third string of (9) tends to (2π)−1/2. Thus, the statement follows.
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Lemma 4 Let the conditions of Lemma3 be fulfilled. Then the statistic

χ2 =
k∗�

i=1

�
(U ∗

i,k − bi,k)/ai,k

�2
(10)

is asymptotically χ2 distributed with k∗ = [k/2] degrees of freedom.

Proof Let us denote Y ∗
i,k = (U ∗

i,k − bi,k)/ai,k and obtain the distribution �ζ (y) of

ζ = χ/
√

k. From Lemma 3 Y ∗
i,k ∼ N (0, 1) holds asymptotically. Due to the symme-

try, we get Y ∗
1,k f · · · f Y ∗

k∗,k and Y ∗
k,k f · · · f Y ∗

k∗+1,k for odd k (Y ∗
k,k f · · · f Y ∗

k∗,k
for even k). By Lemma 1, the joint pdf of the k∗ order statistics Y ∗

1,k, . . . , Y ∗
k∗,k is

determined by [2]

f (x1, . . . , xk∗) = (k∗)!
k∗"

i=1

f (xi ) = (k∗)!
(
√

2π)k∗ exp

�
−

�k∗

i=1 x2
i

2

�
,

t < x1 < x2 < · · · < xk∗ < +∞.

For positive y, the cdf �ζ (y) is equal to the probability to fall inside the k∗-

dimensional sphere
�k∗

i=1

�
Y ∗

i,k

�2 = y2
√

k∗. For negative y, we have �ζ (y) = 0.

Hence, we obtain

�ζ (y) = (k∗)!
(
√

2π)k∗ ·

�
· · ·

�
�k∗

i=1 x2
i <y2k∗

exp

�
−

�k∗
i=1 x2

i

2

�
1(t < x1 < x2 < · · · < xk∗ < +∞)dx1dx2 . . . dxk∗ .

Using spherical coordinates and replacing x1 = ρ cos θ1 cos θ2 . . . cos θk∗−1, x2 =
ρ cos θ1 cos θ2 . . . sin θk∗−1, . . . , xk∗−1 = ρ cos θ1 sin θ2, xk∗ = ρ sin θ1, we find the

intervals of each variable ρ and θi , i = 1, . . . , k∗ − 1. Since t < x1 < x2 < · · · <

xk∗ < +∞ holds, we get x2/x1 = tan(θk∗−1) > 1 and hence, π/4 < θk∗−1 < π/2,√
2/2 < sin(θk∗−1) < 1. From x3/x2 = tan(θk∗−2)/ sin(θk∗−1) > 1 we then have

tan(θk∗−2) > sin(θk∗−1), and since the largest value of sin(θk∗−1) is 1, we get

tan(θk∗−2) > 1 and π/4 < θk∗−2 < π/2. Finally, we get π/4 < θi < π/2, i = 1, . . . ,

k∗ − 1. Now, we may take the following integral:

�ζ (y) = (k∗)!
(
√

2π)k∗ ·
� π/2

π/4

· · ·
� π/2

π/4

� y
√

k∗

0

exp

�
−ρ2

2

�
ρk∗−1 D(θ1, . . . , θk∗−1)dρdθk∗−1 . . . dθ1

= Ck∗

� y
√

k∗

0

exp

�
−ρ2

2

�
ρk∗−1dρ,
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where

Ck∗ = (k∗)!
(
√

2π)k∗

� π/2

π/4

· · ·
� π/2

π/4

D(θ1, . . . , θk∗−1)dθk∗−1 . . . dθ1.

Then the constant Ck∗ can be obtained from the equation:

�ζ (+∞) = 1 = Ck∗

� ∞

0

exp

�
−ρ2

2

�
ρk∗−1dρ = Ck∗�

�
k∗

2

�
2k∗/2−1.

Hence, it follows

�ζ (y) = 1

� (k∗/2) 2k∗/2−1

� y
√

k∗

0

exp

�
−ρ2

2

�
ρk∗−1dρ.

The pdf of ζ is given by

ϕζ (y) =
√

2k∗

� (k∗/2)

�
y
√

k∗
√

2

�k∗−1

exp

�
−k∗y2

2

�
.

Hence, one can get the chi-squared pdf of χ2:

p(x) = xk∗/2−1 exp(−x/2)

2k∗/2� (k∗/2)
.

3.2 Discrepancy Equation Based on the Chi-Squared Statistic

Regarding a consistent estimate �θ(u) by (6) and denoting i∗ = i − L + k∗, i = L −
k∗ + 1, . . . , L , then u can be selected as a solution of the discrepancy equation

k∗−1�

i∗=2

�
(1 − �θ(u) exp(−Yi∗+L−k∗,L�θ(u)) − bi∗,k∗)/ai∗,k∗

�2 = δ (11)

for a given k such that k∗ − 1 g 2 and k∗ = [(k − 2)/2]. Here δ is a mode max{k∗ −
2, 0} of the χ2(k∗) distribution and t = 1 − �θ(u) exp(−YL−k,L

�θ(u)). bi,k , ai,k , and

k∗ are calculated as in Lemmas 3 and 4. This could be an alternative to the method

(3). In Fig. 1a, c, one can see that the empirical cdf of the left-hand side statistic in

(11), where �θ(u) is based on (5), and a chi-squared cdf are rather close. Figure 1b, d

shows that the discrepancy equation (11) may have solutions since the left-hand side

statistic in (11) crosses the mode of the χ2-distribution.
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(a) (b)

(c) (d)

Fig. 1 Empirical cdf of the left-hand side of (11) built by 300 re-samples by a Moving Maxima

(MM) process with sample size n = 4 · 104, the EI θ = 0.8, k∗ = 5, t = 0.867, and u = 10 (solid

line) and chi-squared cdf (points), Fig. 1a; Left-hand side statistic in (11) for k∗ = 5 against threshold

u and the χ2 mode as the discrepancy, Fig. 1(b). The same statistics for an ARMAX process with

θ = 0.25, k∗ = 5, t = 0.953, and u = 50, Fig. 1c and for k∗ = 5 Fig. 1d

Remark 1 The discrepancy methods (3) and (11) are universal and can be used for

any nonparametric estimator �θ(u).

Algorithm 3.1 1. Using Xn = {X1, X2, . . . , Xn} and taking thresholds u corre-

sponding to quantile levels q ∈ {0.90, 0.905, . . . , 0.995}, generate samples of

inter-cluster times {T1(u)i } and the normalized rvs

{Yi } = {F(u)T1(u)i } = {(N/n)T1(u)i }, i = 1, L, L = L(u),

where N is the number of exceedances over threshold u.

2. For each u, select k = sL(u), 0 < s < 1, e.g., s = 0.0001.

3. Use a sorted sample YL−k+1,L f · · · f YL ,L and find all solutions u1, . . . , ul

(here, l is a random number) of the discrepancy equation (11).

4. For each u j , j ∈ {1, . . . , l}, calculate θ̂ (u j ) and find

�θ1(u) = 1

l

l�

i=1

�θ(ui ), �θ2(u) = �θ(umin), �θ3(u) = �θ(umax )
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Fig. 2 Left-hand side statistic in (11) for k∗ = 7, 8 against threshold u and the χ2 mode max{k∗ −
2, 0} as the discrepancy for an ARMAX process with θ = 0.75

as resulting estimates, where umin and umax are the minimal and maximal values

among {u1, . . . , ul}.

3.3 Estimation of k

It remains to select k. For declustering purposes, i.e., to have approximately inde-

pendent clusters of exceedances over u, it is recommended in [9] to take the largest

value k such that (T1(u))L−k,L is strictly larger than (T1(u))L−k−1,L .

We propose another approach. For each predetermined threshold u and for a

corresponding L(u), one may decrease the k-value until the discrepancy equations

have solutions and select the largest one among such k’s. Figure 2 shows that the

solution of (11) exists for k∗ = 7 and it does not for k∗ = 8. Due to several possible

solutions u, the average may be taken over all estimates �θ(u) with such u’s.

4 Simulation Study

Our simulation study, enhancing the behavior of Algorithm 3.1 is based on 1000

replicas of samples {X1, . . . , Xn} with size n = 105 generated from a set of models.

These models are Moving Maxima (MM), Autoregressive Maximum (ARMAX),

AR(1), AR(2), MA(2), and GARCH. The AR(1) process is considered with uniform

noise (ARu) and with Cauchy distributed noise (ARc). Using Algorithm 3.1, we

check the accuracy of the intervals estimator (5), where u is selected based on (11).
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The root mean squared error (RMSE) and the absolute bias are given in Tables 1 and

2. The best results are shown in bold numbers.

4.1 Models

Let us shortly recall the processes under study. The mth order MM process is X t =
maxi=0,...,m{αi Z t−i }, t ∈ Z, where {αi } are constants with αi g 0,

�m
i=0 αi = 1, and

Z t are iid standard Fréchet distributed rvs with the cdf F(x) = exp (−1/x), for x > 0.

Its EI is equal to θ = maxi {αi }, [1]. Values m = 3 and θ ∈ {0.5, 0.8} corresponding

to α = (0.5, 0.3, 0.15, 0.05) and α = (0.8, 0.1, 0.008, 0.02) are taken.

The ARMAX process is determined as X t = max{αX t−1, (1 − α)Z t }, t ∈ Z,

where 0 f α < 1, {Z t } are i.i.d standard Fréchet distributed rvs and P{X t f x} =
exp (−1/x) holds assuming X0 = Z0. Its EI is given by θ = 1 − α, [3]. We consider

θ ∈ {0.25, 0.75}.
The ARu process is defined by X j = (1/r)X j−1 + � j , j g 1 and X0 ∼ U (0, 1)

with X0 independent of � j . For a fixed integer r g 2, let �n , n g 1 be iid rvs with

P{�1 = k/r} = 1/r , k = 0, 1, . . . , r − 1. The EI of AR(1) is θ = 1 − 1/r [5]. θ ∈
{0.5, 0.8} are taken.

The MA(2) process is determined by X i = pZ i−2 + q Z i−1 + Z i , i g 1, with

p > 0, q < 1, and iid Pareto rvs Z−1, Z0, Z1, . . . with P{Z0 > x} = 1 if x < 1, and

P{Z0 > x} = x−α if x g 1 for some α > 0 [20]. Its EI is θ = (1 + pα + qα)−1. We

consider α = 2, (p, q) = (1/
√

2, 1/
√

2), (1/
√

3, 1/
√

6) with corresponding θ =
1/2, 2/3.

We consider also processes studied in [8, 17, 22]. The ARc process is X j =
0.7X j−1 + � j , where � j is standard Cauchy distributed and θ = 0.3. The AR(2)

process is X j = 0.95X j−1 − 0.89X j−2 + � j , where � j is Pareto distributed with tail

index 2 and θ = 0.25. The GARCH(1,1) is X j = σ j� j , with σ 2
j = α + λX2

j−1 +
βσ 2

j−1, α = 10−6, β = 0.7, λ = 0.25, with an iid sequence of standard Gaussian rvs

{� j } jg1 and θ = 0.447 [11].

4.2 Estimators and Their Comparison

In Tables 1 and 2, we insert apart from our estimates �θ1(u) − �θ3(u) the available

results of the simulation study by [8, 17, 20, 21]. The estimators are notated as

follows. �θdb denotes the disjoint blocks and �θ sb the sliding blocks estimators [17,

18]; �θ r the runs estimator [24]; �θml the multilevel estimator [20]; �θbcml and �θmlsb

the bias-corrected multilevel and the multilevel sliding blocks estimators [20, 21];
�θC and �θCms the cycles and the max-stable cycles estimators [8]. We can compare

only results related to processes overlapping with our experiment. We calculate the
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Table 1 The root mean squared error

RM SE ·
104/θ

MM ARMAX ARu MA(2) ARc AR(2) GARCH

0.5 0.8 0.25 0.75 0.5 0.8 0.5 2/3 0.3 0.25 0.328

s = 0.001

�θ1 146 188 136 173 2719 1217 227 545 66 426 237

�θ2 141 164 122 156 2163 946 295 813 104 498 288

�θ3 360 440 291 430 3330 1527 336 470 67 432 467

s = 0.0005

�θ1 105 155 100 148 2519 1127 268 696 50 498 231

�θ2 139 144 97 151 1906 854 434 1107 161 692 860

�θ3 355 451 296 463 3325 1527 355 449 67 439 484

s = 0.0001

�θ1 96 120 88 115 2224 975 331 846 151 620 416

�θ2 149 135 117 143 1704 768 503 1197 358 953 1127

�θ3 350 453 285 434 3331 1518 336 441 67 431 474

�θ K imt 217 569 69 498 1883 199 309 466 33 3630 4028

�θdb 630 550 3640 320 1000

�θ sb 550 450 950 320 840

�θr 550 140 1550

�θml 550 3640 220 485

�θbcml 400 1070 375 210

�θmlsb 420 853

�θC 660 950 1580

�θCms 320 6080 3520

K−gaps estimates by [22] with IMT-selected pairs (u, K ) (for details regarding the

IMT test, see [10]) which are denoted as �θ K imt .

We may conclude the following. The intervals estimator coupling with the discrep-

ancy method demonstrates a good performance in comparison with other investigated

estimators. It is not appropriate for light-tailed distributed processes (by its definition)

as one can see by the example of the ARu process. The K -gaps estimator is indicated

as one of the most promising methods in [8], [17]. Our estimators, especially �θ1(u)

for smaller s (that reflect the smaller number of the largest order statistics k), may

perform better.

Comparing Tables 1 and 2 with Fig. 1 by [21], where the multilevel and the bias-

corrected multilevel estimators were compared by data simulated from an ARMAX

model only, one can see that the latter estimates demonstrate much larger accuracy

values. Particularly, our estimate gives the best RMSE equal to 0.0088 and 0.0115

as far as the best among these estimates show about 0.04 and a bit less than 0.15 for

θ = 0.25 and θ = 0.75, respectively.
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Table 2 The absolute bias

|Bias| ·
104/θ

MM ARMAX ARu MA(2) ARc AR(2) GARCH

0.5 0.8 0.25 0.75 0.5 0.8 0.5 2/3 0.3 0.25 0.328

s = 0.001

�θ1 7.4016 6.2708 2.9461 3.6254 2709 1204 182 516 66 399 70

�θ2 41 50 22 49 2139 921 267 791 104 477 139

�θ3 38 40 36 62 3302 1474 72 246 67 314 174

s = 0.0005

�θ1 37 12 15 13 2513 1118 251 684 50 485 137

�θ2 104 59 52 65 1893 841 424 1017 161 679 809

�θ3 11 61 48 45 3296 1474 47 227 67 319 210

s = 0.0001

�θ1 56 35 48 43 2221 970 322 842 151 613 391

�θ2 126 81 97 97 1701 760 497 1194 358 949 1119

�θ3 43 59 31 43 3303 1464 51 246 67 304 186

�θ K imt 0.14862 567 54 496 1878 196 306 462 33 3627 4027

�θdb 160 450 3530 80 690

�θ sb 100 180 340 80 630

�θr 50 160 630

�θml 450 4170 87.5 270

�θbcml 0 1070 40 25

�θmlsb 179 320

�θC 130 200 230

�θCms 20 6000 3230

In [8] the cycles, the max-stable cycles, the runs, the K -gaps, the disjoint blocks,

and sliding blocks estimators were compared. For the first three estimators, the mis-

specification IMT test was applied as a choice method of the threshold-run parameter.

As an alternative, quantiles q ∈ {0.95, 0.975, 0.90} were used for these estimators

as thresholds with the run parameter estimated by the latter test. We can compare

only results related to MM with θ = 0.5, ARMAX with θ = 0.75, and AR(1) with

θ = 0.5 processes. The best bias equal to 0.002 and the RMSE equal to 0.032 for

an MM process were achieved by the max-stable cycles estimator �θCms . For our

estimator, the best absolute bias is 0.00074 and the RMSE is 0.0096 for an MM

process. For an ARMAX process, the best were the cycles estimated with the bias

equal to 0.003 and the max-stable cycles estimated with the RMSE equal to 0.032.

Our estimator provides the best absolute bias 0.00036 and the RMSE 0.0115.

The MA(2) process has been studied in [20] regarding the multilevel and the bias-

corrected multilevel blocks estimators with two specific weighted functions. For

MA(2) with θ = 0.5, the obtained best absolute bias is inside the interval (2.5, 3.0) ·
10−3, and the MSE is in (0.75, 1.0) · 10−3. Our estimator provides the best absolute

bias 4.7 · 10−3 and the MSE 5.15259 · 10−4. For MA(2) with θ = 2/3, we find in
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[20] the bias about 0.0025 and the MSE 0.7 · 10−3. Our estimator shows 0.0227 and

2.025 · 10−3 for the bias and the MSE, respectively.

5 Conclusions

The discrepancy method proposed for smoothing of pdf estimates is modified to

select the threshold parameter u for the EI estimation. We derive the χ2 asymptotic

distribution of the statistic relating to the M-S statistic. This allows us to use its mode

as an unknown discrepancy value δ. Since the discrepancy method may be applied

for different estimators of the EI, one can find other parameters such as the block

size for the blocks estimator of the EI instead of the threshold in the same way. The

accuracy of the intervals estimator (5) with u selected by the new discrepancy method

(11) is provided by a simulation study. The comparison with several EI estimators

shows its good performance regarding heavy-tailed distributed processes.
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Correction for Optimisation Bias in
Structured Sparse High-Dimensional
Variable Selection

Bastien Marquis and Maarten Jansen

Abstract In sparse high-dimensional data, the selection of a model can lead to an

overestimation of the number of nonzero variables. Indeed, the use of an �1 norm

constraint while minimising the sum of squared residuals tempers the effects of

false positives, thus they are more likely to be included in the model. On the other

hand, an �0 regularisation is a non-convex problem and finding its solution is a

combinatorial challenge which becomes unfeasible for more than 50 variables. To

overcome this situation, one can perform selection via an �1 penalisation but estimate

the selected components without shrinkage. This leads to an additional bias in the

optimisation of an information criterion over the model size. Used as a stopping

rule, this IC must be modified to take into account the deviation of the estimation

with and without shrinkage. By looking into the difference between the prediction

error and the expected Mallows’s Cp, previous work has analysed a correction for the

optimisation bias and an expression can be found for a signal-plus-noise model given

some assumptions. A focus on structured models, in particular, grouped variables,

shows similar results, though the bias is noticeably reduced.

1 Introduction

This paper falls under the scope of variable selection in high-dimensional data. The

number of variables might then be larger than the number of observations, thus

leading to difficulties in the computation of the models. Indeed, the classical tools

for low-dimensional data can no longer be used. In order to find a solution, the

assumption of sparsity is often made, meaning that the number of nonzero variables

is supposed to be smaller than the number of observations. Besides an improvement

in calculations, another benefit from sparsity results from the fact that the obtained
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models are more interpretable. Finding the nonzeros becomes the main objective.

The obvious method would be to test all subsets; however, this proves to be unfeasible

for more than a few dozen variables. More greedy algorithms exist, such as forward

selection or backward elimination, but they are likely to miss the true model in

addition to remaining computationally heavy. An other way to tackle the problem is

to use regularisation on the sum of squared residuals. For a linear model Y = Xβ + ε

with Y, ε ∈ IRn and β ∈ IRm, this consists in finding the estimator β̂ that solves an

equation usually of the form:

min
β

1

n
"Y − Xβ"2

2 + λ"β"p
p,

where the regularisation parameter λ is a kind of ‘budget’: acting as a weight, it limits

the norm of β̂. Ridge regression and Lasso are special cases where p = 2 and p = 1,

respectively, and their solutions can be calculated even when X is not of full rank.

Ideally, one would perform �0 regularisation, i.e. penalising the sum of squared

residuals by the number of nonzero variables, but this is a combinatorial problem,

and therefore intractable from the computational point of view. On the other hand,

Lasso [8] and other �1-type regularisations (penalisation by the sum of the absolute

values of the selected variables) offer a quadratic programming alternative whose

solution is still a proper variable selection, as it contains many zeros.

Lasso has many advantages. First, it applies shrinkage on the variables which

can lead to better predictions than simple least squares due to Stein’s phenomenon

[7]. Second, the convexity of its penalty means Lasso can be solved numerically.

Third, �1 regularisation is variable selection consistent under certain conditions,

provided that the coefficients of the true model are large enough compared to the

regularisation parameter [6, 10, 14]. Fourth, Lasso can take into account structures;

simple modifications of its penalisation term result in structured variable selection.

Such variations among others are the fused lasso [9], the graphical lasso [3] and

the composite absolute penalties [13] including the group-lasso [12]. Fifth, for a

fixed regularisation parameter, �1 regularisation has nearly the same sparsity as �0

regularisation [2]. However, this does not hold anymore when the regularisation

parameter is optimised in a data-dependent way, using an information criterion such

as AIC [1] or Mallows’s Cp [5].

Mallows’s Cp, like many other information criteria, takes the form of a penalised—

likelihood or—sum of squared residuals whose penalty depends on the number of

selected variables. Therefore, among all models of equal size, the selection is based

on the sum of squared residuals. Because of sparsity, it is easy to find a well-chosen

combination of falsely significant variables that reduces the sum of squared resid-

uals, by fitting the observational errors. The effects of these false positives can be

tempered by applying shrinkage. The optimisation of the information criterion then

overestimates the number of variables needed, including too many false positives in

the model. In order to avoid this scenario, one idea could be to combine both �1 and

�0 regularisation: the former to select the nonzeros and the latter to estimate their
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value. The optimal balance between the sum of squared residuals and the �0 regu-

larisation should shift towards smaller models. Of course, this change must be taken

into account and the expression of the information criterion consequently adapted.

The correction for the difference between �0 and �1 regularisation has been described

as a ‘mirror’ effect [4].

In Sect. 2, we explain more the mirror effect. The main contribution of this paper

follows and concerns the impact of a structure among the variables and how it affects

the selection. More precisely, the behaviour of the mirror effect for unstructured

and structured signal-plus-noise models is investigated in Sect. 3. A simulation is

presented in Sect. 4 to support the previous sections.

2 The Mirror Effect

Consider the linear model

Y = Xβ + ε

where ε is a n-vector of independent and identically distributed errors with E(εi) = 0

and var(εi) = σ 2 for i = 1, . . . , n. The design matrix X has size n × m with n possibly

smaller than m. We assume β ∈ IRm is sparse in the sense that the unknown number

of nonzeros n1 in β is smaller than n. For a given k, let Sk be a binary m-vector

with m − k zeros, provided by a procedure S(Y, k) which can be unstructured best

k selection or any structured procedure. An example of such a procedure could be an

implementation of Lasso with the regularisation parameter fine-tuned to obtain the

appropriate model size. Also, define Ok as the selection found by an oracle knowing

Xβ without noise, using the same procedure as for Sk , i.e. Ok = S(Xβ, k). The

notations XSk and XOk are used for the n × k submatrices of X containing the k

columns corresponding to the 1s in Sk and Ok , respectively.

One way to look at the mirror effect comes from investigating the difference

between the expected average squared prediction error and Mallows’s Cp criterion1.

The quality of the oracle least squares projection, β̂Ok = (XT
Ok XOk )−1XT

Ok Y, is mea-

sured by the prediction error PE(β̂Ok ) which can be, in turn, estimated unbiasedly

by �p(β̂Ok ), where, for a generic selection S,

PE(β̂S) =
1

n
E

(
"Xβ − XSβ̂S"

2
2

)
(1)

and �p(β̂S) is a non-studentised version of Mallows’s Cp

�p(β̂S) =
1

n
"Y − XSβ̂S"

2
2 +

2|S|

n
σ 2 − σ 2. (2)

1A similar discussion would hold for any distance between selected and true model.
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The selection Sk = S(Y, k), however, depends on Y. Hence, for the corresponding

least squares projection β̂Sk = (XT
Sk XSk )−1XT

Sk Y, the expectation of �p(β̂Sk ) will not

be equal to PE(β̂Sk ).

Among all selections of size k for k large enough so that the important vari-

ables are in the model, the procedure consisting of minimising (2), i.e. S(Y, k) =

arg min|S|=k �p(β̂S), adds seemingly nonzero variables—that should, in fact, be

zeros—in order to fit the observational errors by minimising further the distance

between XSk β̂Sk and Y. The consequence is a better-than-average appearance of

E�p(β̂Sk ) contrasting with the worse-than-average true prediction error: indeed the

false positives perform worse in staying close to the signal without the errors than

variables selected in a purely arbitrary way. This two-sided effect of appearance

versus reality is described as a mirror effect [4].

Whereas information criteria have been designed to evaluate the quality of one

specific model, the optimisation over the randomised �p(β̂Sk ) affects the statistics

of the selected variables. Because the selection Ok does not depend on Y, leaving

the statistics of the selected variables unchanged, the oracle curve PE(β̂Ok ) acts as a

mirror reflecting PE(β̂Sk ) onto �p(β̂Sk ):

PE(β̂Sk ) − PE(β̂Ok ) ≈ mk ≈ PE(β̂Ok ) − E�p(β̂Sk ). (3)

Figure 1 plots PE(β̂Sk ) and �p(β̂Sk ) in dashed and dotted lines, respectively, as

functions of the model size k. Also, the mirror curve PE(β̂Ok ) ≈ �p(β̂Sk ) + mk is

represented as the solid curve. Details of the calculations can be found in Sect. 4.

Fig. 1 Illustration of the

mirror effect. The mirror

curve is plotted in solid line

as a function of the model

size and reflects the

prediction error and

Mallows’s Cp, represented as

dashed and dotted curves,

respectively
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The Mirror and Degrees of Freedom

The mirror effect is closely related to the concept of generalised degrees of free-

dom [11]. Defining the residual vector ek = Y − XSk β̂Sk , the generalised degrees of

freedom are given by

νk =
1

σ 2
E[εT (ε − ek)] =

1

n
E(εT XSk β̂Sk ) (4)

and �p(β̂Sk ) = n−1"Y − XSk β̂Sk "2
2 + 2νkn−1σ 2 − σ 2 is then an unbiased estimator

of PE(β̂Sk ) for any choice of the selection Sk . Under sparsity assumptions [4], we

have

νk = E["PSk
ε"2

2]σ
−2 + o[PE(β̂Sk )] as n → ∞ (5)

with the projection matrix PSk = XSk (XT
Sk XSk )−1XT

Sk . Given such a projection, the

mirror correction mk is found to be

mk =
1

n
E["PSk ε"2

2;β] −
k

n
σ 2, (6)

meaning that mk = (νk − k)σ 2/n + o[PE(β̂Sk )]. This expression explicitly writes

the parametric dependence on β. An unbiased estimator is given by

m̂k =
1

n
E["PSk ε"2

2|S
k;β] −

k

n
σ 2. (7)

3 Qualitative Description of the Mirror

Using (7) within the signal-plus-noise model Y = β + ε, an estimator of the mirror

effect mk can be written as

m̂k =
1

n
E("εSk "2

2|S
k;β) −

k

n
σ 2 (8)

for any selection Sk . The behaviour of this estimator is described in the two following

subsections.

3.1 Unstructured Signal-Plus-Noise Models

The mirror effect can be decomposed into three stages depending on the model size k.
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Fig. 2 Illustration of the

mirror correction behaviour

for unstructured (dot-dashed

line) and group selections

(solid) as functions of the

model size
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Small selection sizes: especially if k ≤ n1 (the true number of nonzeros in β), only

nonzero variables should be selected. The errors associated with these variables

have an expected variance equal to σ 2 since they are randomly distributed among

these variables. Hence, mk is close to zero.

Intermediate selection sizes: the large errors are selected accordingly to their abso-

lute value. Their expected variance is obviously greater than σ 2, meaning that mk

is increasing. Its growth is high at first and decreases to zero as smaller errors are

added to the selection, leading to the last stage.

Large selection sizes: finally, only the remaining small errors are selected. This

has the effect of diminishing the (previously abnormally high) variance to its

original expected value; mk drops to zero which is achieved for the full model.

The illustration of the mirror correction is depicted in Fig. 2 (dot-dashed line).

The three stages appear approximately in the intervals [0, 1000], [1000, 8000] and

[8000, 25000]. Details of the calculations can be found in Sect. 4.

3.2 Structured Models: Grouped Variables

We now focus on group selection where l groups are selected and variables that

belong to the same group are added to the model altogether. Group-lasso may be the

selection procedure used for the construction of the estimator β̂Sl . See Sect. 4 for a

more complete definition of β̂Sl .

Small selection sizes: groups of nonzero variables are selected first as they have

major effects on the linear regression. As before, the associated errors are ran-

domly distributed, so their expected variance equals σ 2 and ml is roughly zero.

Intermediate selection sizes: the groups containing only errors are selected accord-

ingly to their norms. These groups typically contain high value errors and some

low value errors. Hence, their expected variance is greater than σ 2 but smaller



Correction for Optimisation Bias in Structured Sparse … 363

than in the case of unstructured selection as the latter just selects the largest errors.

The consequence on ml is that it increases but its growth, although high at first,

is smaller than for the unstructured case.

Large selection size: groups of small errors are selected (although they can still

contain some large errors), meaning that their expected variance decreases to σ 2

which is achieved for the full model.

The explanations above hold for any type of structure, so we can deduce that the

unstructured mirror has the largest amplitude in signal-plus-noise models. Indeed,

as there is no constraint on the variables, once the nonzeros are selected, the errors

are included in the model given their absolute value and more correction is needed

in order to temper their effects.

This description is represented in Fig. 2 where the mirror corrections for group and

unstructured selections can be visually compared as they are plotted in dot-dashed

and solid lines, respectively. The three stages of group selection can be seen in the

intervals [0, 2500], [2500, 125000] and [12500, 25000]. Details of the calculations

can be found in Sect. 4.

4 Simulation

In this simulation, r = 2500 groups containing w = 10 coefficients β j are generated

so that β = (β j)j=1,...,2500 is a n-dimensional vector with n = 25000. Within group j,

the β j coefficients have the same probability pj of being nonzero and, for each group

j, a different value pj is randomly drawn from the set P = (0.95, 0.80, 0.50, 0.05, 0)

with the respective probability Q = (0.02, 0.02, 0.01, 0.20, 0.75). The expected

proportion of nonzeros is �P, Q� = 1/20 for the whole vector β. The nonzeros

from β are distributed according to the zero inflated Laplace model fβ|β �=0(β) =

(a/2) exp(−a|β|) where a = 1/5. The observations then are computed as the vector

of groups (Yj)j=1,...,r = (β j)j=1,...,r + (εj)j=1,...,r , where ε is an n-vector of indepen-

dent, standard normal errors.

Estimates β̂ are calculated considering two configurations: groups of size w = 10

(initial setting) and groups of size 1 (unstructured selection). In the latter scenario,

β̂i = YiS
k
i where Sk is the binary n-vector selecting the k largest absolute values.

The 10-group estimator is β̂ j = YjS
l
j where Sl is the binary r-vector selecting the l

groups whose �2 norms are the largest. Using Lasso and group-lasso, respectively,

would provide us with the same selections Sk and Sl , because of the signal-plus-noise

model. Mirror corrections for both configurations are found using (8).

A comparison of the false discovery rates (FDR) of nonzero variables for unstruc-

tured and group selections is presented in Fig. 3: because we allow groups to contain

zeros and nonzeros in this simulation, at first the recovery rate of the nonzeros in the

group setting is below the recovery rate of the unstructured nonzeros. However, the

two rates quickly cross and we find the recovery of the nonzeros in the group setting
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Fig. 3 Illustration of the

false discovery rate (FDR) of

nonzero variables for

unstructured (grey solid

curve) and group selections

(black solid curve) as

functions of the model size.

The vertical line represents

the selection size of the best

model found with the

group-mirror-corrected Cp

and the black dotted curve is

the FDR of nonzero groups
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to be better afterwards: particularly, this is the case for the selection that minimises

the group-mirror-corrected Cp (marked with the vertical line in Fig. 3).

The FDR of the nonzero groups (groups containing at least one nonzero variable)

suggests that the recovery of nonzeros in the group setting will be consistently supe-

rior to the recovery of unstructured nonzeros if groups are either fully nonzero or

fully zero. In that case, the group-mirror-corrected Cp should perform really well as

information criterion to obtain the optimal selection size.

5 Conclusion

During the optimisation of an information criterion over the model size, using both

�1 and �0-regularisation for the selection and estimation of variables allows us to

take advantage of quadratic programming for the former and least squares projection

for the latter. This technique avoids an overestimation of the number of selected

variables; however, it requires a corrected expression for the information criterion:

the difference between �0 and �1 regularisation is compensated using the mirror

effect.

In this paper, we described the behaviour of the mirror effect in signal-plus-

noise models, observing three stages depending on the model size. This way we can

distinguish the selection of nonzero variables, of large false positives and of small

false positives for which the mirror is, respectively, close to zero, then increasing and

finally decreasing to zero again. In the special case of structured selection, we note a

similar behaviour for the mirror although its amplitude is smaller, meaning that the

information criterion needs less correction.
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United Statistical Algorithms and Data

Science: An Introduction

to the Principles

Subhadeep Mukhopadhyay

Abstract Developing algorithmic solutions to tackle the rapidly increasing variety

of data types, by now, is recognized as an outstanding open problem of modern

statistics and data science. But why does this issue remain difficult to solve pro-

grammatically? Is it merely a passing trend, or does it have the potential to radically

change the way we build learning algorithms? Discussing these questions without

falling victim to the big data hype is not an easy task. Nonetheless, an attempt will

be made to better understand the core statistical issues, in a manner to which every

data scientist can relate.

Keywords United data science · Modern data representation · Algorithmic

portability

1 The Gorilla in the Room

Developing algorithmic solutions to the “variety problem” is now recognized (by

experts from academia to industry—Sam Madden, Michael Stonebraker, Thomas

Davenport, and Clive Longbottom) as an unsolved1 problem of modern data sci-

ence. According to the experts, solving this problem will allow us to unlock the

enormous potential of analytics. But why does this issue remain difficult to solve

programmatically? Does it have any impact on day-to-day statistical practice? Is it

merely a passing trend, or does it have the potential to radically change the way we

build learning algorithms? To start with, it is not even clear how to formulate the

“variety problem” precisely, let alone find an effective and useful solution to it.

1Michael Stonebraker calls data variety a “Research problem! Killing most CIO’s” and “If there is

any achilles heel it’s going to be this.”
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ULIN(X ,Y )

wilcox.test(X ,Y )

cor(X ,Y,“spearman”)

pearson.phi(X ,Y )prop.test(X ,Y )

Fig. 1 The vision of “Algorithm of Algorithms.” We have displayed the computing code for imple-

menting four fundamental statistical methods for learning from (X , Y ) data

To get to the heart of the matter quickly, we shall focus on a concrete problem that

arises in everyday data-modeling tasks. Figure 1 displays four fundamental statistical

methods, widely considered blockbusters of twentieth-century statistics [10, 12]–

for the ubiquitous (X , Y ) learning problem, each of which is specially crafted to

perform a specific modeling task. For example, Wilcoxon statistics is applicable

for two-sample problem (X binary 0/1 and Y continuous); Spearman’s correlation

applies to both X and Y continuous; and Pearson’s φ-coefficient and two-proportion

Z-statistics can be applied when we have samples from X and Y both binary.

Therefore, to compute appropriate statistical measures, practitioners need to pick

the algorithms after performing a painstaking manual inspection of each data type.

The situation becomes scary as the number of variables increases, creating serious

roadblocks for automation and ease of programming. The question naturally arises:

How can we develop a unified computing formula that yields appropriate statistical

measures without having the data-type information from the user?2 By doing so, we

would dramatically reduce the complexity and cost of analytics. Accordingly, there

is a growing demand for an easy and systematic data analysis pipeline by designing

algorithms with a better data-adaptation property.

Instead of coding each one of these specialized algorithms separately in a “com-

partmentalized” manner, the goal is to develop a more integrated and methodical

approach by designing a master algorithm (denoted as ULIN in Fig. 1) capable of

avoiding the case-specific data operations for efficient programming. This leads us to

the concept of “United Statistical Algorithms”—algorithms that can simultaneously

model heterogeneous data types. By doing so, such algorithms substantially reduce

the complexity of programming and help us to see the connection between different

isolated pieces.

2It is appalling to note that the simple problem depicted in Fig 1 becomes a highly non-trivial if

we try to attack it using old run-of-the-mill thinking and analysis. A somewhat amusing exercise

would be to see how many can pass this “litmus test.”
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2 The Design Principle

What we need is an easy-to-implement unified computing formula. The two funda-

mental ingredients for constructing such learning algorithms are

• First, we need to represent data through some intelligently designed transforma-

tion, else we will not be able to abstract out the complexity that arises due to

different data types.

• Second, no solution lies in parametric-statistics land. The algorithms have to be

data-driven (also known as nonparametric). As Richard [6] said “Without proper

regard for the individuality of the problem the task of computation will become

hopeless.”

The above two principles make it clear that a marriage between applied harmonic

data analysis and modern nonparametric statistics will be a common theme in this

pursuit of designing smart computational algorithms. However, the real challenge

is to figure out the appropriate choice of such nonparametric data-transformation

technique.

However, the difficulty that challenges the inventive skill of the applied mathematician is to

find suitable coordinate functions.—Richard Courant [6].

2.1 From Principles to Construction

Given X1, . . . , Xn a random sample from an unknown distribution F , denote the

empirical mid-distribution function by �Fmid
X (x) = �FX (x) − 1

2
�pX (x), where �FX (x) =

n−1
"n

i=1 I{Xi ≤ x}, and the sample probability mass function by�pX (x) = n−1
"n

i=1 I

{Xi = x}. Then we have the following data-driven linear transformation:

Ψ (x;�FX ) =
√

12
"�Fmid

X (x) − 1/2
�

�
1 −

"
x�p3

X (x)

(1)

which, by design, is orthonormal with respect to the Hilbert spaceL 2(�F):
�

Ψ (x;�FX )

d�FX = 0 and
�

Ψ 2(x;�FX ) d�FX = 1. Figure 2 displays the shape of this empirical

linear transform (eLT) for three different kinds of random variables. Next, we intro-

duce the concept of Universal Linear Statistics (abbreviated as ULIN) as an inner

product in the new transformed domain:

ULIN(Y , X ) = E[Ψ (X ;�FX )Ψ (Y ;�FY );�FX ,Y ]. (2)

The statistical interpretation of these orthonormal transforms will be discussed next.
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Fig. 2 (color online) The

shapes of empirical

transform based on n = 20

random samples generated

from Poisson (λ = 5) (in

red), Binomial(1, .4) (in

blue), and standard normal

(in goldenrod) distributions.

They are plotted over unit

interval by joining

{�FX (xi), Ψ (xi;�FX )} for

distinct values. Note the

changing shapes of Ψ (x;�FX )

for different varieties of

data—key characteristic of a

nonparametric transform
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3 Universality Properties

The ULIN statistic enjoys some remarkable universality properties. Different special

cases of this general formulation will be discussed to gain more intuition as to how

it brings surprising unity to the algorithm design.

X,Y both Continuous Case

More than a century back, Charles Spearman [22] introduced the radical idea of

measuring the statistical association between two sets of continuous measurements

{X1, . . . , Xn} and {Y1, . . . , Yn} via their ranks. The following result connects the

ULIN and Spearman’s correlation coefficient (proof is given in Appendix A1).

Theorem 1 Given n-pairs of continuous measurements (Xi, Yi), we have the follow-

ing equivalence with the Spearman’s rank correlation coefficient:

ULIN(Y , X ) = 1 −
6
"n

i=1 d2
i

n(n2 − 1)
, (3)

where di = R(Xi) − R(Yi), the difference in ranks.

X,Y both Binary Case

Consider the following problem where X denotes the incidence of a heart attack

(yes/no) and Y denotes the consumption of a daily aspirin tablet or sugar pill

(placebo). A 5-year-long randomized study, carried out by Physicians’ Health Study

Research Group at Harvard Medical School [1, 23], yielded the following data: out of

n1 = 11, 034 male physicians taking a placebo, 189 suffered heart attack during the
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study, a proportion of �p1 = 189/11, 034 = 0.0171. On the other hand, the propor-

tion of heart attack in the aspirin group was �p2 = 104/11, 037 = 0.0094. Looking

at the data, can we conclude that regular intake of aspirin reduces the risk of heart

attack? Let p1 be the true proportion of heart attack who were given placebo and p2

is the true proportion of heart attack among the aspirin group. Then this is a classical

problem of a two-sample Z-test. Interestingly, as shown in the following theorem, for

X and Y both binary, our ULIN statistic automatically produces (4) for comparing

two population proportions (for proof see Appendix A2).

Theorem 2 Given n-pairs of binary (Xi, Yi), our ULIN computing formula repro-

duces the two-proportion Z-test statistic:

√
n ULIN(Y , X ) =

�p1 −�p2�
�p(1 −�p)( 1

n1
+ 1

n2
)
, (4)

where�p = n1�p1+n2�p2

n1+n2
is the pooled sample proportion.

The next result shows another delightful equivalence between the Pearson correlation

and ULIN statistics for X and Y both binary.

Corollary 1 For X , Y binary, we have the following equality between Pearson cor-

relation (also known as φ coefficient for 2 × 2 contingency table setup) and ULIN

statistics:

Pearson(Y , X ) = ULIN(Y , X ).

A one-line proof is based on the crucial observation that Z (X )= Ψ (X ; FX ) for binary

X , where Z (X ) = X −E(X )

σ (X )
is the standardized X . For details, see Appendix.

The Devil Is In The Details

What if a data scientist ignores the binary nature of the data and applies the Spear-

man’s correlation anyway? As we will see, neglecting the data-type information

can lead to disastrous result. To appreciate this better, consider (X , Y ) Bernoulli

random variables with marginal and joint distribution Pr(X = 0) = Pr(Y = 0) =
Pr(X = 0, Y = 0) = p ∈ (0, 1), which implies Y = X almost surely. However, the

traditional Spearman(X , Y ) = p(1 − p) < 1, not attaining the value 1! The problem

lies in ignoring the discreteness (i.e., the data-type information) of X and Y [15],

which implies that data scientists have no choice but to manually probe the data type

for selecting the appropriate method. This is where ULIN comes to the rescue due

to its auto-adaptation property. In this example, it is straightforward to show that

ULIN(X , Y ) = 1.

X binary, Y Continuous

Finally, consider the case where X is binary and Y is continuous. The surprising

connection between two-sample Wilcoxon test [24] and ULIN statistic is formalized

in the following result (proof is given in Appendix A3).
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Theorem 3 For a two-sample problem with {(Xi, Yi), i = 1, . . . , n = n1 + n2}where

X ∈ {0, 1} and Y is continuous with the pooled rank denoted by R(Yi), we have the

following equivalent representation of the Wilcoxon rank-sum statistic:

ULIN(Y , X ) =

�
12

n2 n1n2

�
n�

i=n2+1

R(Yi) −
n1(n + 1)

2

�
. (5)

Few Remarks

• In short, we have shown that ULIN(Y , X ) acts as a “4-in-1” algorithm that is

smart enough to automatically adjust itself (self-correcting) for various types of

data, without any input from the user.

• Another practical benefit of our unification lies in its easy “correlation” interpreta-

tion (2) by bringing different statistics into a common range [−1, 1]. Accordingly,

one can use this ULIN statistic for learning as well as interpreting the strength of

relationships between mixed varieties of data types using a single computing code

(see Appendix B).

4 The Age of Unified Algorithms Is Here

The science of finding good representation systems is at the heart of many appli-

cations, including approximation, compression, and sparsity, which revolutionized

computer vision, signal and image processing [7, 8, 13]. This field was born out of

Joseph Fourier’s [11] revolutionary insight , which he presented on December 21,

1807 before the French Academy.3 Since then, efficient data representation “trick”

has played an important role for developing faster numerical algorithms.

In contrast, our development was driven by a fundamentally different motivation—to

use carefully designed (in a data-adaptive or nonparametric manner) representation

system as a theoretical tool to unify diverse statistical algorithms rather than making

an existing algorithm faster. It is inspired by the statistical considerations instead of

applied harmonic analysis concepts.

In fact, one can build the whole basis system for the Hilbert spaceL 2(�F) starting from

Ψ (x;�F) (Eq. 1): perform Gram-Schmidt orthonormalization on {Ψ,Ψ 2, . . .}. This

empirically constructed basis functions act as a universal coordinate system for data

analysis, which has been applied to a range of problems, including time series analysis

[20], multiple testing [16], distributed learning [3], bump-hunting [17], generalized

empirical-Bayes [19], and many others. What is important is that in all of the above

cases, our custom-designed orthonormal system unifies a wide class of parametric

3Fourier was unable to publish his results until 1822 because his 1807 presentation was not well

received by Joseph Lagrange and accordingly the publication in the Memoirs of the Academy was

refused. The idea that signals can be built from the sum of harmonic functions was too radical to

consider.
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and nonparametric, linear and non-linear, discrete and continuous statistical methods,

thereby marking a big stride forward in the development of “United Data Science.”

This modeling philosophy is crucial for three reasons:

• Theoretical: There is a dire need to put some order into the current inventory of

algorithms that are mushrooming at a staggering rate, in order to better under-

stand the statistical core. Our modeling philosophy can provide that “organizing

principle.”

• Practical: It provides construction of “distribution-free” 4 automated algorithms.

Wisely designed transformation acts as an abstraction to overcome the “variety”

problem that significantly reduces the complexity of programming for analyzing

heterogeneous data types.

Extracting new insights from the data sets currently being generated will require not only

faster computers, but also smarter algorithms [14, p. 627].

• Pedagogical: There is a growing need to develop a comprehensive training curricu-

lum covering the fundamental statistical learning methods for building a twenty-

first-century data-capable workforce. The first action plan was proposed by [5]

where he argued that only 20% of the total curriculum should be allotted for

teaching theoretical foundation of data science, rest being computing, collabora-

tion, and software tool development. It immediately raises the following peda-

gogical challenge: how can we cover this wide range of topics (which [4] calls

“Greater statistics: learning from data”) 5 within the allotted time—the dilemma

of “too many topics, too little time” [18]. Our united statistical learning view-

point can offer some concrete solutions by providing a “concise, comprehensive,

and connected” (I call it the three C’s of teaching) view of the subject, thereby

accelerating students’ learning.

5 The Three Pillars

How can we minimize the manual heavy lifting that every practicing data scientist

has to go through simply to get their statistical analysis right? What we need is a

modern language of data analysis that can abstract away all the bells and whistles of

the underlying complexity into a simple-to-compute autonomous formula—moving

from compartmentalized algorithm design to a unified computing that can radically

change the way we practice and teach “programming with data.” There is little doubt

4If the algorithmic logic and computing formulas are only valid for any specific distribution, then

it is not “distribution-free” by design.
5Also see, for example, David Donoho’s (2017) “Greater Data Science” curriculum structure that

is composed of six categories of activities: Data Exploration and Preparation, Data Representation

and Transformation, Computing with Data, Data Modeling, Data Visualization and Presentation,

and Science about Data Science.
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that this field will keep evolving and expanding rapidly in the coming years due to

its growing popularity and pervasive necessity across many disciplines.

Three pillars of modern data science are statistical efficiency [21], computational

efficiency [2], and, third, the emerging paradigm, design efficiency via unified algo-

rithms. The critical task is to assemble different “mini-algorithms” into a coherent

master algorithm for increased simplification of theory and computation. This whole

field is still very nascent and desperately needs new ideas. But the key lies in modern

data representation techniques whose intuition comes from understanding the shared

statistical structure of a class of working algorithms.
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Appendix

Here we outline the details for proving the main results along with the numerical

R-code.

Appendix A1. Proof of Theorem 1

When all Xi (i = 1, . . . , n) are distinct, following (1), we have

Ψ (xi;�FX ) =
�

12

n2 − 1

�
R(Xi) −

n + 1

2

�
, (6)

since �Fmid(xi) = (R(Xi) − .5)/n and 1 −
"

i�p3(xi) = 1 − n−2. Similar expression

holds for Y . Substituting these expressions into our universal inner product formula

ULIN(X , Y ) = n−1

n�

i=1

Ψ (xi;�FX )Ψ (yi;�FY ),

immediately yields

ULIN(X , Y ) =
12

n(n2 − 1)

� n�

i=1

�
R(Xi) −

n + 1

2

� �
R(Yi) −

n + 1

2

� �

=
12

n(n2 − 1)

� n�

i=1

R(Xi)R(Yi) − n

�
n + 1

2

�2 �
. (7)

Complete the proof by verifying that (7) can be rewritten as
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ULIN(X , Y ) =
12

n(n2 − 1)

�
n(n2 − 1)

12
−

n�

i=1

d2
i

2

�
≡ 1 −

6
"n

i=1 d2
i

n(n2 − 1)
,

where di = R(Xi) − R(Yi). �

Appendix A2. Proof of Theorem 2

For binary X and Y , it is not difficult to verify that for i = 1, . . . , n1, n1 + 1, . . . , n1 +
n2

Ψ (xi;�FX ) =

⎧
⎪⎪«
⎪⎪¬

�
n2

n1

for xi = 1

−
�

n1

n2

for xi = 0,

Ψ (yi;�FY ) =

⎧
⎪⎪«
⎪⎪¬

�
1 −�p

�p for yi = 1

−
� �p

1 −�p for yi = 0,

(8)

where �p = (n1�p1 + n2�p2)/(n1 + n2) denotes the pooled sample proportion for Y .

With this in hand, we start by explicitly writing down the expression for ULIN(X , Y ):

1

n

�
n1�p1Ψ (1;�FX )Ψ (1;�FY ) + n1(1 −�p1)Ψ (1;�FX )Ψ (0;�FY )

+ n2�p2Ψ (0;�FX )Ψ (1;�FY ) + n2(1 −�p2)Ψ (0;�FX )Ψ (0;�FY )

�
.

Let us now simplify the first two terms of the above expression:

n1�p1Ψ (1;�FX )
�
Ψ (1;�FY ) − Ψ (0;�FY )

�
+ n1Ψ (1;�FX )Ψ (0;�FY ) = −

√
n1n2

�p2�
�p(1 −�p)

.

(9)

Following the same steps, we also have

n2�p2Ψ (0;�FX )
�
Ψ (1;�FY ) − Ψ (0;�FY )

�
+ n2Ψ (0;�FX )Ψ (0;�FY ) =

√
n1n2

�p1�
�p(1 −�p)

.

(10)

Combining (9) and (10), we immediately have

√
n ULIN(Y , X ) =

�p1 −�p2�
�p(1 −�p)( 1

n1
+ 1

n2
)
.

This completes the proof. �

Appendix A3. Proof of Theorem 3
Here we show that our ULIN(X , Y ) automatically reproduces the Wilcoxon rank-
sum statistics for X binary and Y continuous. Substituting the expressions of the
linear transforms from (6) and (8), we have
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ULIN(X , Y ) = n−1
n�

i=1

Ψ (xi;�FX )Ψ (yi;�FY )

=
√

12

n2

⎡
£

�
n2

n1

n1�

i=1

�
R(Yi) −

n + 1

2

�
−

�
n1

n2

n�

i=n1+1

�
R(Yi) −

n + 1

2

�
¤
⎦ .

Straightforward algebraic manipulation yields the following:

ULIN(X , Y ) =

�
12

n2 n1n2

�
n1+n2�

i=n2+1

R(Yi) −
n1(n + 1)

2

�
. (11)

Thus, the theorem holds. �

Appendix B. R-computing Code

Our Universal Linear Statistics (ULIN) is easy-to-compute. In the following, we

provide the R-code. Recall that the practitioners have to write only “one” master

function which is, as shown in the paper, intelligent enough to adapt itself to different

varieties of X and Y .

ULIN <- function(X,Y){

n <- length(Y)

u.x <- (rank(X,ties.method = c("average")) - .5)/n

phi.x <- scale(poly(u.x ,1))

u.y <- (rank(Y,ties.method = c("average")) - .5)/n

phi.y <- scale(poly(u.y ,1))

ULIN <- as.vector(cov(phi.x,phi.y))

return(ULIN)

}
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The Halfspace Depth Characterization
Problem

Stanislav Nagy

Abstract The halfspace depth characterization conjecture states that for any two

distinct (probability) measures P and Q in the d-dimensional Euclidean space, there

exists a point at which the halfspace depths of P and Q differ. Until recently, it

was widely believed that this conjecture holds true for all integers d ≥ 1. In sev-

eral research papers dealing with this problem, partial positive results towards the

complete characterization of measures by their depths can be found. We provide a

comprehensive review of this literature, point out to certain difficulties with some of

these earlier results and construct examples of distinct (probability or finite) measures

whose halfspace depths coincide at all points of the sample space, for all integers

d > 1.

Keywords Characterization · Depth · Floating body · Halfspace depth · Tukey

depth

1 Introduction: Depth and Characterization of Measures

In nonparametric statistics of multivariate data, the concept of data depth has attracted

a lot of attention in the past decades. Denote by P the collection of all Borel probabil-

ity measures on the Euclidean space R
d , and by M all finite Borel measures on R

d .

For P ∈ M given, the depth is a function D : R
d →

!

0, P
!

R
d
!!

: x !→ D(x; P)

whose aim is to evaluate a ‘centrality index’ of points x ∈ R
d with respect to the

main bulk of mass of P . Loci of points whose depth is large enough define central

parts of the distribution and low depth value D(x; P) indicates that x aligns poorly

with P . Using depth, one is able to recover analogues of rank tests, order statistics

and other important nonparametric and robust procedures also for multivariate data.
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Arguably, the most important depth is due to Tukey [16], who defined the half-

space depth of x ∈ R
d with respect to P ∈ P (or P ∈ M ) as

h D(x; P) = inf
�

P(H+) : H+ is a (closed) halfspace in R
d with x ∈ ∂H+

"

, (1)

where by ∂K we mean the topological boundary of a set K . In the sequel, we write

H+ and H− for the two closed halfspaces associated with their boundary hyperplane

H in R
d . Halfspace depth is equivalent with a multivariate trimming procedure.

Denote by Pδ =
�

x ∈ R
d : h D(x; P) ≥ δ

"

the upper level set of the depth. Then

Pδ can be expressed as the intersection of closed halfspaces H+ with the property

P(H+) > P
!

R
d
!

− δ [14, Proposition 6]. Thus, the level sets Pδ are, in fact, the

convex sets obtained by clipping off all the tail regions that correspond to projections

�X, u� of the the random vector X ∼ P , with u ∈ R
d \ {0}. The depth h D thus

presents a plausible multivariate alternative to quantiles used in R.

An essential property of quantiles in R is that their complete set fully determines

any measure P ∈ M on R. Therefore, no information is lost when solely quantile-

based inference about distributions is conducted. A natural question whether such

a property holds true also for the multivariate quantiles based on h D is called the

halfspace depth characterization conjecture.

Characterization conjecture

For any two distinct (probability, or finite) Borel measures P and Q on R
d

there exists a point x ∈ R
d such that h D (x; P) �= h D (x; Q).

This problem has a long history—a series of partial positive results to the conjec-

ture can be found in Table 1. We know that, for instance, if P ∈ P is uniform on

a finite number of points (that is, P is an empirical distribution), the position of the

supporting points of P can be recovered from its depth only.

It was widely believed that the general characterization conjecture holds true ([2,

p. 2306], [6, p. 1598]). Surprisingly, recently it turned out that this conjecture is

false. In the present note, we review some known results that relate to this problem.

In Sect. 2, we provide two examples of measures that are quite different, yet their

depths are the same. In Sect. 3, we scrutinize some proofs listed in Table 1 and point

to several issues with the known results. Concluding remarks and two major open

problems are given in Sect. 4.

2 Negative Results

The general characterization conjecture is not valid. To illustrate this, in Sect. 2.1, we

review a counter-example of a set of probability measures with the same depth from
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Table 1 Review of positive results on the depth characterization problem

Year Ref. Authors Characterization

for

Comment

Discrete 1999 [15] Struyf and

Rousseeuw

Empirical

distributions

2002 [9] Koshevoy Finitely supported

distributions

2007 [4] Hassairi and

Regaieg

Finitely supported

distributions

2008 [2] Cuesta-Albertos

and Nieto-Reyes

Discrete

distributions

Section 3.1.1

Continuous 2003 [10] Koshevoy Continuous

integrable

distributions

Section 3.2.1

2008 [5] Hassairi and

Regaieg

Distributions with

smooth densities

Section 3.2.2

2010 [7] Kong and Zuo Distributions with

smooth depth

Section 3.2.3

2018 [13] Nagy, Schütt, and

Werner

Distributions with

floating bodies

Section 3.2.3

[12]. In Sect. 2.2, we provide a new example of two mutually singular finite measures

whose densities can be written explicitly, yet their halfspace depths coincide.

2.1 Counter-Example for Probability Measures

In a construction provided in [12], it is demonstrated that for any integer d > 1 there

exist uncountable sets of probability measures in R
d whose depths are identical. The

proof involves advances from [11] on the depth of α-symmetric random vectors. For

0 < α ≤ ∞ given, denote for x = (x1, . . . , xd)
T ∈ R

d

"x"α =

§

¨

©

�

�d
i=1 |xi |

α

�1/α

for α ∈ (0,∞),

maxi=1,...,d |xi | for α = ∞.

We say that a random vector X = (X1, . . . , Xd)
T ∼ P ∈ P has an α-symmetric

distribution, or is α-symmetric, if

for any u ∈ R
d , �X, u� has the same distribution as "u"α X1. (2)

The collection of all 2-symmetric distributions is exactly the set of all spherically sym-

metric probability measures. The multivariate distribution with independent Cauchy
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marginals is an example of a 1-symmetric distribution. Generally, α-symmetric dis-

tributions generalize the stable distributions, extensively studied in probability, to

multivariate sample spaces.

The distinctive property (2) of projections of α-symmetric distributions makes

them well suited for depth-based analysis. For any X ∼ P that is α-symmetric, it is

immediate that

h D (x; P) = inf
u∈Rd\{0}

P (�X, u� ≤ �x, u�) = inf
u∈Rd\{0}

P (�u�α X1 ≤ �x, u�)

= P

�

X1 ≤ inf
u∈Rd\{0}

�x, u� / �u�α

�

= P (X1 ≤ −�x�α∗)
(3)

for α∗ the conjugate index of α. For α > 1, the index conjugate to α satisfies α−1 +

(α∗)−1 = 1; for α ≤ 1 we define α∗ = ∞. The last equality in (3) follows from a

version of Hölder’s inequality that can be found, for instance, in [1, Lemma A.1].

From (3), we see that the depths of all α-symmetric distributions with 0 < α ≤ 1

share the same sets of contours—concentric (hyper)-cubes, and their depth decreases

with �x�∞ → ∞ at a rate given by the cumulative distribution function of the uni-

variate marginal distribution X1 of X . Therefore, to construct distributions with the

same depth it is enough to find different α-symmetric distributions with α ≤ 1 that

have the same laws of their univariate marginals X1. In that case, the depth of all

such distributions takes the form h D (x; P) = F (−�x�∞) for all x ∈ R
d , where F

is the cumulative distribution function of X1.

As shown in [12], there exist large collections of different α-symmetric random

vectors X with identical univariate marginals X1. This can be concluded, for instance,

from some classical advances in functional analysis, where it was demonstrated

already in 1930s that certain special functions are positive definite, and as such they

correspond to well-defined characteristic functions of d-dimensional α-symmetric

random vectors. For technical details, we refer to [12] and references therein.

2.2 Counter-Example for Finite Measures

The only α-symmetric distribution discussed in Sect. 2.1 with an analytically express-

ible density is the 1-symmetric distribution P1 ∈ P with independent Cauchy

marginals. Its density takes the form

f (x) =

d
�

i=1

1

π
�

1 + x2
i

� for x ∈ R
d ,

and its depth can be expressed as

h D
�

x; P1
�

=
1

2
−

arctan (�x�∞)

π
for x ∈ R

d . (4)
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We start from this distribution and find a couple of easily expressible finite measures

that share the same depth for all x ∈ R
d . In particular, we show that for some heavy-

tailed symmetric measures supported on the coordinate axes

Ai =
�

x ∈ R
d : x j = 0 for all j �= i

�

for i = 1, . . . , d,

it follows that their depth takes the form F (−�x�∞) for a fixed function F for all

x ∈ R
d \ {0}.

Let P ∈ P be a measure that is absolutely continuous with respect to the one-

dimensional Hausdorff measure λS supported on the set S =
�d

i=1 Ai \ {0}. The

Radon-Nikodym derivative (the density) of P with respect to λS is given by

g(x) =
1

d

d
�

i=1

I [x ∈ Ai \ {0}]

π
�

1 + x2
i

� for x ∈ R
d .

From the symmetry of g we get h D(0; P) = 1/2, as any closed halfspace whose

boundary passes through the origin 0 ∈ R
d halves the mass of P . It is also easy to

see that because P is supported only on the coordinate axes, for any x ∈ Ai \ {0} the

halfspace H+ whose boundary H passes through x that minimizes the P-mass is

H+ =
�

y ∈ R
d : sgn(xi ) yi ≥ |xi |

�

(5)

for sgn the signum function, i.e. H+ with H parallel to all coordinate axes A j for

j �= i , and 0 /∈ H+. For the depth of X ∼ P this implies

h D (x; P) = P (X i ≥ �x�∞) =
1

d

"

1

2
−

arctan (|xi |)

π

"

for x ∈ Ai \ {0}.

A straightforward computation shows1 that, due to the heavy-tailedness of P , also

for a general point x ∈ R
d \ {0} an analogue of the previous formula holds true, and

if j ∈ {1, . . . , d} is an index such that
"

"x j

"

" = �x�∞, we can also write

h D (x; P) = P
�

X j ≥ �x�∞

�

=

"

1
d

"

1
2

− arctan(�x�∞)

π

"

for x ∈ R
d \ {0},

1/2 for x = 0.
(6)

In particular, the depth h D (·; P) is a constant multiple of h D
�

·; P1
�

from (4) at all

points x �= 0. To obtain two finite measures with exactly the same depth in R
d , we

modify the Cauchy distribution P1 by taking a measure Q ∈ M to be the sum of

1/d times P1, and 1/2 − 1/(2d) times the Dirac measure δ0 ∈ P concentrated at

0 ∈ R
d . Then,

1Detailed computations are omitted from the present note due to space restrictions. They are avail-

able online at http://www.karlin.mff.cuni.cz/~nagy/ or upon request from the author.

http://www.karlin.mff.cuni.cz/~{}nagy/
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h D (x; Q) =
1

d
h D

�

x; P1
�

+

"

1

2
−

1

2d

"

h D (x; δ0)

=
h D

�

x; P1
�

d
+

"

1

2
−

1

2d

"

I [x = 0] = h D (x; P) for x ∈ R
d ,

where the first equality is in order because for any x �= 0 the halfspace H+ with

x ∈ H whose Q-measure is minimal is that from (5), and 0 /∈ H+. Therefore, the

depths of P and Q agree for all R
d . It is remarkable that such a property holds true

even though P and Q are quite different in nature: for all integers d > 1

• P and Q are mutually singular, i.e. P (S) = P
�

R
d
�

and Q (S) = 0 and

• Q
�

R
d
�

= Q(0) + P1
�

R
d
�

/d = 1/2 + 1/(2d) < 1 = P
�

R
d
�

.

In particular, we have demonstrated that from the complete knowledge of the depth

h D (·; P) only neither the full P-measure of the sample space, nor the support of P

is, in general, possible to be determined.

3 Comments on Some Positive Results

In this section, we review some important partial positive results to the characteri-

zation problem that can be found in the literature. First, in Sect. 3.1, we focus on

discrete (atomic) probability measures. We identify a difficulty with the proof of the

most general characterization result for discrete distributions from [2]. Measures that

are absolutely continuous (with respect to the d-dimensional Lebesgue measure) are

studied in Sect. 3.2. A problematic point in the main proof from [10] and a corollary

from [5] are noted. Finally, it is asserted that the main characterization results from

[5, 7] can be seen as special cases of a theorem stated in [13] in terms of the so-called

floating bodies studied in convex geometry.

3.1 Sufficient Conditions for Discrete Distributions

For discrete distributions with a finite number of atoms, it was shown in [4, 9] that the

depth characterizes probability distributions. An extension of this result to measures

with infinitely many atoms from [2] appears to be problematic.

3.1.1 Characterization of Cuesta-Albertos and Nieto-Reyes

The main result in [2] concerns a continuity argument. In the key Lemma 2.2 from

[2], it is asserted that
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Claim Let x ∈ R
d , X ∼ P ∈ P , and let {xn}

∞
n=1 ⊂ R

d be a sequence such that

xn �= x for all n, and limn→∞ xn = x . Then, for

U =
�

u ∈ R
d : �u�2 = 1, P (�X, u� = �x, u�) = P({x})

�

we have that

inf
u∈U

P (�X, u� ≤ �x, u�) − P ({x}) ≤ lim infn→∞ inf
u∈U

P (�X, u� ≤ �xn, u�) . (7)

Roughly speaking, formula (7) asserts a relaxed version of lower semi-continuity

of the ‘almost’ halfspace depth h DU (x; P) = infu∈U P (�X, u� ≤ �x, u�) in x (note

that if P is either absolutely continuous, or finitely supported, then h DU (x; P) =

h D (x; P) for all x ∈ R
d ). Together with the well-known fact that h DU (·; P) is

an upper semi-continuous mapping for any P ∈ P , (7) yields for limn→∞ xn = x ,

xn �= x ,

h DU (x; P) − P ({x}) ≤ lim infn→∞h DU (xn; P)

≤ lim supn→∞h DU (xn; P) ≤ h DU (x; P) .

In particular, for x that is not an atom of P , it implies that h DU (·; P) is continuous

at x . But, this cannot be true in general. Take, for instance, P the uniform distribution

on the four vertices of a square in R
2, and x from the boundary of this square that is

not its vertex. Then h D(x; P) = h DU (x; P) = 1/4, yet for any sequence of points

xn that converge to x from the outside of the square, h D(xn; P) = h DU (xn; P) = 0

for all n, and (7) is violated.2

Consequently, it appears that the proof of [2, Theorem 2.6] is incomplete, and the

question whether two different atomic probability distributions can have the same

depth is still open.

3.2 Sufficient Conditions for Absolutely Continuous

Distributions

3.2.1 Characterization of Koshevoy

In [10, Theorem 5.1], it is asserted that if P, Q ∈ M are different, properly integrable

absolutely continuous probability measures in R
d , then there must exist x ∈ R

d with

h D (x; P) �= h D (x; Q). The proof of this claim is quite unusual, since it involves

rather advanced convex-geometric tools such as the lift zonoid or the Radon trans-

form. Recall that a lift zonoid of a properly integrable measure P ∈ M is a deter-

2Inspection of the proof of [2, Lemma 2.2] shows that in the formula on page 2308, line 6 of [2],

xn∗
k

cannot be replaced by x .
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ministic convex body Ẑ(P) ⊂ R
d+1 constructed as the set of certain expectations of

X ∼ P . Its detailed construction and properties are described in [8]. In what follows

it will be important that the lift zonoid completely characterizes P [8, Theorem 3.5].

A key step in the proof of the depth characterization result of Koshevoy is [10,

Proposition 5.1], where the following is derived.

Claim Let P, Q ∈ M be absolutely continuous and compactly supported, and sup-

pose that for some δ > 0 we have K = Pδ = Qδ . Then, for Hδ=
�

x ∈ R
d+1 : x1=δ

�

,

it holds true that Ẑ(P) ∩ Hδ = Ẑ(Q) ∩ Hδ .

The proof of this statement in [10] is based on the following facts:

(a) For (any) convex body K , the set KS of points x ∈ ∂K with a unique unit outer

normal u(x) is a dense subset of the boundary of K .

(b) For any x ∈ KS , for the halfspace H+
x ⊂ R

d with inner normal u(x) such that

x ∈ Hx we have P(H+
x ) = Q(H+

x ) = δ.

(c) Halfspaces H+ ⊂ R
d such that P(H+) = δ are in one-to-one correspondence

with the extreme points of Ẑ(P) ∩ Hδ , and analogously for measure Q.

This argumentation does not appear to be complete. Indeed, from (a) and (b) it does

not follow that the collection of the inner normals of halfspaces
�

H+
x ⊂ R

d : x ∈ KS

�

is dense in the unit sphere in R
d . We saw this in Sect. 2.1, where it was shown that

for α-symmetric measures3 with α ≤ 1 for all δ > 0 there is only a finite number of

distinct normals u(x) at x ∈ KS . Thus, by (a)–(c) above we are able to identify only

a finite number of extreme points of Ẑ(P) ∩ Hδ and Ẑ(Q) ∩ Hδ , which is surely not

enough to guarantee that the two cuts of the lift zonoids are identical.

3.2.2 Characterization of Hassairi and Regaieg

Another intriguing characterization result for the halfspace depth from [5] asserts

that if P ∈ P is absolutely continuous with density f that is positive and smooth

enough in a connected open set, then the halfspace depth uniquely determines P .

This result does not appear to hold true in its full generality. Consider the example

from Sect. 2.1. There, measure P is absolutely continuous, its support is R
d and

its density is infinitely differentiable everywhere on R
d . Thus, it satisfies all the

conditions from [5]. Yet, there are different measures with the same depth.

The issue with the proof of [5, Theorem 3.1] appears to stem from a minor neglect

of conditions necessary to apply the fundamental theorem of calculus in one step

of the proof (formula (3.1) on page 2310). This problem could be easily fixed by

imposing somewhat stronger conditions on P; for details, see [13, Sect. 8.2]. More

importantly, in the latter reference it is also demonstrated that the smoothness of

the density f is not enough to guarantee the technical condition (H) on page 2312

of [5]. Thus, smoothness of f alone is not sufficient for P to have a unique depth

3Measures from Sect. 2.1 are not compactly supported. But, also for compactly supported measures,

the depth level sets may fail to be strictly convex, see [13, Example 7].
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(see, again, Sect. 2.1). In fact, it turns out that condition (H) from [5] is implied

by a somewhat weaker condition, stated in terms of the so-called floating bodies of

measure P , recently discussed in [13].

3.2.3 Characterization Using Floating Bodies

In analogy with the research in convex geometry [3], we say that for P ∈ M and

δ > 0 the non-empty convex set P[δ] is the floating body of P if for each outer

supporting halfspace H+ of P[δ] (that is, P[δ] ∩ H+ �= ∅ and P[δ] ⊂ H−) we have

P(H+) = δ. In [13, Theorem 34], the following theorem is proved.

Theorem 1 Let P ∈ M have a connected support, and let xP ∈ R
d be given by

h D (xP ; P) = supy∈Rd h D (y; P). Then the following are equivalent:

(FB1) For each δ ∈ (0, P
�

R
d
�

/2) the floating body P[δ] of P exists.

(FB2) P(H) = 0 for any hyperplane H ⊂ R
d , P

�

R
d
�

= 2 supx∈Rd h D (x; P),

and

P(H+) =

"

supx∈H h D(x; P) for a hyperplaneH with xP /∈ H+,

P
�

R
d
�

− supx∈H h D(x; P) for a hyperplane H with xP ∈ H+.

(8)

Consequently, if (FB1) is true, there is no other finite measure that satisfies (FB1)

with the same depth at all points in R
d .

Existence of all floating bodies of P ∈ M is a rather strict condition. It is equiva-

lent with the fact that all halfspaces whose measure is δ ≤ P
�

R
d
�

/2 support Pδ . In

particular, (FB1) implies that P must possess a certain symmetry property. Nonethe-

less, (FB1) is known to be satisfied if, for instance, P is elliptically symmetric, or if

P is a uniform measure on a symmetric, smooth and strictly convex body in R
d .

It can be shown that condition (H) from [5], discussed in Sect. 3.2.2, is stronger

than (FB1): a measure that satisfies (H) must obey also (FB1). A further interesting

relation of (FB1) to the literature is that if all the contours of the depth h D (·; P) are

smooth, (FB1) is guaranteed to be valid for P . Therefore, the characterization theorem

of Kong and Zuo [7], which states that a measure with smooth depth contours has a

unique depth, is another special case of Theorem 1. For references to these results

and further comments, we refer to [13, Sect. 8].

4 Characterization Problem: Summary

From our review we may conclude that the universal halfspace depth characterization

conjecture holds true neither for finite measures, nor for probability distributions.

This suggests the following problem.
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Characterization problem

Describe the set of all (probability, or finite) Borel measures P on R
d such that

for any Q �= P there exists a point x ∈ R
d such that h D (x; P) �= h D (x; Q).

From what we saw in Sects. 2 and 3, it is known that distinct P and Q in M

cannot have the same halfspace depth if

• they are both finitely supported or

• if all floating bodies of both P and Q exist.

These two classes of distributions are too small for viable applications in statistics or

geometry. For instance, currently it appears to be unknown whether even the uniform

distribution on a triangle in R
2 is determined by its depth!

A further, more difficult question to be addressed is the reconstruction of the

measure from its depth (or its floating bodies).

Reconstruction problems

• For a Borel measure P characterized by its depth, determine the P-measure

of all Borel sets of R
d (or, equivalently, all halfspaces in R

d ) only from its

depth.

• For P , a uniform measure on a given convex body in R
d , is it possible from

a single floating body of P to recover the support of P?

Apart from immediate statistical applications, the second reconstruction problem

is of great interest also in geometry and functional analysis. It is closely connected

with the so-called homothety conjecture, or the floating body problem, that concerns

alternative characterization of ellipsoids as the only convex bodies that are homothetic

to their own floating bodies. For details see the references in [13, Sect. 8.3].
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A Component Multiplicative Error

Model for Realized Volatility Measures

Antonio Naimoli and Giuseppe Storti

Abstract We propose a component Multiplicative Error Model (MEM) for mod-

elling and forecasting realized volatility measures. In contrast to conventional MEMs,

the proposed specification resorts to the use of a multiplicative component structure

in order to parsimoniously parameterize the complex dependence structure of real-

ized volatility measures. The long-run component is defined as a linear combination

of MIDAS filters moving at different frequencies, while the short-run component is

constrained to follow a unit mean GARCH recursion. This particular specification

of the long-run component allows to reproduce very persistent oscillations of the

conditional mean of the volatility process, in the spirit of Corsi’s Heterogeneous

Autoregressive Model (HAR). The empirical performances of the proposed model

are assessed by means of an application to the realized volatility of the S&P 500

index.

Keywords Realized volatility · Component Multiplicative Error Model ·
Long-range dependence · MIDAS · Volatility forecasting

1 Introduction

In financial econometrics, the last two decades have witnessed an increasing inter-

est in the development of dynamic models incorporating information on realized

volatility measures. The reason is that it is believed these models can provide more

accurate forecasts of financial volatility than the standard volatility models based on

daily squared returns, e.g. the GARCH(1,1).

Engle and Russell [14] originally proposed the Autoregressive Conditional Dura-

tion (ACD) model as a tool for modelling irregularly spaced transaction data observed

at high frequency. This model has been later generalized in the class of Multiplica-
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tive Error Model (MEM) by [10] for modelling and forecasting positive-valued ran-

dom variables that are decomposed into the product of their conditional mean and a

positive-valued i.i.d. error term with unit mean. Discussions and extensions on the

properties of this model class can be found in [4–8, 18, 19], among others.

One of the most prominent fields of application of MEMs is related to the mod-

elling and forecasting of realized volatility measures. It is well known that these

variables have very rich serial dependence structures sharing the features of clus-

tering and high persistence. The recurrent feature of long-range dependence is con-

ventionally modelled as an Autoregressive Fractionally Integrated Moving Average

(ARFIMA) process as in [3], or using regression models mixing information at dif-

ferent frequencies such as the Heterogeneous AR (HAR) model of [9]. The HAR

model, inspired by the heterogeneous market hypothesis of [20], is based on additive

cascade of volatility components over different horizons. This particular structure,

despite the simplicity of the model, has been found to satisfactorily reproduce the

empirical regularities of realized volatility series, including their highly persistent

autocorrelation structure.

In this field, component models are an appealing alternative to conventional mod-

els since they offer a tractable and parsimonious approach to modelling the persistent

dependence structure of realized volatility measures. Models of this type have first

been proposed in the GARCH framework and are usually characterized by the mix-

ing of two or more components moving at different frequencies. Starting from the

Spline GARCH of [13], where volatility is specified to be the product of a slow-

moving component, represented by an exponential spline, and a short-run compo-

nent which follows a unit mean GARCH process, several contributions have extended

and refined this idea. [12] introduced a new class of models called GARCH-MIDAS,

where the long-run component is modelled as a MIDAS (Mixed-Data Sampling,

[16]) polynomial filter which applies to monthly, quarterly or biannual financial or

macroeconomic variables. [2] decomposed the variance into a conditional and an

unconditional component such that the latter evolves smoothly over time through

a linear combination of logistic transition functions taking time as the transition

variable.

Moving to the analysis of intra-daily data, [15] developed the multiplicative com-

ponent GARCH, decomposing the volatility of high-frequency asset returns into the

product of three components, namely, the conditional variance is a product of daily,

diurnal and stochastic intra-daily components. Recently [1] have provided a sur-

vey on univariate and multivariate GARCH-type models featuring a multiplicative

decomposition of the variance into short- and long-run components.

This paper proposes a novel multiplicative dynamic component model which is

able to reproduce the main stylized facts arising from the empirical analysis of time

series of realized volatility. Compared to other specifications falling into the class

of component MEMs, the main innovation of the proposed model can be found in

the structure of the long-run component. Namely, as in [21], this is modelled as an

additive cascade of MIDAS filters moving at different frequencies. This choice is

motivated by the empirical regularities arising from the analysis of realized volatility

measures that are typically characterized by two prominent and related features: a
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slowly moving long-run level and a highly persistent autocorrelation structure. For

ease of reference, we will denote the parametric specification adopted for the long-

run component as a Heterogeneous MIDAS (H-MIDAS) filter. Residual short-term

autocorrelation is then explained by a short-run component that follows a mean revert-

ing unit GARCH-type model. The overall model will be referred to as a H-MIDAS

Component MEM model (H-MIDAS-CMEM). It is worth noting that, specifying the

long-run component as an additive cascade of volatility filters as in [9], we implicitly

associate this component to long-run persistent movements of the realized volatility

process.

The model that is here proposed differs from that discussed in [21] under two

main respects. First, in this paper, we model realized volatilities on a daily scale

rather than high-frequency intra-daily trading volumes. Second, the structure of the

MIDAS filters in the long-run component is based on a pure rolling window rather

than on a block rolling window scheme.

The estimation of model parameters can be easily performed by maximizing a

likelihood function based on the assumption of Generalized F distributed errors.

The motivation behind the use of this distribution is twofold. First, nesting different

distributions, the Generalized F results very flexible in modelling the distributional

properties of the observed variable. Second, it can be easily extended to control the

presence of zero outcomes [17].

In order to assess the relative merits of the proposed approach we present the

results of an application to the realized volatility time series of the S&P 500 index in

which the predictive performance of the proposed model is compared to that of the

standard MEM by means of an out-of-sample rolling window forecasting experiment.

The volatility forecasting performance has been assessed using three different loss

functions, the Mean Squared Error (MSE), the Mean Absolute Error (MAE) and

the QLIKE. The Diebold-Mariano test is then used to evaluate the significance of

differences in the predictive performances of the models under analysis. Our findings

suggest that the H-MIDAS-CMEM significantly outperforms the benchmark in terms

of forecasting accuracy.

The remainder of the paper is structured as follows. In Sect. 2, we present the

proposed H-MIDAS-CMEM model, while the estimation procedure is described in

Sect. 3. The results of the empirical application are presented and discussed in Sect.

4. Finally, Sect. 5 concludes.

2 Model Specification

Let {vt,i } be a time series of daily realized volatility (RV) measures observed on day

i in period t , such as in a month or a quarter. The general H-MIDAS-CMEM model

can be formulated as

vt,i = τt,i gt,i εt,i , εt,i |Ft,i−1

i id
∼ D

+(1,σ2) , (1)
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where Ft,i−1 is the sigma-field generated by the available intra-daily information

until day (i − 1) of period t . The conditional expectation of vt,i , given Ft,i−1, is

the product of two components characterized by different dynamic specifications.

In particular, gt,i represents a daily dynamic component that reproduces autocorre-

lated movements around the current long-run level, while τt,i is a smoothly varying

component given by the sum of MIDAS filters moving at different frequencies. This

component is designed to track the dynamics of the long-run level of realized volatil-

ity.1 In order to make the model identifiable, as in [12], the short-run component is

constrained to follow a mean reverting unit GARCH-type process. Namely, gt,i is

specified as

gt,i = ω∗ +

r
∑

j=1

α j

vt,i− j

τt,i− j

+

s
∑

k=1

βk gt,i−k, τt,i > 0 ∀t,i . (2)

To fulfill the unit mean assumption on gt,i , it is necessary to set appropriate constraints

on ω∗ by means of a targeting procedure. In particular, taking the expectation of both

sides of gt,i , it is easy to show that

ω∗ = (1 −

r
∑

j=1

α j −

s
∑

k=1

βk).

Positivity of gt,i is then ensured by setting the following standard constraints: ω∗ > 0,

α j ≥ 0 for j = 1, . . . , r , and βk ≥ 0 for k = 1, . . . , s.2

On the other hand, the low-frequency component is modelled as a linear com-

bination of MIDAS filters of past volatilities aggregated at different frequencies. A

general formulation of the long-run component is given by

log(τt,i ) = δ + θs

K
∑

k=1

ϕk(ω1,s, ω2,s) log
(

V S
(k)

t,i

)

+ θm

K ∗
∑

h=1

ϕh(ω1,m, ω2,m) log
(

V M
(h)

t,i

)

,

(3)

where V S
(k)

t,i and V M
(h)

t,i denote the RV aggregated over a rolling window of length

equal to ns and nm , respectively, with ns > nm , while K is the number of MIDAS

lags and K ∗ = K + ns − nm . In particular,

1The stochastic properties of the model have been derived by [21] to which the interested reader

may refer for additional details.
2Note that strict positivity, i.e. α j > 0 for at least one j ∈ {1, . . . , r}, is needed for identification if

s > 0.
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V S
(k)

t,i =

ns
∑

j=1

vt,i−(k−1)− j for k = 1, . . . , K (4)

and

V M
(h)

t,i =

nm
∑

j=1

vt,i−(h−1)− j for h = 1, . . . , K ∗ . (5)

In the empirical application, we choose ns = 125 implying a biannual rolling window

RV and nm = 22, meaning that the RV is rolled back monthly. Furthermore, the long-

run component is considered in terms of logarithmic specification since it does not

require parameter constraints to ensure the positivity of τt,i .

Finally, the weighting function ϕ(ω) is computed according to the Beta weighting

scheme which is generally defined as

ϕk(ω1,ω2) =
(k/K )ω1−1(1 − k/K )ω2−1

∑K
j=1( j/K )ω1−1(1 − j/K )ω2−1

, (6)

where the weights in Eq. (6) sum up to 1. As discussed in [16], this Beta-specification

is very flexible, being able to accommodate increasing, decreasing or hump-shaped

weighting schemes, where the number of lags K need to be properly chosen by

information criteria to avoid overfitting problems.

This multiple frequency specification appears to be preferable to the single-

frequency MIDAS filter for at least two different reasons. First, the modeller is not

constrained to choose a specific frequency for trend estimation, but can determine the

optimal blend of low- and high-frequency information in a fully data-driven fashion.

Second, as pointed out in [9], an additive cascade of linear filters, applied to the same

variable aggregated over different time intervals, can allow to reproduce very per-

sistent dynamics such as those typically observed for realized volatilities. We have

also investigated the profitability of adding more components to the specification of

τt,i . However, this did not lead to any noticeable improvement in terms of fit and

forecasting accuracy.

3 Estimation

The model parameters can be estimated in one step by Maximum Likelihood (ML),

assuming that the innovation term follows a Generalized F (GF) distribution. Alter-

natively, estimation could be performed by maximizing a quasi-likelihood function

based on the assumption that the errors εt,i are conditionally distributed as a unit

Exponential distribution that can be seen as the counterpart of the standard normal

distribution for positive-valued random variables [10, 11]. To save space, here we

focus on ML estimation based on the assumption of GF errors.
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In particular, let X be a non-negative random variable, the density function of a

GF random variable is given by

f (x; ζ) =
axab−1[c + (x/η)a](−c−b) cc

ηab B(b, c)
, (7)

where ζ = (a, b, c, η)�, a > 0, b > 0, c > 0 and η > 0, with B(·, ·) the Beta function

such that B(b, c) = [�(b)�(c)]/�(b + c). The GF distribution is based on a scale

parameter η and three shape parameters a, b and c, and thus it is very flexible,

nesting different error distributions, such as the Weibull for b = 1 and c → ∞,

the generalized Gamma for c → ∞ and the log-logistic for b = 1 and c = 1. The

Exponential distribution is also asymptotically nested in the GF for a = b = 1 and

c → ∞.

Note that in the presence of zero outcomes the Zero-Augmented Generalized F

(ZAF) distribution [17] can be used.

In order to ensure that the unit mean assumption for εt,i is fulfilled, we need to

set η = ξ−1, where

ξ = c1/a [�(b + 1/a)�(c − 1/a)] [�(b)�(c)]−1 .

The log-likelihood function is then given by

L (v; ϑ) =
∑

t,i

{

log a + (ab − 1) log
(

εt,i

)

+ c log c − (c + b) log
[

c +
(

ξεt,i

)a]

+

−log(τt,i gt,i ) − log B(b, c) + ab log(ξ)
}

,

(8)

where εt,i =
vt,i

τt,i gt,i
and ϑ is the parameter vector to be estimated.

4 Empirical Application

To assess the performance of the proposed model, in this section, we present and

discuss the results of an empirical application to the S&P 500 realized volatility

series.3 The 5-min intra-daily returns have been used to compute the daily RV series

covering the period between 03 January 2000 and 27 December 2018 for a total of

4766 observations. The analysis has been performed using the software R [23].

Graphical inspection of the S&P 500 realized volatility, displayed in Fig. 1, reveals

several periods of high volatility. These essentially refer to the dot com bubble in

2002, the financial crisis starting in mid-2007 and peaking in 2008 and the crisis

in Europe progressed from the banking system to a sovereign debt crisis with the

highest turmoil level in the late 2011. More recently, the stock market sell-off that

3The data have been downloaded from the OMI realized library available at: https://realized.oxford-

man.ox.ac.uk.

https://realized.oxford-man.ox.ac.uk
https://realized.oxford-man.ox.ac.uk
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Fig. 1 S&P 500 Realized Volatility

Table 1 In sample parameter estimates for the Generalized F distribution

Parameter estimates for MEM and H-MIDAS-CMEM. Estimation is performed on the full sample

period 03 Jan 2000–27 Dec 2018 using the GF distribution. Standard errors are reported in smaller

font under the parameter values. All parameters are significant at 5%

occurred between June 2015 and June 2016 is related to different events such as the

Chinese stock market turbulence, but also to the uncertainty around FED interest

rates, oil prices, Brexit and the U.S. presidential election. Finally, economic and

political uncertainties are the most prevalent drivers of market volatility in 2018.

The model parameters have been estimated by ML, relying on the assumption

of GF errors and, as a robustness check, by Exponential QML. Estimation results,

based on the full sample 5-min RV, are reported in Tables 1 and 2, respectively. For

ML, standard errors are based on the numerically estimated Hessian at the optimum,

whereas for QML, we resort to the usual sandwich estimator. The performance of

the H-MIDAS-CMEM has been compared to that of the standard MEM(1,1) speci-

fication, considered as benchmark model.

Regarding the H-MIDAS-CMEM, the short-run component follows a mean revert-

ing unit GARCH(1,1) process, while the long-term component is specified as a com-

bination of two MIDAS filters moving at a semiannual (ns = 125) and a monthly

(nm = 22) frequency, with K corresponding to two MIDAS lag years. It is worth

noting that, although the Beta lag structure in (6) includes two parameters, following

a common practice in the literature on MIDAS models, in our empirical applications,
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ω1,s and ω1,m have been set equal to 1 in order to have monotonically decreasing

weights over the lags.

The panel of the short-term component in Table 1 shows that the intercept ω∗ is

slightly higher for the H-MIDAS-CMEM than the standard MEM. Furthermore, stan-

dard errors for ω∗ are missing since it is estimated through the expectation targeting

procedure. The parameter α takes values much larger than those typically obtained

fitting GARCH models to log-returns, while the opposite holds for β. The analysis

of the long-run component reveals that all the involved parameters in log(τt,i ) are

statistically significant. In particular, the slope coefficient θs of the biannual filter is

negative, while θm associated to the monthly filter is positive. Moreover, the coef-

ficients ω2,s and ω2,m defining the features of the Beta weighting function take on

values such that the weights slowly decline to zero over the lags. Finally, the panel

referring to the error distribution parameters indicates that the GF coefficients are

similar between MEM and H-MIDAS-CMEM.

From a comparison of the log-likelihoods, it clearly emerges that the value

recorded for the H-MIDAS-CMEM is much larger than that of the competing model.

In addition, the BIC reveals that there is a big improvement coming from the inclu-

sion of the heterogeneous component in the MIDAS trend which allows to better

capture the changes in the dynamics of the average volatility level.

In the QML case (Table 2), the estimated short-run component parameters are

reasonably close to those reported for ML estimation. This is, however, not true for

the parameters of the long-run component. As expected, the BIC values are always

larger than the ones obtained under the GF distribution.

The out-of-sample predictive ability of the models, for the S&P 500 RV time

series, has been assessed via a rolling window forecasting exercise leaving the last

500 observations as out-of-sample forecasting period, that is, 30 December 2016–27

December 2018.

The predictive performance of the examined models is evaluated by computing

the Mean Squared Error (MSE), Mean Absolute Error (MAE) and QLIKE [22] loss

functions, using the 5-min RV as volatility proxy, namely,

Table 2 In sample parameter estimates for the Exponential distribution

Parameter estimates for MEM and H-MIDAS-CMEM. Estimation is performed on the full sample

period 03 Jan 2000–27 Dec 2018 using the Exponential distribution. Robust standard errors are

reported in smaller font under the parameters value. All parameters are significant at 5%
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Table 3 S&P 500 out-of-sample loss functions comparison

Top panel: loss function average values for Mean Squared Error (MSE), Mean Absolute Error

(MAE) and QLIKE. Bottom panel: Diebold-Mariano test statistics (DM) with the corresponding

p-values. Positive statistics are in favour of the H-MIDAS-CMEM model. Values in the table refer

to models fitted using the Generalized F distribution (left panel) and the Exponential distribution

(right panel). Better models correspond to lower losses

M SE =

T
∑

t=1

I
∑

i=1

(vt,i − v̂t,i )
2;

M AE =

T
∑

t=1

I
∑

i=1

|vt,i − v̂t,i |;

QL I K E =

T
∑

t=1

I
∑

i=1

log(v̂t,i ) +
vt,i

v̂t,i

.

The significance of differences in forecasting accuracy is assessed by means of the

two-sided Diebold-Mariano test under the null hypothesis that MEM and H-MIDAS-

CMEM exhibit the same forecasting ability.

The out-of-sample performance of the fitted models is summarized in Table 3,

reporting the average values of the considered loss functions (top panel) and the

Diebold-Mariano (DM) test statistics, together with the associated p-values (bottom

panel). The empirical results suggest that the H-MIDAS-CMEM always returns aver-

age losses that are significantly lower than those recorded for the benchmark MEM.

The only exception occurs for the MSE when models are fitted by Exponential QML.

In this case, the H-MIDAS-CMEM still returns a lower average loss, but the null of

equal predictive ability cannot be rejected. Finally, comparing forecasts based on

models fitted by MLE and QMLE, respectively, we find that there are no striking

differences between these two sets of forecasts, with the former returning slightly

lower average losses.

5 Concluding Remarks

This paper investigates the usefulness of the application of the Heterogeneous

MIDAS Component MEM (H-MIDAS-CMEM) for fitting and forecasting realized
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volatility measures. The introduction of the heterogeneous MIDAS component, spec-

ified as an additive cascade of linear filters which take on different frequencies, allows

to better capture the main empirical properties of the realized volatility, such as clus-

tering and memory persistence. The empirical analysis of the realized volatility series

of the S&P 500 index points out that the H-MIDAS-CMEM outperforms the standard

MEM model in fitting the S&P 500 volatility. At the same time, the out-of-sample

comparison shows that, for all the loss functions considered, the H-MIDAS-CMEM

significantly outperforms the benchmark in terms of predictive accuracy. These find-

ings appear to be robust to the choice of the error distribution. Accordingly, gains in

predictive ability are mainly determined by the dynamic structure of the H-MIDAS-

CMEM, rather than from the estimation method (MLE versus QMLE).

Finally, although the model discussed in this paper is motivated by the empirical

properties of realized volatility measures, our approach can be easily extended to

the analysis of other financial variables sharing the same features, such as trading

volumes, bid-ask spreads and durations.
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Asymptotically Distribution-Free
Goodness-of-Fit Tests for Testing
Independence in Contingency Tables of
Large Dimensions

Thuong T. M. Nguyen

Abstract We discuss a possibility of using asymptotically distribution-free goodness-

of-fit tests for testing independence of two discrete or categorical random variables

in contingency tables. The tables considered are particularly of large dimension,

in which the conventional chi-square test becomes less reliable when the table is

relatively sparse. The main idea of the method is to apply the new Khmaladze trans-

formation to transform the vector of the chi-square statistic components into another

vector whose limit distribution is free of the parameters. The transformation is one-

to-one and hence we can build up any statistic based on the transformed vector as

an asymptotically distribution-free test statistic for the problem of interest where we

recommend the analogue of the Kolmogorov-Smirnov test. Simulations are used to

show that the new test not only converges relatively quickly but is also more powerful

than the chi-square test in certain cases.

Keywords Goodness of fit · Contingency tables · Large dimension

1 Introduction

The problem of testing independence in contingency tables can be listed as one

of the most classical problems in non-parametric inference. For this problem, the

conventional chi-square test had been known as the only asymptotically distribution-

free goodness-of-fit test to be used for quite a long time, until a recent construction

of a wider class of tests introduced in [6]. Even though the use of the chi-square

test has no rule about limiting the number of cells or, in other words, about limiting

the number of categories or possible values for each variable, it certainly requires

some assumptions which large dimensional tables make it difficult to meet. Those

assumptions for the use of the chi-square test are well known to be that the value of
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cell expectation should be 5 or more in at least 80% of the cells and no cell should

have an expectation of less than 1 (see, for example, Agresti [1]).

Here we will cover the case when the tables may have several hundreds of cells

while the sample size is approximately of the same order. In such situations, asymp-

totically distribution-free goodness of fit tests, in general, have not existed. This is

the result of the fact that when many parameters need to be estimated, those estimates

are not stable and the distribution-free property of the conventional chi-square test

will suffer. As will be demonstrated in Sect. 4 that obstacle will not be the case for

the new tests we introduce in this paper.

This work is an extension of what has been done in [6] where the author applied

the new Khmaladze’s transformation given in Khmaladze [2] for testing hypotheses

on families of discrete random variables. The author did confirm that for testing

independence in contingency tables, the new Khmaladze’s transformation works for

tables of reasonable dimensions like 4 × 6 or up to 8 × 8 with relatively small sample

sizes. The power of the new tests like the Kolmogorov-Smirnov or omega-square test

was shown to be better than that of the chi-square in several cases. In like vein, we will

address the problem of testing independence in contingency tables with much larger

dimensional tables and show that the method works equivalently well as already

discussed in [6]. Even when the sample size is sufficiently large to be able to use the

chi-square test, the new test presented here will be more powerful than the chi-square

in certain scenarios.

This work, however, is not a mere extension without any practical meaning. Often

we see in practice contingency tables classifying variables with no more than 10 cate-

gories, which could partly be due to limited availability of tests as already mentioned

above. In various problems with diversity particularly, however, variables classified

into a large number of categories should be of great desire. For example, when exam-

ining diversity relating to ethnicity, we usually neglect minor groups and classify all

of them as ‘Others’. Even though that is a sensible approach as we may be able to

avoid sparsity of the tables, many a time the biological and cultural diversity makes

a huge contribution to the association of ethnicity to other random variables like

immigrating habit, political view, etc. that we should not neglect. If we want to take

diversity into account by specifying every single minor group, we will need to cope

with tables of large dimension.

We need to emphasize that we do not propose only one new test for the problem

of interest. Instead, we will show a construction of a class of new asymptotically

distribution-free goodness-of-fit tests and investigate the behaviour of some tests as

examples. Through this work we later on recommend a test from our point of view.

This construction will be presented in Sect. 3 and some preliminaries for the problem

will be sketched in Sect. 2. Section 4 will be devoted to demonstrate simulation results

in which we discuss the distribution-free property of the new tests and how quickly

the test converges to its limit, and also compare the power of the new tests with that

of the chi-square for different cases.
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2 Preliminaries

Our problem is to test the independence of two discrete or categorical random vari-

ables X and Y where their association is classified in a contingency table of size

(I + 1) × (J + 1), which means that X and Y have (I + 1) and (J + 1) possible

values, respectively. Within this paper we suppose that I and J are considerably large,

say, both I and J are greater than 10 and can be up to 30. Meanwhile, the sample size

n could be as small as of the same order as the number of cells (I + 1) × (J + 1).

Denote by a = (a1, · · · , aI )
T ∈ RI and b = (b1, · · · , bJ )

T ∈ RJ the hypotheti-

cal marginal probabilities which are freely changed provided that ai , b j > 0 for every

i and j and
�I

i=1 ai < 1 and
�J

i=1 b j < 1. The marginal probabilities of the last

row or column, aI+1 and bJ+1, of course, depend on a and b through the relationship

aI+1 = 1 −
�I

i=1 ai and bJ+1 = 1 −
�J

j=1 b j . As we know, testing independence

of two random variables belongs to the class of non-parametric testing; however, for

this particular problem, we can view it as a parametric testing problem where a and

b are parameters. Let ` = (aT , bT )T ∈ Rd where d = I + J then ` stands for the

vector of parameters and d for its dimension. From now on, we will use `0 for the

true unknown parameters and n for the total number of observed values in the table,

or sample size.

Suppose that the cell counts are
"
νi j

�
and the joint probabilities are

"
πi j

�
. Under

the hypothesis of independence between X and Y , the joint probabilities πi j are

defined through the marginal probabilities by πi j = ai b j for every i and j . These ai

and b j can simply be estimated by

âi = νi+
n

=
�(J+1)

j=1 νi j

n
, b̂ j = ν+ j

n
=

�(I+1)

i=1 νi j

n
, for all i, j, (1)

which are the maximum likelihood estimators (MLE). Clearly, the estimated joint

probabilities are π̂i j = âi b̂ j under the null hypothesis of independence.

Denote by Tn a vector of components Ti j = νi j −nπi j (θ0)√
nπi j (θ0)

. The estimates of these

Ti j based on MLE are

"Ti j = νi j − nπi j (θ̂)"
nπi j (θ̂)

= νi j − nâi b̂ j"
nâi b̂ j

(2)

and let us denote "Tn = ("Ti j ). A crucial point, as stated in Khmaladze [2], is that the

limit in distribution of "Tn , denoted by "T, is a Gaussian vector of the following form:

"T = V −
d"

α=0

�V, q(α)�q(α). (3)
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In this form, V = (Vi j ) where Vi j with indices i = 1, · · · , I + 1 and j = 1, · · · , J +
1 are independent and standard normal random variables and

"
q(α)

�
is a set of

orthonormal vectors defined based on θ0. Detail about q(α) was written in [6]. The

key point is the fact that θ0 is unknown and varied so q(α),α = 0, . . . , d, depends on

the unknown parameter and varies from case to case as a consequence. Therefore, the

limiting distribution of "Tn is unspecified without the knowledge of the parameters.

It is desirable to obtain a test which has a limiting distribution independent of the

parameters. There is, however, so far only one test statistic which is the chi-square

test statistic, as the quadratic form of "Tn is asymptotically distribution-free if the

sample size is significantly large enough.

The rationale behind the new Khmaladze transformation is elegant and simple and

so the transformation itself is not only easy to implement but also effective. Briefly

speaking, since the limiting distribution "T of the vector "Tn is expressed as in (3), we

can transform "Tn into another vector "Zn which converges in distribution to, say, "Z,

of the form

"Z = V� −
d"

α=0

�V�, r(α)�r(α), (4)

where
"
r(α)

�
is a set of fixed orthonormal vectors and V� is of the same type as

V. This "Z has the same form as "T but the difference is that r(α) are fixed while

q(α) are not. No matter how many vectors q(α) we have, the transformation can be

done simultaneously or recursively. The transformation will remain its simplicity

and transparency even for a large number of parameters d. In this text, we will show

the effectiveness of the transformation for d up to 55. This transformation is used

successfully for not only discrete distributions but also various cases like testing

hypotheses on families of continuous distributions or with covariates as thoroughly

discussed in Khmaladze [3, 4], respectively.

3 Method

The method, in fact, is no different from what is written in [6] in every detail.

For readers’ convenience, we will sketch some main steps on how to transform the

vector "Tn of components of the chi-square statistic into a vector "Zn whose limiting

distribution does not depend on any parameter as given in (4). We will mainly show

what is the form of the transformation and the test constructed from the transformed

vector "Zn .

The core unitary operator Uq,r used throughout the new Khmaladze’s transfor-

mation which transforms a vector of unit norm q into another unit vector r is of the

form
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Uq,r = I − 1

1 − �q, r� (r − q)(r − q)T , (5)

where I is the identity operator. This operator ensures that Uq,rq = r but other prop-

erties include Uq,rr = q and Uq,rv = v for every vector v orthogonal to both q and

r. The vector "T as an orthogonal projection of a standard Gaussian random vector

V onto an orthonormal system
"
q(α)

�
will be transformed into a vector "Z which

is also an orthogonal projection of a standard Gaussian random vector V� onto an

orthonormal system
"
r(α)

�
using this type of operator. This can be done by mapping

the set q(α) into r(α) and in this way, V will be mapped into V� which is also a stan-

dard Gaussian random vector. More details about the transformation are presented

in Khmaladze [2].

To find an explicit form of the operator that maps all q(α) into r(α) simultaneously

may be complicated. We will show that finding an operator in recursive form will be

much easier. The construction of the recursive form shown here is a general way for

any problem with a large number of parameters. That recursive form is constructed

as follows: Set the operator Uq(0),r(0) defined as in (5) where q = q(0), r = r(0).

Obviously, Uq(0),r(0)q(0) = r(0), Uq(0),r(0)r(0) = q(0). Set �q(1) = Uq(0),r(0)q(1). Because

Uq(0),r(0) preserves the inner product, the images of q(0) and q(1) are orthogonal,

which means r(0) ⊥ �q(1). Therefore U�q(1),r(1)r(0) = r(0), U�q(1),r(1)�q(1) = r(1). In sum-

mary, by applying the composition U�q(1),r(1)Uq(0),r(0) on q(0), q(1), q(2), we get their

images r(0), r(1),�q(2), respectively, where �q(2) ⊥ r(0), r(1). Continuing this process

then we can define �q(τ ), τ ≥ 2 recursively as

�q(τ ) =

⎛
⎝ #

1≤β<τ

U�q(β),r(β)Uq(0),r(0)

⎞
⎠ q(τ ).

The operator we wish to use is then

U =
d#

τ=1

U�q(τ ),r(τ )Uq(0),r(0) . (6)

It is obvious that U is a unitary operator as it is the product of unitary operators. This

U satisfies Uq(α) = r(α) for all α = 0, · · · , d. If the operator U transforms "Tn into

a "Zn , i.e.

"Zn = U"Tn =
#

d#

τ=1

U�q(τ ),r(τ )Uq(0),r(0)

#
"Tn, (7)

then "Zn converges in distribution to "Z of the form given in (4).

We re-emphasize that the limiting distribution of "Zn could be chosen by the users

because one can freely choose any collection
"
r(0), r(1), · · · , r(d)

�
provided that
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they are orthonormal. For consistency, we choose r(0) =
�

1√
(I+1)(J+1)

�
, a vector of

dimension (I + 1) × (J + 1) with equal components. Others r(α) with α = 1, · · · , d

defined for α ≤ I as

r (α)
z1z2

= 1√
J + 1

�
1{z1=α} − 1√

I + 1(1 +
√

I + 1)
1{z1 �=I+1} − 1√

I + 1
1{z1=I+1}

�

and for α ≥ I + 1 as

r (α)
z1z2

= 1√
I + 1

�
1{z2=α−I } − 1√

J + 1(1 +
√

J + 1)
1{z2 �=J+1} − 1√

J + 1
1{z2=J+1}

�
,

where indices z1 = 1, . . . , I + 1, z2 = 1, . . . , J + 1. This set of r(α) is nothing else

but a set of q(α) at a specific θ0. That specific θ0 corresponds to the discrete uniform

marginal distributions of X and Y or, in other words, θ0 with ai = 1
I+1

and b j = 1
J+1

for every i and j . Compared to the problem of testing independence of two continuous

univariate random variables, this choice of r(α) will give us the vector "Z such that the

partial sum of coordinates of this "Z will be discrete time analogue of the standard

Brownian sheet (see, for example, van de Vaart and Wellner [7]).

The computation of the vector "Zn theoretically depends on the unknown vectors

q(α) or, in other words, the unknown parameterθ0. For practical use, we will substitute

those unknown parameters by their estimates âi and b̂ j as given in (1). The simulation

result shown in the next section will use the unknown theoretical parameter θ0 to

generate realizations for the tables under the hypothesis of independence. We then

use the estimates of parameters for calculating vector "Zn which is eventually used to

compute the test statistics.

4 Simulation

In this section, we will use simulations to demonstrate three important points of the

new tests: the distribution-free property, the rate of convergence and the power. All

programmes were written and run under R version 3.5.3 (R Core Team, 2019).

First of all, let us show the form of the new statistics based on the transformed

vector "Zn given in (7). For i = 1, . . . , I + 1 and j = 1, . . . , J + 1, let

V Z
n,i j =

"

(z1,z2)≤(i, j)

"Zz1z2
(8)

be the cumulative sum of the coordinates of "Zn where (t1, t2) ≤ (i, j) means t1 ≤ i

and t2 ≤ j . The two statistics
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K S = max
(1,1)≤(i, j)≤(I+1,J+1)

��V Z
n,i j

�� , (9)

Ω2 =
"

(1,1)≤(i, j)≤(I+1,J+1)

(V Z
n,i j )

2 (10)

are nothing else but the discrete versions of the Kolmogorov-Smirnov (KS) statistic

and the omega-square (Ω2) statistic that will be considered as examples of the new

tests.

To illustrate the distribution-free property of the new tests of the form (9) and (10),

we follow the following steps: for each value of I and J , we choose two different sets

of θ0 arbitrarily. One way that we choose to generate θ0 is to generate the marginal

probabilities (a1, . . . , aI+1)
T and (b1, . . . , bJ+1)

T as vectors of uniform realizations

and then standardize those realizations to make sure that they add up to 1. By doing

so, the difference between the two θ0 is also arbitrary and can be very significant.

Then from each set of the chosen parameters, we generate around 5000 sets of

realizations for the table with a fixed sample size, calculate"Tn and transform it into"Zn

recursively. From the transformed vector"Zn , we calculate the values of the test K S or

Ω2. From these values of the test, we plot their empirical distributions corresponding

to the two different θ0 to see if they are the same or not. Figure 1 shows the result

of the empirical distributions of the K S tests for 15 × 20 contingency tables with

sample size 500 and of the omega-square tests for 30 × 25 tables with sample size

800. As we can see, the two curves in each plot are not easily distinguishable which

indicates the distribution-free property of the new tests.

The algorithm uses finite loops so it is obviously neat and simple for users. More-

over, we observed that the algorithm runs effectively quick despite its recursive

nature. For a 15 × 20 table with sample size 500 and 5000 iterations, the total run-

ning time for generating the empirical distribution is less than 1 hour. Hence, the time

to calculate a test for each given problem should be half of a second only. When the

dimension increases, i.e. the number of parameters increases to 45, we need around

7 seconds to calculate a test which is still reasonably good.

Both examples shown here are asymptotically distribution-free; however, the

value of the omega-square test becomes so large as the dimension of the table

increases that we are reluctant to recommend using this test. From our point of view,

the K S test as the supremum of some Brownian bridge rather than its quadratic sum

should be more reliable since its range is much smaller. Therefore, we will further

investigate the convergence rate of the K S test to its limit and its power in the rest

of this text.

Next we will demonstrate the convergence rate of the K S test. For each chosen

dimension, we simulate data with different sample sizes. One sample size is very large

and the other is relatively small, roughly the same as the table dimension. We then plot

the empirical distributions of the test in these two cases. Figure 2 is an example with

tables of dimension 25 × 25. In this figure, the two plots of the empirical distributions

of the K S tests coincide even for two very different sample sizes, 700 and 10000.

That means that the K S test converges to its limiting distribution extremely quickly.

We suspect that as the number of parameters is increasing, the convergence rate is
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(a) The empirical distributions of the KS statistics for 15 ×

20 tables with sample size 500 and two different sets of pa-

rameters θ0
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(b) The empirical distributions of the KS statistics for 30×

25 tables with sample size 800 and two different sets of pa-

rameters θ0
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(c) The empirical distributions of the Ω2 statistics for 15×

20 tables with sample size 500 and two different sets of pa-

rameters θ0
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(d) The empirical distributions of the Ω 2 statistics for

30 × 25 tables with sample size 800 and two different sets

of parameters θ0

Fig. 1 Distribution-free property of the transformed statistics

getting better. That should be intuitively true as the asymptotic behaviour of VZ
n is

getting closer to the projected standard Brownian motion.

The last part of this section is to discuss the power of the new test compared to

the chi-square test in case the sample size is sufficiently large enough to be able to

use the chi-square. Needless to say that when the table is relatively sparse, the new

test proposed here still performs well as seen above. This is certainly a case when it

outperforms the chi-square test.

We will again take the K S test for comparing its statistical powers with that of the

chi-square. We are not using type I and type II errors for this comparison. Instead we

define the statistical power of tests under local alternatives as follows: Assume that

under an alternative distributionπa the random variables X and Y are not independent,

i.e. we have πa
i j �= ai b j for some i, j . Denote by F0 and Fa the distribution functions
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Fig. 2 The convergence

rate of the K S test for

25 × 25 tables. The bold

blue line is the empirical

distribution with sample size

10000 and the black line is

with sample size 700. These

two lines, however, are not

distinguishable which

indicates how fast the

convergence is
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of a test statistic under the null and the alternative, respectively. The quantities

D = max
x :F0(x)≥0.8

|F0(x) − Fa(x)|

will be used as numerical descriptions of statistical powers of tests. Below we opt to

compare D(χ2
n) to D(K S) for several scenarios of local alternatives.

Obviously there are many ways to define local alternatives, here we choose local

alternatives from some families of copulas. Those families are Cuadras-Augé C
(1)

λ ,

Gumbel’s bivariate exponential distribution C
(2)

λ and Ali-Mikhail-Haq C
(3)

λ , see spe-

cific forms of these in Nelsen [5] and more explanations in [6]. Figure 3 illustrates the

empirical distributions of the K S and chi-square test under the null and alternative,

plotted in the same graph for each test. By looking at these figures, we can see that

the K S test has better power under Gumbel’s bivariate exponential distribution and

Ali-Mikhail-Haq copulas and is only slightly less powerful than the chi-square under

the Cuadras-Augé copula family.

In fact, for example, with tables of dimension 25 × 15 and the alternative dis-

tribution generated from Gumbel’s bivariate exponential distribution copula with

λ = 0.3, the power of the K S test is 0.914 while that of chi-square is only 0.44.

We also believe that for the two scenarios when the K S test is more powerful than

the chi-square, its power is getting better when the dimension of the table is getting

larger.

A common characteristic of the two scenarios where the K S test is better than

the chi-square test is that, under these scenarios if X and Y are discrete or ordinal

categorical then there is a linear by linear relationship between X and Y . That means,

in cases when X increases and Y either increases or decreases, the K S test gives us

a better detection of this dependency.

In summary, we present in this text a new construction of a class of asymptotically

distribution-free tests for testing independence in contingency tables, even for large

tables which are relatively sparse and recommend to use the K S test. We confirm

that this new test converges very quickly to its limit and also point out the cases when
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(a) The two empirical distributions of the KS statistics under

the null and the local alternative from Gumbel family with

λ = 0.3 for 25×20 tables, sample size 8000
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(b) The two empirical distributions of the chi-square statis-

tics under the null and the local alternative from Gumbel

family with λ = 0.3 for 25×20 tables, sample size 8000
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(c) The two empirical distributions of the KS statistics un-

der the null and the local alternative from Ali-Mikhail-Haq

family with λ = 0.5 for 15×20 tables, sample size 8000
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(d) The two empirical distributions of the chi-square s-

tatistics under the null and the local alternative from Ali-

Mikhail-Haq family with λ = 0.5 for 15×20 tables, sample

size 8000
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(e) The two empirical distributions of the KS statistics under

the null and the local alternative from Cuadras-Augé family

with λ= 0.2 for 15×25 tables, sample size 8000
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(f) The two empirical distributions of the chi-square statis-

tics under the null and the local alternative from Cuadras-

Augé family with λ = 0.2 for 15 × 25 tables, sample size

8000

Fig. 3 Statistical powers of tests under several scenarios
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the new test is more powerful than the chi-square. Due to restricted time for running

simulations we just opt to tables of dimension 25 × 30 at most. More work could be

done to see how well the new Khmaladze’s transformation can do for this specific

problem either by increasing the table dimension or decreasing the sample size or

looking for other local alternatives where the chi-square test is less powerful than

the new constructed tests.
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Incorporating Model Uncertainty in the
Construction of Bootstrap Prediction
Intervals for Functional Time Series

Efstathios Paparoditis and Han Lin Shang

Abstract A sieve bootstrap method that incorporates model uncertainty for con-

structing pointwise or simultaneous prediction intervals of stationary functional time

series is proposed. The bootstrap method exploits a general backward vector autore-

gressive representation of the time series of Fourier coefficients appearing in the

well-established Karhunen-Loève expansion of the functional process. The boot-

strap method generates, by running backward in time, functional bootstrap samples

which adequately mimic the dependence structure of the underlying process and

which all have the same conditionally fixed curves at the end of every functional

bootstrap sample. The bootstrap prediction error distribution is then calculated as

the difference between the model-free bootstrap generated future functional pseudo-

observations and the functional forecasts obtained from a model used for prediction.

In this way, the estimated prediction error distribution takes into account not only

the innovation and estimation error associated with prediction, but also the possible

error due to model uncertainty or misspecification. Through a simulation study, we

demonstrate an excellent finite-sample performance of the proposed sieve bootstrap

method.

Keywords Fourier transform · Functional prediction · Prediction error · Principal

components · Karhunen-Loéve expansion

1 Introduction

Functional time series consists of random functions observed at a regular or irregular

time interval. Depending on whether or not the continuum is also a time variable,

functional time series can be loosely grouped into two categories. On the one hand,

E. Paparoditis

Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus

e-mail: paparoditis@ucy.ac.cy

H. L. Shang (B)

Department of Actuarial Studies and Business Analytics, Macquarie University, Sydney, NSW

2109, Australia

e-mail: hanlin.shang@mq.edu.au

© Springer Nature Switzerland AG 2020

M. La Rocca et al. (eds.), Nonparametric Statistics, Springer Proceedings

in Mathematics & Statistics 339, https://doi.org/10.1007/978-3-030-57306-5_37

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57306-5_37&domain=pdf
mailto:paparoditis@ucy.ac.cy
mailto:hanlin.shang@mq.edu.au
https://doi.org/10.1007/978-3-030-57306-5_37


416 E. Paparoditis and H. L. Shang

functional time series can arise from measurements obtained by separating an almost

continuous time record into consecutive intervals, for example, days, weeks, or years

(see, e.g., [6]). We refer to such data structures as sliced functional time series,

examples of which include daily price curves of a financial stock, see [9] and intraday

particulate matter, see [18]. On the other hand, when continuum is not a time variable,

functional time series can also arise when observations in a time period can be

considered as finite-dimensional realizations of an underlying continuous function;

an example is the yearly age-specific mortality rates, see [1, 8].

In either case, the underlying functional process is denoted by {Xt , t ∈ Z}, where

Z = {t : t ∈ 0,±1, . . . } and where each Xt is a random function Xt (τ ) for τ within

a function support range, τ ∈ I ⊂ R. We refer to such data structures as functional

time series. Central issues in the functional time series analysis are to model the tem-

poral dependence of the functional random variables {Xt , t ∈ Z}, to make statistical

inference about a parameter ξ of interest and to predict future values of the process

given an observed data {X1,X2, . . . ,Xn}. Not only it is vital to obtain consistent

estimators, but we are also interested in estimating the variability centered around

these estimators, to construct confidence or prediction intervals and to implement

hypothesis tests (see, e.g., [7]). When such inference problems arise, resampling

methodology, especially bootstrapping, turns out to be an important practical alter-

native for independent functional data or functional time series (see, e.g., [2, 5, 10,

12, 13, 17, 19]).

In the arenas of bootstrapping functional time series, from a theoretical aspect,

[15] developed weak convergence results for approximate sums of weakly dependent,

Hilbert space-valued random variables in a triangular array setting. They prove a

central limit theorem for the stationary bootstrap. [3] also obtained weak convergence

results for Hilbert space-valued random variables. The random variables are assumed

to be weakly dependent in the sense of near epoch dependence, and they show the

consistency of the non-overlapping block bootstrap. From a methodological aspect,

[16] extended the stationary bootstrap method of [15] to functional time series.

[14] extended the moving block and the tapered block bootstrap to functional time

series, while [19] extended the maximum entropy bootstrap method. [12] proposed

a sieve bootstrap method for functional time series. [11] proposed a residual-based

bootstrap method for functional autoregressions, while [4] applied a residual-based

bootstrap method to construct confidence intervals for the regression function in a

nonparametric functional regression.

We focus on the problem of constructing pointwise or simultaneous prediction

intervals for functional time series. To elaborate, suppose that for every t ∈ Z the

random element Xt is generated as

Xt = f (Xt−1,Xt−2, . . . ) + εt ,

with some appropriate function f and a zero mean independent and identically

distributed (I.I.D.) innovation process {εt } with finite second moments; we write for

simplicity εt ∼ I.I.D.(0, Cε), where Cε = E(εt ⊗ εt ) and E(·) denotes expectation.

Suppose further that a “model”
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Xt = g (Xt−1,Xt−2, . . . ,Xt−k) + vt (1)

is used for prediction, where k < n is some fixed integer, g is an unknown function,

and vt ∼ I.I.D.(0, Cv). Given the observed functional time series {X1,X2, . . . ,Xn},

one-step-ahead prediction of Xn+1 based on model (1) is obtained as

X̂n+1 = ĝ(Xn,Xn−1, . . . ,Xn−k+1),

where ĝ is an estimator of the unknown function g. The prediction error E = Xn+1 −

X̂n+1 of the one-step-ahead prediction can then be decomposed as follows:

En+1 = Xn+1 − X̂n+1

= εn+1

+ [ f (Xn,Xn−1, . . . ) − g(Xn,Xn−1, . . . ,Xn−k+1)]

+ [g(Xn,Xn−1, . . . ,Xn−k+1) − ĝ(Xn,Xn−1, . . . ,Xn−k+1)]

= EI,n+1 + EM,n+1 + EE,n+1,

with an obvious notation for EI,n+1,EM,n+1, and EE,n+1. Note that EI,n+1 is the

error due to the I.I.D. innovation εt+1, EM,n+1 is the model specification error, and

EE,n+1 the error due to estimation of the unknown function g used for prediction.

An appropriate bootstrap method for constructing prediction intervals is one which

is able to take all three sources of prediction error into account and to estimate

consistently the conditional distribution function

Pr(En+1(τi ) ≤ x |Xn,Xn−1, . . . ,Xn−k+1), x ∈ R, (2)

for a set of values τi ∈ I.

However, even in the most studied real-valued case, a common approach to esti-

mate the prediction error distribution is to ignore the model specification error, i.e.,

to construct the prediction intervals based on the innovation and the estimation error

only. The corresponding bootstrap methods use the same model for prediction and

for generating the functional pseudo-time series.

2 Bootstrapping Prediction Intervals

2.1 The Bootstrap Method

The basic idea of the bootstrap method proposed is to generate bootstrap samples of

functional time series (X∗
1,X

∗
2, . . . ,X

∗
n,X

∗
n+1) which imitate the dependence struc-

ture of the original functional time series and at the same time satisfy the following

condition:
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X
∗
n−k+1 = Xn−k+1, X

∗
n−k+2 = Xn−k+2, . . . , X

∗
n = Xn. (3)

This requirement is essential since as we have seen, our interest is focused on esti-

mating the distribution of the prediction error, that is, the conditional distribution of

En+1 given Xn,Xn−1, . . . ,Xn−k+1.

To achieve this and motivated by the functional sieve bootstrap proposed by [12],

we use the Karhunen-Loève expansion and first decompose the random element Xt

as

Xt =

n∑

j=1

ξ j,tν j =

m∑

k=1

ξ j,tν j

︸ ︷︷ ︸
X t,m

+

∞∑

j=m+1

ξ j,tν j

︸ ︷︷ ︸
Ut,m

. (4)

Here, ξ j,t = "Xt , ν j " where (ν j , j = 1, 2, . . . ) are the orthonormal eigenvectors cor-

responding to the eigenvalues (λ1 > λ2 > . . . ), in descending order of the variance

operator C0 = E(Xt ⊗ Xt ). Based on decomposition (4) the main idea is to consider

X t,m as the main driving component of the functional random element Xt and to treat

the “remainder” Ut,m as a white noise component.

Since, in practice, we do not observe the eigenvectors v j and the scores ξ j,t , we

use their sample estimates. As in [12], the dependence structure of the estimated

scores, ξ̂ t = (̂ξ1,t , . . . , ξ̂m,t ), is modeled by a forward vector autoregressive (VAR)

process,

ξ̂ t =

p∑

j=1

Â j,p ξ̂ t− j + êt , t = p + 1, p + 2, . . . , n, (5)

where p denotes the order of the VAR model and êt denotes the residuals of the VAR

fit. To select the optimal number of components m and the order of VAR model p,

we implement the method proposed by ([12], Sect. 5).

Based on the decomposition (4) and to generate the functional pseudo-time series

X
∗
1,X

∗
2, . . . ,X

∗
n we also fit a VAR(p) process to the backward series of estimated

scores, i.e.,

ξ̂ t =

p∑

j=1

B̂ j,p ξ̂ t+ j + v̂t , t = 1, 2, . . . , n − p, (6)

where the B̂ j ’s denote the estimated coefficient matrices. Using the backward vector

autoregressive representation allows for the generation of a time series of pseudo-

scores ξ ∗
1 , ξ ∗

2 , . . . , ξ ∗
n which satisfies the condition ξ ∗

t = ξt for t = n − k + 1, n −

k + 2, . . . , n. This is important in order to achieve that our bootstrap time series

{X∗
1,X

∗
2, . . . ,X

∗
n} fulfills condition (3). Using (6), we generate

ξ ∗
t =

p∑

k=1

B̂ j,pξ
∗
t+k + v∗

t , for t = n − k, n − k − 1, . . . , 1. (7)
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Here, (v∗
1, v

∗
2, . . . , v

∗
n−k) are obtained by

v∗
t = B̂p(L−1) Â−1

p (L)e∗
t , (8)

where Âp(z) = I −
∑p

j=1 Â j,pz j , B̂p(z) = I −
∑p

j=1 B̂ j,pz j , z ∈ C, and e∗
t are

I.I.D. resampled with replacement from the empirical distribution of the centered

residual êt in (5) for t = p + 1, p + 2, . . . , n.

If the order p of the VAR model is larger than the number k of past observa-

tions used in the time series model applied for prediction, then we generate for l =

1, 2, . . . , p − k random vectors ξ+
n+l =

∑p

j=1 Â j,pξ
+
n+l− j + e+

n+l , where ξ+
t = ξ̂ t for

t ≤ n and e+
n+l are I.I.D. resampled with replacement from the empirical distribution

of the centered residuals êt , t = p + 1, p + 2, . . . , n.

To generate a functional pseudo-time series {X∗
1,X

∗
2, . . . ,X

∗
n,X

∗
n+1}, we first set

X
∗
t = Xt , t = n, n − 1, . . . , n − k + 1.

Using the backward obtained pseudo-series (ξ ∗
1 , ξ ∗

2 , . . . , ξ ∗
n−k) calculate

X
∗
t =

m∑

j=1

ξ ∗
j,t v̂ j + U ∗

t,m, t = n − k, n − k − 1, . . . , 1,

where U ∗
t,m are I.I.D. resampled with replacement from {Ût,m − U n, t = 1, 2, . . . , n},

U n = n−1
∑n

t=1 Ût,m and Ût,m = Xt −
∑m

j=1 ξ̂ j,t v̂ j . Finally, let

X
∗
n+1 =

m∑

j=1

ξ ∗
j,n+1v̂ j + U ∗

n+1,m

=

m∑

j=1

( p∑

l=1

Âl,pξ
∗
j,n+1−l + e∗

n+1

)
v̂ j + U ∗

n+1,m,

where e∗
n+1 and U ∗

n+1,m are I.I.D. as e∗
t and U ∗

t,m , respectively.

Using the bootstrapped functional time series (X∗
1,X

∗
2, . . . ,X

∗
n), we calculate the

forecast X̂
∗
n+1 as

X̂
∗
n+1 = ĝ∗

(
X

∗
n,X

∗
n−1, . . . ,X

∗
n−k+1

)
,

where ĝ∗ is the same estimator as ĝ but obtained using the functional pseudo-time

series {X∗
1,X

∗
2, . . . ,X

∗
n}.

We approximate the distribution of En+1 by the distribution of E
∗
n+1 = X

∗
n+1 −

X̂
∗
n+1. Notice that by generating B replicates of E

∗
n+1, say

(
E

∗
n+1,1,E

∗
n+1,2, . . . ,E

∗
n+1,B

)
, (9)
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we can use the empirical distribution of the pseudo-prediction errors E
∗
n+1,b to esti-

mate the unknown distribution of E
∗
n+1. From (9), we can estimate for any τi ∈ I, the

quantiles of E
∗
n+1(τi ), say c∗

α(τi ) and c∗
1−α(τi ), i.e.,

Pr
[
c∗
α(τi ) ≤ E

∗
n+1(τi ) ≤ c∗

1−α(τi )
]

= 1 − 2α, i = 1, . . . , κ,

where κ is the number of discretized data points and 2α denotes the level of signifi-

cance. Using these quantiles, we can, for instance, construct a pointwise prediction

interval for Xn+1 which is given by

[
X̂n+1(τi ) + c∗

α(τi ), X̂n+1(τi ) + c∗
1−α(τi )

]
.

3 Numerical Studies

We utilize Monte Carlo methods to evaluate the performance of the proposed sieve

bootstrap method. The ultimate goal of our simulation study is to provide an assess-

ment and comparison based on interval forecast accuracy.

To define the data generating process that we considered, let {Xt (τ ), τ ∈ [0, 1]}

be simulated series from Brownian motions with zero mean and variance 1/(N − 1),

where N denotes the number of discrete data points. Let Bt (τ ) be simulated series

from Brownian motions with zero mean and variance 0.05 × 1/(N − 1). We generate

functional data according to

Xt (τ ) =

∫ 1

0

ψ(τ, γ )Xt−1(γ )dγ + b × Xt−2(τ ) + Bt (τ ), t = 1, 2, . . . , 100,

(10)

where ψ(τ, γ ) = 0.07 exp
1
2
(t2+s2). The choice of the constant in the definition of

ψ(·, ·) is performed so that �ψ�2 ≈ 0.1. When b "= 0 in (10), the model is FAR(1)

model; when b = 0.8, the model is FAR(2) model. As an illustration, Figure 1 dis-

plays simulated functional time series.

We consider two sample sizes n = 100 and n = 250. Using the first 80% of the

data as the initial training sample, we compute the one-step-ahead prediction interval.

Then, we increase the training sample by one and again compute the one-step-ahead

prediction interval. This procedure continues until the training sample reaches the

sample size. With the 20% of the data as the testing sample, we compute interval

forecast accuracy for the one-step-ahead prediction. To measure the interval forecast

accuracy, we consider the coverage probability deviance (CPD) as an absolute dif-

ference measure between the nominal coverage probability and empirical coverage

probability. The empirical coverage probability is defined as

Empirical coverage =
1

ntest × κ

ntest∑

η=1

κ∑

i=1

[1{Xη(τi ) < X̂
ub
η (τi )} + 1{Xη(τi ) > X̂ηlb(τi )}],



Incorporating Model Uncertainty in the Construction … 421

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
0

5
1

0

n = 100, b = 0
S

im
u

la
te

d
 d

a
ta

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
0

5
1

0

n = 100, b = 0.8

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
0

5
1

0

n = 250, b = 0

Grid point

S
im

u
la

te
d

 d
a

ta

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
0

5
1

0

n = 250, b = 0.8

Grid point

Fig. 1 Simulated functional time series

where ntest denotes the number of curves in the forecasting period. The CPD is defined

as

CPD = |Empirical coverage probability − Nominal coverage probability| .

As pointed out by [19], we implement the FAR(1) bootstrap and compare its

performance with our sieve bootstrap that uses the FAR(1) method to produce one-

step-ahead forecasts. In Table 1, we present the CPD for the two bootstrap methods,

Table 1 CPD for the two bootstrap methods, where the sieve bootstrap method uses k = 1

n = 100 n = 250

Method Statistic b = 0 b = 0.8 b = 0 b = 0.8

FAR(1)

bootstrap

Median 0.0359 0.0782 0.0238 0.0520

Sieve

bootstrap

Median 0.0349 0.0337 0.0228 0.0250
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where we choose k = 1 for the sieve bootstrap method. The sieve bootstrap performs

better than the FAR(1) bootstrap with a smaller median of the CPD values in the

forecasting period.
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Measuring and Estimating Overlap of
Distributions: A Comparison of
Approaches from Various Disciplines

Judith H. Parkinson and Arne C. Bathke

Abstract In this work, we will compare three approaches on measuring the overlap

of datasets. Different research areas lead to differing definitions and interpretations

of overlap. We will discuss the differences, advantages and disadvantages of three

methods which were all introduced in different research fields. Coming from a medi-

cal, a cryptographical and a statistical background, all three methods show interesting

aspects of overlap. Even though quite differently defined, all three show reasonably

interpretable results in simulations and data example.

Keywords overlap measures · overlap coefficient · cryptosets · probabilistic

interpretation · comparison

1 Introduction

The volume of overlap of sets is measured in many different research areas for various

reasons. An exchange of those approaches between the research fields seldom occurs

as the terminology tends to diverge, and it may not seem clear that a method from a

different discipline may be fitting for ones own concept of set overlap. Even though

the terminology is different and maybe even daunting, a look at the methods of

colleagues in other research areas can be beneficial for ones own research.

In this paper, we will compare three approaches of determining the volume of

overlap with different interpretations coming from various disciplines. Each of them

is designed for different types of datasets, yet we will apply them to one dataset and

modifications of it and show how they perform under different conditions. This paper

is not about showing that one method is better than the other, as all of them have their
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own strengths and weaknesses. This paper is about showing that an interdisciplinary

approach can have positive effects on the research.

The first approach based on a publication by [2] uses the overlap coefficient

(OVL) as first mentioned in [9]. The OVL measures the similarity of two probability

distributions or two populations represented by such distributions. In medicine and

biomathematics it is commonly used, and various estimates exist for this measure.

[2] focus on the overlap of two normally distributed populations using maximum-

likelihood estimators and even analyse their asymptotic behaviour. As [2] claim, one

can construct asymptotic valid confidence intervals using the results they presented.

The second paper finds application in cryptography combined with a medical

motivation. [8] proposed an approach to measure the overlap between private datasets

with cryptosets. Due to sensitive information, certain datasets can only be accessed

after passing ethical and legal barriers. Whether the time and money was worth

investing cannot easily be assessed in advance. Being able to analyse whether a

new private dataset contains new informations thus proves profitable. Using certain

encryptions the original multivariate data is mapped to a single value such that no

critical informations are accessible. Based on the cryptographically secured data one

then can estimate the overlap, the volume of the duplicated data in the private dataset.

The third and last approach considered here is a stochastic interpretation of over-

lap motivated by a question from ecology. Using a receiver operating characteristic

(ROC) curve and rank estimator, [5] calculated the overlap of two (ecological) niches.

They further provided asymptotic results and shortcut variance estimators leading to

confidence intervals with a high expected coverage probability (ECP). Their mathe-

matical definition of overlap has a probabilistic interpretation. Further they propose

a method to measure the overlap in an arbitrary dimension d.

In the following section, we will introduce those three methods in a more detailed

manner and show their most important properties. Section 3 then provides results

of a data example and of some simulations based on the dataset followed by a short

discussion of the methods.

2 Methodology

In this section, we will introduce all three methods in a more detailed manner. We

will point out their properties and how the resulting estimates should be interpreted.

2.1 Estimator of the OVL

As mentioned in the previous section, the OVL measures the similarity of two prob-

ability distributions. Let f1 and f2 be two density functions on R. Then the OVL is

defined to be
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OV L =
�

R

min { f1(t), f2(t)} dt . (1)

A version for discrete probability distributions can be defined analogously. We will,

however, focus on the continuous case in this paper, as the method by [2] was designed

for normal distributions which are continuous.

The OVL has some basic properties that are useful when interpreting the result.

To start with, the OVL can only take values in [0, 1]. The boundaries can only

be obtained in special cases, such that OV L = 0 if and only if the supports of

f1(t) and f2(t) are disjoint, and OV L = 1 if and only if f1 ≡ f2. Additionally, the

measure is invariant under transformations of the form t → g(t) with g a continuous

differentiable function defined on R that is one-to-one and preserves order. This may

be helpful in situations where a normalizing transformation can be applied. Thus,

the estimator of [2] has obtained good performance results even in instances where

the original data was not normally distributed.

However, in the derivation of the OVL estimator, only normal distributions,

f1(t, μ1, σ
2
1 ) and f2(t, μ2, σ

2
2 ), were considered. The case σ 2

1 = σ 2
2 = σ 2 was dis-

cussed intensively in the original paper while the more general case σ 2
1 �= σ 2

2 was

only briefly mentioned.. The focus was on the simpler version of equal variances as

the authors said it had attracted more attention in the past.

Denoting the standard normal distribution function by �(·), we can express the

OVL in the simple case as 2�(−|μ1 − μ2|/(2σ)) = 2�(−|δ|/2) with δ := (μ1 −
μ2)/σ . To estimate the OVL, [2] used the canonical estimators of μ1, μ2, namely,

μ̂1 = 1

n1

n1
�

i=1

X1i , μ̂2 = 1

n2

n2
�

i=1

X2i ,

with n1 and n2 the sample sizes, X1i drawn from the distribution with density

f1(t, μ1, σ
2) and X2i from f2(t, μ2, σ

2), and the estimator of the variance

S2 = 1

n1 + n2

�

n1
�

i=1

(X1i − μ̂1)
2 +

n2
�

i=1

(X2i − μ̂2)
2

�

,

the pooled maximum-likelihood estimator for σ 2. A straightforward estimator of

OVL is then given in the simple case of σ 2
1 = σ 2

2 = σ 2 by

ˆOV L = 2�

�

−|μ̂1 − μ̂2|
2S

�

.

Even though the above expression of the OVL resembles P(X ≤ Y ) for X and Y two

independent random normal variables with mean μ1 and μ2 and common variance

σ 2, there is no direct relation between those two values.
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Further the sampling distribution of this estimator can be linked to a non-central

F-distribution. More precisely

F ˆOV L(p) = P( ˆOV L ≤ p) = P

�

4n1n2(n1 + n2 − 2)

(n1 + n2)2

�

�−1
� p

2

��2

≤ F

�

,

where F has a non-central F-distribution with 1 and n1 + n2 − 2 degrees of freedom

and non-centrality parameter λ = δ2n1n2/(n1 + n2).

Simulations reported in [2] showed that the relative error was small unless sample

sizes were small and additionally |δ| was large. For small sample sizes, a bias reduced

estimator of OVL was proposed as

˜OV L = 2�

»

¼

½
−

�

n1+n2−2
n1+n2

�1/2

|μ̂1 − μ̂2|
2S

¾

¿

À
.

In the unequal variance case, due to the properties of the normal distribution, the two

densities f1(t, μ1, σ
2
1 ) and f2(t, μ2, σ

2
2 ) cross at exactly two points. Denoting the

smaller of the two points with t1 and the other with t2, then the OVL is given by

OV L = �

�

t1 − μ1

σ1

�

+ �

�

t2 − μ2

σ2

�

− �

�

t1 − μ2

σ2

�

− �

�

t2 − μ1

σ1

�

+ 1.

To estimate the OVL in this scenario, maximum-likelihood estimators for μ1, μ2, σ1

and σ2 were substituted in the above formula. For an approximation to the sampling

distribution, [2] refer to the dissertation [1] of one of the authors.

2.2 Overlap of Private Datasets Using Cryptosets

The method proposed by [8] not only deals with estimating overlap, but also with

the problem of encrypting data without losing too much information. In a first step,

for two private datasets, a common transformation to so-called hashs needs to be

defined. Every entry in the private dataset gets assigned a private ID that is constructed

analogously for all entries. Those private IDs do not have to be unique, but duplicates

shall be held at a minimum. A cryptographic hash function H(·) maps those IDs to

an integer space ranging from 0 to L − 1, which are the public IDs. The length of

the cryptoset L is typically chosen between 500 and 10,000, with smaller L leading

to a higher security of the sensible data, while larger L lead to a higher information

rate. The number of public IDs with value �i � is denoted by Ai and Bi for the two

private datasets. The total number of entries in the two datasets are then given by

A =
L−1
�

i=0

Ai and B =
L−1
�

i=0

Bi . Further let A := (Ai )
L−1
i=0 and B := (Bi )

L−1
i=0 be the two
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resulting cryptosets, based on which the overlap is estimated, and A and B denote

the number of entries in the two datasets. For the method to perform well, one

shall use a hash function that maps in a manner indistinguishable from an uniform,

random process. The elements of A and B can be modelled each as the sum of two

independent, random variables that are Poisson distributed, as claimed by [8]. More

precisely we can denote the counts derived from items only in the first dataset with

A
�
, from the second dataset with B

�
and counts derived from items in both datasets

with A ∩ B, such that A = A
� + A ∩ B and B = B

� + A ∩ B. Then the elements of

the cryptosets are Poisson distributed with rates (A
� + A ∩ B)/L and, respectively,

(B
� + A ∩ B)/L . [8] claim that, using the attributes of the Poisson distribution, it

holds that

A ∩ B = Cov(A,B)L + �,

with � a random error term with zero mean. For RA,B the Pearson correlation, A ∩ B

can be written as RA,B

√
AB + �. [8] then defined the overlap proportion to be given

by
A ∩ B

min{A, B} = RA,B

√
η + �∗, (2)

where η = max{A, B}/ min{A, B} and �∗ a zero-mean error term. Similar to the

method by [2] one should be able to construct confidence intervals based on the

proposed results by [8].

In addition to the results on overlap estimation, [8] pointed out the security of

their cryptosets and stated that together with a high accuracy of the proposed method

made it favourable in comparison to bloom filters, which is a commonly used method

for encrypting. For further discussion on this topic, we refer to the paper itself as it

is explained in detail there and validated using some simulations.

2.3 Overlap Volume in a Probabilistic Interpretation

The method presented by [5] deals with the question of how a true overlap volume

between distributions (or sets) should be defined, as well as the actual estimation of

the overlap. The work was motivated by a question from ecology (see also [3, 4]),

but the authors derived an approach with a probabilistic interpretation.

Consider two random variables X and Y with some continuous cumulative dis-

tribution functions F and G. For each α ∈ [0, 1] we are interested in the probability

that measure G assigns to the central (1 − α)-portion of F . More precisely, we define

an overlap function

h : [0, 1] "→ [0, 1], α "→ G(F−1(1 − α/2)) − G(F−1(α/2),

where F−1 is the quantile function of F . The asymmetric overlap volume is then

defined as
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I2 :=
1

�

0

h(α) dα.

We call it asymmetric because switching the roles of F and G yields a different

value, as opposed to, for example, the OVL as defined in Sect. 2.1. For given datasets

containing observations X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ G, the overlap function

and thus the asymmetric overlap volume can be estimated consistently using the

empirical cdfs. Similar to the OVL, I2 fulfils some nice properties. For example, if F

and G are equal then I2 = 1/2. If I2 = 0 holds, this is equivalent to the fact that the

probability mass of G puts no weight within the range of F . Alternatively, I2 = 1

is equivalent to the fact that all probability mass of G lies between the quantiles

F−1(1/2) and F−1(1/2 +), where F−1(1/2 +) is the right side limit. Further, one

can apply strictly monotone, continuous transformations to X and Y simultaneously

without changing the value of I2. For example, one may take logarithms or square

roots, if applicable, and the value of I2 remains unaffected. Now consider the second

asymmetric overlap volume I1, which is defined analogously with the roles of F

and G switched. As long as the cdfs F and G are continuous, the sum of these two

asymmetric overlap volumes will lie between 0 and 1, with I1 + I2 = 1 if and only

if F ≡ G.

As for the probabilistic interpretation of I2, we will split up X into two random

variables X1 ∼ F1 and X2 ∼ F2 with

F1(t) =
"

22 F(t), t < F−1(1/2),

1, t ≥ F−1(1/2),
F2(t) =

"

0, t < F−1(1/2),

22 F(t) − 1, t ≥ F−1(1/2).
(3)

Then, I2 can be expressed as P(X1 < Y < X2), which can be loosely interpreted

as the chance that an observation of Y will lie between two random observations of

X already knowing that one of them is bigger and the other one is smaller than the

median of X .

Instead of using the empirical cdfs of F and G to estimate I2, which looks rather

complex at first sight, [5] propose an approach which uses ranks and is easy to

calculate. We can rank all m + n observations, using midranks in case of ties. Denote

the ranks of the X -observations below or equal to their median by RX<
1 , . . . , RX<

K

and the ones above by RX>
K+1, . . . , RX>

n . Then I2 can be estimated by

2

mn

»

½

K
�

i=1

RX<
i −

n
�

j=K+1

RX>
j

¾

À + 1

2
c,

with c = −n/m for n even and c ≈ −n/m for n odd and n and m large. It was shown

in [5] that this estimator of I2 follows asymptotically a normal distribution with the

expectation given by the true value of I2. Using a shortcut formula for the variance

estimation in special cases and a bootstrap approach for the variance estimation in

the general case, [5] give explicit confidence intervals.
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They further define a symmetric overlap volume N O as 4I1 I2 and also analyse

its properties. Among the most important properties is that the symmetric overlap

volume lies between 0 and 1, with 1 indicating identical distribution functions, that

is, F ≡ G. For more detailed informations on the derived results and substantial

simulation results, we refer to the original paper.

3 Data Examples and Comparison

While [2, 5] check how much the distributions of two datasets overlap, [8] focus on

how many of the observations are probably contained in both datasets. Even though

this seems similar, bigger differences could be noticed in the simulations. The method

by [8] produced average overlap estimates far lower than the other two methods when

using the same distributions for both datasets. Their method is designed to identify

true duplicates. As the choice of simulation setting will influence the performance

of the individual methods immensely we will focus on illustrating the differences

and similarities between those approaches using a data example. The dataset we

will thus use is ‘Finch2’ as given in the R-package ‘dynRB’ ([7]). It contains 81

observations of the Geospiza fuliginosa pavula and 22 observations of the Geospiza

fortis fortis. In the first setting, we will consider two datasets where each represents

one of the species. By the definition of the method of [8] their method should obtain

a value close to zero as no observation is contained in both datasets. The other two

methods should obtain some kind of overlap when considering special traits of the

two species of finches. Note that the latter two methods were both analysed in an

univariate setting. That is, each trait was considered separately, while the method

by [8] was devised as multivariate. We consider the four traits ‘tarsus length’, ‘body

length’, ‘wing length’ and ‘tail length’.

In Figure 1, we can see the distribution of the individual four traits of the two

species. Figure 2 shows a scatterplot matrix of those four traits. In the following, we

will refer to the methods introduced in [2], in [8] and in [5] as OVL, CS and Rank

method, respectively.

As one can see in Tables 1 and 2, OVL and Rank methods both return reasonably

interpretable values for the overlaps. Both measures agree that the overlap of the

tail length is the highest whereas wing length has the lowest overlap, and that the

distributions of those two finches somewhat overlap. As for the confidence intervals,

those of the OVL method are much smaller, yet recall that an assumption of their

method is that the data are normally distributed, which is likely violated for certain

traits in this dataset considering Fig. 1. For calculating the overall overlap over all

four traits of the OVL method, we have used the same approach as for the rank

methods, as [2] did not explicitly state how one could expand their method to a

higher dimension. When calculating the Pearson correlation for the CS method, we

obtain a slightly negative value, implying that there is no overlap at all. This is indeed

correct as the two datasets don’t contain duplicates. A small overlap of distributions

is thus not sufficient to trigger a noticeable overlap with this method, so that in the



430 J. H. Parkinson and A. C. Bathke

110 120 130 140
BodyL

60 65 70 75
WingL

35 40 45
TailL

17 18 19 20 21 22 23

TarsusL

Fig. 1 The four considered traits of the Galapagos finches. The red observations represent Geospiza

fuliginosa parvula and the blue represents Geospiza fortis fortis.

BodyL

6
0

7
0

110 120 130 140

1
7

1
9

2
1

2
3

60 65 70 75

WingL

TailL

35 40 45

17 19 21 23

1
1
0

1
3
0

3
5

4
0

4
5

TarsusL

Fig. 2 Scatterplot of four of the nine traits for two species of finches, Geospiza fuliginosa parvula

(red) and Geospiza fortis fortis (blue)
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Table 1 Estimated values for the OVL along with the estimated variance and a confidence interval

OV L V ar C I

BodyL 0.276 0.004 0.250, 0.303

WingL 0.123 0.002 0.107, 0.140

TailL 0.696 0.008 0.657, 0.734

TarsusL 0.169 0.002 0.149, 0.189

Overall 0.251

Table 2 Estimated asymmetric overlap I1 and I2 together with their confidence interval using a

bootstrap approach, as well as the resulting symmetric overlap estimation

I1 C I1 I2 C I2 N O

BodyL 0.177 0.071, 0.31 0.167 0.063, 0.282 0.118

WingL 0.039 0.007, 0.093 0.039 0.006, 0.089 0.006

TailL 0.383 0.241, 0.527 0.470 0.301, 0.608 0.720

TarususL 0.061 0.016, 0.126 0.058 0.014, 0.117 0.014

Overall 0.113 0.115 0.052

Table 3 Expected overlap (variance) return with respect to the number of duplicates 5, 10, 15, 20

and 22

5 10 15 20 22

OV L 0.352 (5.9e-4) 0.424 (4.9e-4) 0.478 (2.9e-4) 0.521 (7.6e-5) 0.536 (–)

I1 0.177 (1.6e-4) 0.224 (1.6e-4) 0.265 (1.2e-4) 0.299 (3.8e-5) 0.312 (–)

I2 0.147 (2.9e-5) 0.172 (3.0e-5) 0.193 (2.1e-5) 0.212 (6.7e-6) 0.218 (–)

N O 0.104 (7.4e-5) 0.155 (1.1e-4) 0.205 (1.1e-4) 0.253 (4.2e-5) 0.272 (–)

C S 0.227 (9.6e-3) 0.518 (1.3e-2) 0.796 (1.1e-2) 1.065 (3.5e-3) 1.170 (–)

# C S 5.05 (4.72) 11.38 (6.53) 17.50 (5.13) 23.46 (1.81) 26 (–)

scenario it was introduced, patients may have observed values that are identically

distributed, yet they will be registered as different individuals.

In a second run, we added some observations of Geospiza fortis to the data of

Geospiza fuliginosa, thereby duplicating 5, 10, 15, 20 and 22 observations, and

compared the overall overlap measures of all three methods with each other. The

results can be found in Table 3. For matter of lucidity, we only show the overall

overlap and not the ones of the individual traits. For each number of duplicates, we

drew 10,000 different samples from the first species and added them to the second

species. The results shown are the averages of the simulations and the variances.

Results from an analogous simulation, where from the second species we added

observations to the first species, can be found in Table 4. Looking at both tables in

combination, we do notice a few differences between the three methods.
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Table 4 Expected overlap (variance) return with respect to the number of duplicates 5, 20, 40, 75,

81

5 20 40 75 81

OV L 0.407 (3.8e-4) 0.634 (3.8e-4) 0.754 (2.0e-4) 0.840 (2.1e-5) 0.848 (–)

I1 0.195 (1.8e-4) 0.300 (1.8e-4) 0.356 (1.1e-4) 0.396 (1.2e-5) 0.401 (–)

I2 0.214 (1.0e-3) 0.484 (8.0e-4) 0.538 (3.2e-4) 0.525 (2.3e-5) 0.523 (–)

N O 0.167 (7.1e-4) 0.579 (1.4e34) 0.765 (5.8e-4) 0.831 (1.8e-5) 0.838 (–)

C S 0.087 (7.5e-3) 0.359 (9.9e-3) 0.540 (5.1e-3) 0.847 (4.1e-4) 0.926 (–)

# C S 2.17 (5.83) 15.09 (17.74) 33.50 (19.69) 68.59 (2.78) 75 (–)

All three methods pick up the fact that there is an increase of overlap as we add

duplicates. The OVL method obtains values close to 1 for a high number of duplicates,

yet does not obtain this value as long as there are data points in one dataset that are

not obtained in the other. For smaller numbers of duplicates, it clearly is increased in

comparison of the case with no duplicates, as the duplicates have a great influence on

the underlying density function. Especially for small sample sizes this effect is quite

strong, see Table 4. The rank method, on the other hand, does not seem to pick up the

effect of duplicates quite as fast as the OVL. This could be based on the fact that if the

duplicates contain outliers or observations that are extreme values they get dropped

during the calculations quite early and have a very limited influence. Yet for larger

numbers of duplicates it performs adequately. Obtaining an almost perfect overlap

in the case of 81 duplicates. Recall that a perfect overlap, that is, identical underlying

distribution functions, leads to I1 = I2 = 0.5. Last but not least, let us discuss the CS

method. As the overlap as defined by [8] is the number of duplicates we not only give

the overlap percentage but also the corresponding estimated number of duplicates in

the last row of the two tables. In Table 3, we notice that the method overestimates

the number of duplicates slightly, while in Table 4 it underestimates it quite a lot. It

seems reasonable to assume that this is caused by the sample size correction that is

being applied to the Pearson correlation. Otherwise, it clearly detects duplicates and

is not triggered by an identical distribution itself.

All three methods proved to be reliable and to perform well for what they were

designed for. While estimation of the OVL is the most common of the three proposed

approaches, it lacks some flexibility, as the method by [2] only considers normal

distributions. While there exist approaches for kernel-density-based estimation of the

OVL, see [6], those often are burdened with computational complexity and require

higher sample sizes to perform well, as the densities need to be estimated explicitly.

When using simplified methods that do not estimate the densities themselves one has

to carefully analyse whether the needed assumptions are met. The methods by [5, 8]

were published more recently. The method by [5] clearly benefits from its easy and

fast non-parametric estimation and its probabilistic interpretation, which might even

make it easier to understand for people without a strong mathematical background.

The method by [8] is the method that stands out the most in comparison with the
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other two. Due to its design, it is more likely limited to certain application areas, yet

it covers those areas better than either of the others could. Overall the three methods

discussed here have their advantages and disadvantages.
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Bootstrap Confidence Intervals for

Sequences of Missing Values in

Multivariate Time Series

Maria Lucia Parrella, Giuseppina Albano, Michele La Rocca, and Cira Perna

Abstract This paper is aimed at deriving some specific-oriented bootstrap confi-

dence intervals for missing sequences of observations in multivariate time series. The

procedure is based on a spatial-dynamic model and imputes the missing values using

a linear combination of the neighbor contemporary observations and their lagged

values. The resampling procedure implements a residual bootstrap approach which

is then used to approximate the sampling distribution of the estimators of the miss-

ing values. The normal based and the percentile bootstrap confidence intervals have

been computed. A Monte Carlo simulation study shows the good empirical coverage

performance of the proposal, even in the case of long sequences of missing values.

Keywords Spatio-temporal models · Bootstrap · Missing values

1 Introduction

Imputing missing data from a data set is still a challenging issue both in theoretical

and applied statistics. Recent approaches to the problem include Multiple Imputation

(MI) and Maximum Likelihood (ML) techniques (see, for a review, [5] or [7]). They

have been proved to be superior with respect to traditional techniques based on simple

deletion, averaging, and regression estimation.

In MI, missing data are imputed several times by using an appropriate model to

produce several different complete-data estimates of the parameters. The parameter

estimates from each imputation are then combined across the missing value samples

to obtain an overall estimate of the complete-data parameters as well as reason-

able estimates of the standard errors. MI assumes that data are Missing Completely
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At Random (MCAR) or Missing At Random (MAR) and requires that the missing

data should be imputed under a particular model that in most applications is the

multivariate normal model ([1]). ML-based algorithms have the advantage of being

theoretically unbiased under both MCAR and MAR conditions, since they implic-

itly account for the dependencies of missingness on other variables in the data set

([5]). Like MI, this method delivers unbiased parameter estimators along with their

standard errors. Moreover, the ML approach does not require a careful selection of

the variables used to impute values as necessary in MI schemes. However, even if

limited to linear models, it often presents a high computational cost since estimates

could have no closed form.

In the context of multivariate time series, the problem of missing data becomes

even more challenging due to the dependence structure which is present in the data.

For example, when dealing with environmental data, P M10 data are simultaneously

collected by monitoring stations for different sites and different time points. As a

consequence, missing data, which often occurs due to equipment failure or measure-

ment errors, can be imputed using the time series dependency structure and measure-

ments from nearby stations. Several approaches, proposed in the recent literature,

do not jointly account for cross-correlation among variables and serial correlation

(see, for example, [6, 8, 10]). However, in the context of environmental data, [2]

have proposed a multivariate hidden dynamic geostatistical model which is able to

reveal dependencies and spatio-temporal dynamics across multiple variables. In the

same framework, [9] have proposed a procedure that aims to reconstruct the miss-

ing sequences by exploiting the spatial correlation and the serial correlation of the

multivariate time series, simultaneously. The approach is based on a spatial-dynamic

model and imputation of the missing sequences in the observed time series is based

on a linear combination of the neighbor contemporary observations and their lagged

values. This latter approach has several advantages. Firstly, it takes into account both

the serial correlation and the spatial correlation simultaneously, in a single stage.

Secondly, it does not depend on any tuning parameter or ad hoc choices made by

the user. In addition, it has a low computational burden so it nicely scales up to

high dimensional multivariate time series. Finally, it can also be applied in those

cases where the number of time observations is equal or smaller than the number of

variables/locations.

This paper is aimed at deriving some specific-oriented bootstrap confidence inter-

vals for missing sequences in the framework of the model proposed in [9]. They

are essentially based on a residual bootstrap scheme to approximate the sampling

distribution of the missing value estimators. The performance of the normal-based

bootstrap and the percentile bootstrap confidence intervals are compared through a

Monte Carlo experiment. The paper is organized as follows. In Sect. 2, after a brief

review of the underlying model and the estimation of the parameters, the iterative

imputation procedure is proposed and discussed. In Sect. 3, the sampling distribu-

tion of the missing value estimator is approximated by the residual bootstrap and

the confidence intervals for the imputed value are derived. In Sect. 4, Monte Carlo

simulation study is implemented to evaluate and compare the empirical performance

of the proposed confidence intervals. Some remarks close the paper.
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2 The Model and the Iterative Imputation Procedure

Let yt be a multivariate stationary process of dimension p, assumed for simplicity

with zero mean value, collecting the observations at time t from p different variables.

Following [4], we assume that the process can be modeled by the following Spatial-

Dynamic Panel Data (SDPD) model

yt = D(λ0)Wyt + D(λ1)yt−1 + D(λ2)Wyt−1 + εt , (1)

where D(·) denotes a diagonal matrix with diagonal coefficients from the vectors

λ0,λ1 and λ2, respectively, and the error process εt is serially uncorrelated. Model

(1) belongs to the family of spatial econometric models, so it is particularly oriented

to model spatio-temporal data. The matrix W is called spatial matrix and collects the

weigths used in the spatial regression of each time series observation with simulta-

neous or delayed observations of neighboring data. In particular, note that the term

D(λ0)Wyt captures the pure spatial effects, since it only considers contemporary

observations, the component D(λ1)yt−1 captures the pure dynamic effects, since

it involves lagged observations, while D(λ2)Wyt−1 captures the spatial-dynamic

effects. However, if one uses a correlation based matrix W to measure variable dis-

tances, instead of using physical distances, one can use model (1) to analyze any

kind of multivariate time series, not necessarily of a strictly spatial nature.

In the following, we assume that y1, . . . , yT are realizations from the stationary

process defined by (1). Then, we denote with � j = Cov(yt , yt− j ) = E(yt y
�
t− j ) the

autocovariance matrix of the process at lag j , where the prime subscript denotes the

transpose operator.

The parameters of model (1) can be estimated following [4]. In particular, given

stationarity, from (1) we derive the Yule-Walker equation system

(I − D(λ0)W)�1 = (D(λ1) + D(λ2)W)�0,

where I is the identity matrix of order p. The i-th row of the equation system is

(e�
i − λ0i w

�
i )�1 = (λ1i e

�
i + λ2i w

�
i )�0, i = 1, . . . , p, (2)

with wi the i-th row vector of W and ei the i-th unit vector. Replacing �1 and �0

by the sample (auto)covariance matrices

�̂1 =
1

T

T −1∑

t=1

yt+1y�
t and �̂0 =

1

T

T∑

t=1

yt y
�
t ,

the vector (λ0i , λ1i , λ2i )
� is estimated by the generalized Yule-Walker estimator, avail-

able in closed form,

(̂λ0i , λ̂1i , λ̂2i )
� = (X̂�

i X̂i )
−1X̂�

i Ŷi , i = 1, 2, . . . , p, (3)
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where X̂i =

(
�̂

�

1wi , �̂0ei , �̂0wi

)
and Ŷi = �̂

�

1ei .

The estimated model (1) can be used to reconstruct sequences of missing values

as follows.

Let us assume that ỹ1, . . . , ỹT are realizations from a stationary process as in

(1), not necessarily with zero mean value. In case of processes with no zero mean,

model (1) can be still used for parameter estimation after a pre-processing step which

centers the observed time series. Let δt = (δt1, . . . , δtp) be a vector of zeroes/ones

that identifies all the missing values in the observed vector ỹt , so that δti = 0 if the

observation ỹt i is missing, otherwise it is δti = 1.

The imputation procedure starts, at iteration 0, by initializing the mean centered

vector y
(0)
t , for t = 1, . . . , T , as

y
(0)
t = δt ◦

(
ỹt − ȳ(0)

)
, with ȳ(0) =

T∑

t=1

δt ◦ ỹt/

T∑

t=1

δt , (4)

where the operator ◦ denotes the Hadamard product (which substantially implies

replacing the missing values with zero) and the ratio between the two vectors in the

formula of ȳ(0) is made component-wise.

Then, the generic iteration s of the procedure, with s ≥ 1, requires that:

(a) we estimate (̂λ
(s−1)

0 , λ̂
(s−1)

1 , λ̂
(s−1)

2 ) as in Eq. (3), using the centered data

{y
(s−1)
1 , . . . , y

(s−1)

T };

(b) we compute, for t = 1, . . . , T ,

ŷ
(s)
t = D(̂λ

(s−1)

0 )W y
(s−1)
t + D(̂λ

(s−1)

1 )y
(s−1)
t−1 + D(̂λ

(s−1)

2 )W y
(s−1)
t−1 (5)

ȳ(s) =
1

T

T∑

t=1

(
δt ◦ ỹt + (1 − δt ) ◦ (̂y

(s)
t + ȳ(s−1))

)
(6)

y
(s)
t = δt ◦ (̃yt − ȳ(s)) + (1 − δt ) ◦ ŷ

(s)
t , (7)

where 1 is a vector of ones.

(c) We iterate steps (a) and (b) with increasing s = 1, 2, . . ., until

�y
(s)
t − y

(s−1)
t �2

2 ≤ γ, (8)

with γ sufficiently small.

At the end of the procedure, the reconstructed multivariate time series is given

by ỹ
(s)
t = y

(s)
t + ȳ(s), t = 1, 2, . . . , T, with the original missing data replaced by the

estimated values.
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3 Bootstrap Confidence Intervals for Missing Values

We use a resampling procedure based on the residual bootstrap approach to approxi-

mate the sampling distribution of the estimators of the missing value. The theoretical

properties of the following residual bootstrap scheme for time series can be derived

following [3]. The bootstrap algorithm can be implemented as follows.

• Denote with Y = (̃y1, . . . , ỹT ) the observed time series. The bootstrap resampled

time series Y∗ = (̃y∗
1, . . . , ỹ∗

T ) is built as follows.

1. Compute the residuals ε̂
(s)
t = y

(s)
t − ŷ

(s)
t , where y

(s)
t is computed by the (7) and

ŷ
(s)
t is computed by the (5). The value for the index s is taken from the last

iteration of the imputation procedure described in the previous section.

2. Obtain the bootstrap error series {ε∗
t } by drawing T samples independently and

uniformly, with replacement, from the centered residuals ε̃
(s)
t = ε̂

(s)
t − ε̄

(s)
T .

3. Generate the bootstrap series ŷ∗
t , for t = 1, . . . , T , as

ŷ∗
t = (Ip − D(̂λ

(s)

0 )W)−1
[(

D(̂λ
(s)

1 ) + D(̂λ
(s)

2 )W
)

y
(s)
t−1 + ε

∗
t

]
.

• Repeat the previous steps 1–3 for B times and derive the empirical distribution of

the bootstrap replications ỹ
∗(b)
t = ŷ

∗(b)
t + ȳ(s), for b = 1, . . . , B.

Confidence intervals are derived as individual intervals, for each missing value of

the time series, with nominal confidence level (1 − α) using the normal approxima-

tion with bootstrap standard errors and the percentile method. See [3] for theoretical

references on such bootstrap intervals for multivariate autoregressive time series.

The normal-based bootstrap confidence intervals are constructed assuming nor-

mality for the error process. For all t and i such that δti = 0, this confidence intervals

are

I
B,norm
ti,s,1−α =

[
m B(ŷ∗

ti ) − z1−α/2sd B(ŷ∗
ti ); m B(ŷ∗

ti ) + z1−α/2sd B(ŷ∗
ti )

]
, (9)

where zα is the α-th percentile of the standard normal distribution, whereas m B(ŷ∗
ti )

and sd B(ŷ∗
t i ) are the estimated mean and standard deviation for ŷ∗

ti , derived as the

mean and standard deviation of the bootstrap replications ŷ
∗(1)

ti , . . . , ŷ
∗(B)

ti , respec-

tively.

The percentile bootstrap confidence intervals are more general since they do not

depend on the normality assumption for the error process. They are given by

I
B,perc

ti,s,1−α =

[
ỹ

∗(B)

ti,α/2; ỹ
∗(B)

ti,1−α/2

]
, ∀t, i : δti = 0, (10)

where ỹ
∗(B)

t i,α is the estimated α-th percentile for the bootstrap distribution of ỹ∗,

derived from the bootstrap replications ỹ
∗(b)

ti , for b = 1, . . . , B.

Further bootstrap confidence intervals of better performance (i.e., second-order

correct), such as the calibrated bootstrap confidence intervals or the t-percentile
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bootstrap intervals, can be obtained by implementing a double bootstrap procedure

to perceive an additive correction of the original nominal coverage level for the

percentile bootstrap intervals. However, these procedures are not considered in this

paper since they are computationally heavy and therefore unfeasible in the high-

dimensional setup.

4 A Monte Carlo Simulation Study

To validate the empirical performance of the confidence intervals proposed in Eqs.

(9) and (10), we have implemented a Monte Carlo simulation study to compute

empirically the coverage of the intervals and compare it with the nominal coverage.

We have considered multivariate time series of dimension p = 30 and length

T = (50, 100, 500). The true weight matrix W1 has been randomly generated as a

full rank symmetric matrix and has been row-normalized. The parameters of model

(1) have been randomly generated in the interval [−0.9, 0.9]. In order to guarantee

the consistency of the normal-based bootstrap confidence intervals in (9), the error

component εt has been generated from a multivariate normal distribution, with mean

vector zero and diagonal variance-covariance matrix, with heteroscedastic variances

(σ 2
1 , . . . , σ 2

p). In particular, the standard deviations (σ1, . . . , σp) have been generated

randomly from a Uniform distribution U (0.5; 1.5). All bootstrap estimates have been

computed by using B = 999 replicates.

Figure 1 shows an example of a simulated time series with dimension p = 10 and

length T = 100. For brevity, we have only considered time series with zero mean

value. However, results similar to those reported here can also be shown in the general

case where the mean of the time series is not zero (see [9] for some examples).

In the implementation of the estimation procedure, we have considered two cases

for the spatial matrix W. In the first part of the simulation study, we have assumed the

matrix as known and we have derived the coverage performance of the intervals using

the true weight matrix in the estimation formulas. In the second part of the simulation

study, instead, we have assumed that the spatial matrix is unknown. Therefore, we

have plugged in the estimation formulas an estimated weight matrix derived as the

(row-normalized) sample correlation matrix. In this way, the performance of our

inferential procedure has been evaluated in those cases where no information about

the spatial weights is available.

We have simulated N = 500 replications of the model and, for each one, we

have removed 50 values and considered them as missing values. Of course, we kept

a record of the true values. In particular, we have simulated a missing sequence of

length 30 for location 2 (i.e., the first 30 values of this location have been removed and

considered as missing). The other 20 missing values have been generated randomly

at other locations. The plot on the bottom of Fig. 1 shows an example of time series

with the simulated missing values.

For each missing value, indexed by i = 1, . . . , 50, the empirical coverage of the

relative confidence interval has been evaluated as the proportion of times that the
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Fig. 1 Plot of a simulated multivariate time series of dimension p = 10 and length T = 100. On

the top, the 10 time series are plotted in different colors and lines to show the variability of the

observed values over time and over space. On the bottom, the time plots of the series are shifted

in order to highlight (through stars) the simulated missing sequence, at location 2, and the missing

values, at other locations

interval includes the true value of the missing, over the 500 simulated series. Such

estimated proportion is denoted by γ̂i,1−α . Then, for all the different intervals, we

have computed the mean squared coverage error as

M SC E1−α =

√√√√ 1

50

50∑

i=1

[
γ̂

(1−α)

i − (1 − α)

]2

.

The results for the normal-based bootstrap intervals in (9) and for the percentile

bootstrap intervals in (10) are reported in Table 1. To facilitate comparisons between

the two types of intervals, the last column of the table reports the ratios of the two

mean squared coverage errors. Clearly, the ratios are approximately equal to one and

the MSCEs constantly decrease over T . So, the percentile bootstrap confidence inter-

vals produces almost equivalent results, with respect to the normal-based bootstrap

confidence intervals, even if the normality assumption is made for the error process.

Such comments are valid both when using the true weight matrix W and when it is

consistently estimated.

To see the results in detail, Fig. 2 shows the estimated proportions γ̂i,1−α for the

50 missing values, for increasing values of T = (50, 100, 500). The labels on the

x-axis denote the locations where the missing values have been simulated (note that

the first 30 values, on the left of the vertical dashed line, represent a missing sequence

for location 2, see also Fig. 1). The black circles show the results for the percentile
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Table 1 Mean Squared Coverage Errors M SC E1−α for T = 50, 100, 500 and their ratio using

the true (on the top) and the estimated (on the bottom) weight matrix W for several values of the

confidence level 1 − α. R denotes the ratio M SC Enorm
1−α /M SC E

perc
1−α

Using the true weight matrix W

M SC Enorm
1−α M SC E

perc
1−α R

1 − α T = 50 100 500 T = 50 100 500 T = 50 100 500

0.99 0.228 0.204 0.142 0.238 0.205 0.143 0.957 0.995 0.995

0.95 0.256 0.163 0.145 0.249 0.16 0.144 1.027 1.02 1.005

0.90 0.246 0.171 0.145 0.244 0.171 0.146 1.009 1.002 0.995

Using the estimated weight matrix Ŵ

M SC Enorm
1−α M SC E

perc
1−α R

1 − α T = 50 100 500 T = 50 100 500 T = 50 100 500

0.99 0.250 0.153 0.14 0.237 0.148 0.14 1.055 1.033 0.999

0.95 0.242 0.168 0.135 0.213 0.156 0.135 1.134 1.075 1

0.90 0.274 0.179 0.128 0.254 0.169 0.128 1.080 1.064 1
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Fig. 2 Estimated proportions γ̂i,1−α for the i = 1, . . . , 50 missing values, for increasing values of

T = (50, 100, 500), using the true weight matrix W. The labels on the x-axis denote the locations

where the missing values have been simulated (the first 30 values, on the left of the vertical dashed

line, represent a missing sequence for location 2). The empirical coverages for the percentile boot-

strap confidence intervals (black “o”) are slightly closer to the nominal level (red line) compared to

the normal-based bootstrap intervals (blue “+”)

bootstrap confidence intervals whereas the red “+” represents the empirical coverage

for the normal-based bootstrap intervals. Note how the empirical coverage for the

percentile bootstrap intervals is generally closer to the true nominal coverage (red

line). As expected, the coverage error is higher for the missing sequence values, since

the confidence intervals in this case are built on the basis of the estimated sequence of

lagged values (for isolated missing values, instead, the confidence intervals are based

on observed lagged values). Also, note that the missing sequence is at the beginning

of the observed time series and this makes estimating the missing sequence even
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more difficult. Finally, note that when T = 50 we have more than 50% of the time

series which is missing for location 2. However, the coverage error for the missing

sequence rapidly converges to zero when the length of the time series increases.

5 Concluding Remarks

In this paper, bootstrap confidence intervals for single or sequences of missing values

have been derived in the context of multivariate time series. Confidence intervals are

derived as individual intervals, one for each missing value of the (sequence of) time

series, with nominal confidence level (1 − α). The construction of joint confidence

regions for the missing sequence is left to future work. In particular, starting from

the generalized spatial-dynamic autoregressive model proposed in [4] and applied to

environmental data in [9], we approximated the sampling distribution of the missing

value estimators by residual bootstrap. The normal based and the percentile boot-

strap method have been considered for the constructions of approximated confidence

intervals. Their performance has been evaluated and compared in terms of empirical

coverage in a Monte Carlo simulation study, for different time series lengths and

different nominal coverages.

The results show that the residual bootstrap delivers satisfactory coverage results

even for short time series with sequences of missing data. In all experiments, the

percentile method is substantially equivalent to the normal-based one, even if the

normality of the error process is assumed. For all the values of T and all the values

1 − α, the mean squared coverage errors obtained by the percentile method appears

slightly better than the corresponding values of the normal method. Moreover, the

empirical coverage for the percentile is slightly closer to the true nominal coverage.

As expected, both the empirical coverage errors go to zero as the time series length

increases.
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On Parametric Estimation of

Distribution Tails

Igor Rodionov

Abstract The aim of this work is to propose a method for estimating the parameter

of the continuous distribution tail based on the largest order statistics of a sample.

We prove the consistency and asymptotic normality of the proposed estimator. Note

especially that we do not assume the fulfillment of the conditions of the extreme

value theorem.

Keywords Distribution tail · Parametric estimation · Extreme value theory ·
Weibull-tail index · Super-heavy tails.

1 Introduction

In certain situations it is of interest to draw inference not about the whole distribution,

but only about its tail. Of interest to researchers are both the parametric case, when

the distribution tail belongs to a certain parametric class, and the nonparametric

case. Such situations appear, in particular, in fields related to computer science and

telecommunications, Internet traffic, finance and economics, and are the subject of

statistics of extremes.

The Fisher-Tippet-Gnedenko theorem [11] is a central result in the extreme

value theory. It states that if there exist sequences of constants an > 0 and bn,

such that the cumulative distribution function (cdf) of the normalized maximum

Mn = max(X1, . . . , Xn) tends to some non-degenerate cdf G, i.e.,

lim
n→∞

P(Mn ≤ an x + bn) = G(x), (1)

then there exist constants a > 0 and b such that G(ax + b) = Gγ (x), where
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Gγ (x) = exp
�
−(1 + γ x)−1/γ

�
, 1 + γ x > 0, (2)

γ ∈ R, and for γ = 0 the right-hand side should be understood as exp(−e−x ). The

parameter γ is called the extreme value index [8] (EVI). The cdf of the sample

(X1, . . . , Xn) is said to belong to the Fréchet (Weibull, Gumbel, respectively) max-

imum domain of attraction (MDA) if (1) holds for γ > 0 (γ < 0, γ = 0, respec-

tively). Distributions with tails heavier than those of distributions in the Fréchet

MDA are referred to as distributions with super-heavy tails; these distributions do

not belong to any maximum domain of attraction (for details, see [4], Sects. 8.8 and

8.15, [17], Sect. 5).

The problem of tail estimation is central to statistics of extremes. Now the most

popular method of tail estimation is based on Pickands’ theorem [16]. The theorem

states that if the cdf F of the random variable X belongs to the MDA of Gγ (2) (here-

after F ∈ D(Gγ )) for some γ ∈ R, then for x, such that 0 < x < (min(0,−γ ))−1,

it holds

lim
t↑x∗

P

"
X − t

f (t)
> x |X > t

�
= (1 + γ x)−1/γ ,

where x∗
F = sup{x : F(x) < 1}, f (t) is some function (for details, see [8]), and for

γ = 0 (1 + γ x)−1/γ should be understood as e−x . So, it is enough to estimate EVI in

order to estimate the distribution tail. The estimators of EVI were discussed in [6, 7,

16], among others, whereas the problem of the tail index estimation, i.e., estimation

of γ > 0, was considered in [5, 14, 15], see also [8], Chap. 3.

This approach works well for distributions belonging to Fréchet or Weibull MDA,

since these domains are fairly accurately described by EVI. However, one cannot

distinguish between the tails within the Gumbel MDA using this approach, since

γ = 0 for the whole domain. Additionally, the rate of convergence in the Gnedenko’s

limit theorem for distributions belonging to the Gumbel MDA is extremely slow

(namely, it is logarithmic, see [13]). Next, the conditions of Gnedenko’s theorem are

not satisfied for super-heavy-tailed distributions, since their tail index α = 1/γ = 0.

Therefore, the tail estimation method using estimators of γ is not applicable for such

distributions. It is worthwhile either to solve the problem of tail estimation in each

of the above cases separately, or develop a general method of tail estimation, that

could be applied to all these cases.

A number of authors follow the first way and consider a particular problem of

parametric estimation of distribution tails belonging to some wide class of distribu-

tions from the Gumbel MDA. The Weibull and log-Weibull (with θ > 1, see below)

classes of distributions are the examples of such classes. We say that a cdf F is of

Weibull-type, if there exists θ > 0 such that for all λ > 0 we have

lim
x→∞

ln(1 − F(λx))

ln(1 − F(x))
= λθ . (3)

Clearly, the parameter θ, called the Weibull-tail index, governs the tail behavior, with

larger values indicating faster tail decay. In the analysis of exponentially decreasing
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tails, the estimation of θ and the subsequent estimation of extreme quantiles assume

a central position. If for some cdf F the distribution function F(ex ) belongs to the

Weibull class with θ > 0, then one says that F is of log-Weibull-type. Note, that

distributions of log-Weibull-type with θ > 1 belong to Gumbel MDA. If 0 < θ < 1,

then such distributions have super-heavy tails. The estimators of the Weibull-tail

index were proposed in [2, 3, 9, 10], among others, whereas the problem of log-

Weibull-tail index estimation defined similarly to (3), for our best knowledge, has

not yet be considered.

The purpose of our work is to propose a general method to estimate the parameter

of the tail in case of its continuity. The proposed method is appropriate to estimate,

on the one hand, the Weibull and log-Weibull-tail indices and, on the other hand,

the parameters of super-heavy-tailed distributions. We emphasize that the proposed

method is independent of whether the distribution tail belongs to some MDA or not.

2 Main Results

Let X1, . . . , Xn be independent identically distributed (iid) random variables with a

cumulative distribution function (cdf) F with x∗
F = +∞. We call G(x) = 1 − G(x),

the tail of a cdf G. We say, that cdfs G and H with x∗
G = x∗

H = +∞ have the same

tail, if G(x)/H(x) → 1 holds as x → +∞. Assume, that the tail of F belongs

to the parametric class of distribution tails {Fθ , θ ∈ �}, � ∈ R. Let X(1) ≤ X(2) ≤
. . . ≤ X(n) be the order statistics corresponding to the sample (X1, . . . , Xn). Before

considering the problem of estimation of the parameter θ, discuss how to find the

parametric class of distribution tails to which the tail of the cdf F belongs.

Definition 1 [18] We say, that cdfs H and G satisfy the condition B(H,G) (written

B-condition), if for some ε ∈ (0, 1) and x0

(1 − H(x))1−ε

1 − G(x)
is non increasing as x > x0.

It is easy to see, that under this condition the tail of H is lighter than the tail of G,

i.e.,
1 − H(x)

1 − G(x)
→ 0

as x → ∞.

Consider two distribution classes A0 and A1 such that the tails of distributions

lying in A0 are lighter than the distribution tails lying in A1. We say, that the classes

A0 and A1 are separable, if there exist the “separating” cdf �F such that the tail of �F
is not lighter than the tail of G for all G ∈ A0 and the condition B(�F, H) is satisfied

with some ε and x0 for all H ∈ A1.

So, suppose that two classes A0 and A1 of continuous distribution tails are sep-

arable via the cdf �F . Consider the null hypothesis H0 : F ∈ A0 and the alternative
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H1 : F ∈ A1. Propose the test to check the hypothesis H0. For this purpose consider

the following statistic

Rk,n = ln(1 − �F(X(n−k))) − 1

k

n�

i=n−k+1

ln(1 − �F(X(i))). (4)

Theorem 1 [18] Let X1, . . . , Xn be iid random variables with a common continuous

cdf F with x∗
F = +∞. Assume that the sequence k = k(n) is such that

k → ∞,
k

n
→ 0 as n → ∞. (5)

Then the test

if Rk,n > 1 + u1−α√
k

, then reject H0, (6)

has the asymptotical significance level α, here u1−α is the (1 − α)-quantile of

N (0, 1). Moreover, the test is consistent.

The proposed test allows us to distinguish such classes of distribution tails as super-

heavy-tailed distributions, heavy-tailed distributions, Weibull- and log-Weibull-type

distributions, see for details [18]. In addition, the tests to distinguish between the

distributions belonging to the Gumbel MDA are proposed in [12, 19, 20].

Let us return to the problem of estimation the parameter of the distribution tail

based on the largest order statistics of a sample. Consider the generalization of the

statistic (4)

Rk,n(θ) = ln(1 − Fθ (X(n−k))) − 1

k

n�

i=n−k+1

ln(1 − Fθ (X(i))), (7)

here, as before, {Fθ , θ ∈ �}, � ∈ R, is the parametric class of distribution tails to

which the tail of the cdf F of the sample X1, . . . , Xn belongs. We say that the

parametric class {Fθ , θ ∈ �} is ordered, if the condition B(Fθ1
, Fθ2

) is satisfied

∀θ1, θ2 ∈ �, θ1 < θ2, or the condition B(Fθ2
, Fθ1

) is satisfied ∀θ1, θ2 ∈ �, θ1 < θ2.

We propose the following estimator of the parameter θ

"θk,n = arg{θ : Rk,n(θ) = 1}. (8)

The next theorem states that the estimator (8) is consistent. The consistent estimators

of the scale and location parameters of the distribution tails are proposed in [1].

Theorem 2 Let X1, . . . , Xn be iid random variables with a cdf F = Fθ0
, the class

of distribution tails {Fθ , θ ∈ �} is ordered and Fθ (x) is continuous in both x and θ.

Assume that the sequence k = k(n) satisfies the condition (5). Then
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"θk,n → θ0 Pθ0
− a.s. (9)

Provide some examples of families of distribution tails for which the conditions of

Theorem 2 are satisfied. All the distributions below are assumed to be continuous.

(1) We can describe the class of Weibull-type distributions as {Fθ,�(x), θ > 0},
where Fθ,�(x) = 1 − exp{−xθ�(x)} as x → ∞ and �(x) is slowly varying at infinity.

One can see, that this class is ordered with respect to the parameter θ. For practition-

ers, it is sufficient to use Fθ (x) = 1 − exp{−xθ }, x > 0 in (7) to obtain the estimate

of the Weibull-tail index, see Sect. 3 for details. For the same reasons, the class of

log-Weibull-type distributions satisfies the conditions of Theorem 2.

(2) Another example is the class of regularly varying distributions with γ > 0.

Recall that the right endpoint for all distributions in this class equals +∞. Indeed, we

have 1 − F(x) = x−1/γ �(x) as x → +∞ for all cdfs belonging to this class, where

γ is EVI and �(x) is slowly varying at infinity. We see, that this class is ordered with

respect to γ.

(3) The class of logarithm-tailed distributions with 1 − F(x) = (ln x)−θ (1 +
o(1)) as x → +∞, θ > 0 is ordered with respect to θ and therefore satisfies the

conditions of Theorem 2. Recall, that such distributions, as the distributions of log-

Weibull-type with θ ∈ (0, 1), have super-heavy tails and do not satisfy the conditions

of the Fisher-Tippet-Gnedenko theorem. This example emphasizes that the proposed

method can be applied even if the cdf of a sample does not belong to any of the max-

imum domains of attraction.

Remark 1 It follows from Theorems 1 and 2 [18], that under the assumptions of

Theorem 2 the equation Rk,n(θ) = 1 has only one solution a.s. as n → ∞, therefore,

the estimator "θk,n is defined correctly.

Proof of Theorem 2. Assume that under the conditions of Theorem 2 B(Fθ1
, Fθ2

)

holds for all θ1, θ2 ∈ �, θ1 < θ2. We write X � Y, if the random variable X is

stochastically smaller than Y. From Theorem 1, [18],

Rk,n(θ0) → 1 Pθ0
− a.s.

under the conditions (5). Next, assume that θ1 > θ0 and the condition B(Fθ0
, Fθ1

)

holds with some ε. Let E1, . . . , Ek be independent random variables, exponentially

distributed with a parameter 1 − ε. From Theorem 2, [18], under the conditions (5),

it holds

Rk,n(θ1) � 1

k

k�

i=1

Ei
a.s.−→ 1

1 − ε
.

Similarly, if θ1 < θ0 and the condition B(Fθ1
, Fθ0

) holds with some δ, then under

conditions (5) it holds

Rk,n(θ1) � 1

k

k�

i=1

E �
i

a.s.−→ 1 − δ,
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here {E �
i }k

i=1 are independent random variables, exponentially distributed with the

parameter 1
1−δ

. Thereby, (9) holds, if the condition B(Fθ1
, Fθ2

) is satisfied for all

θ1, θ2 ∈ �, θ1 < θ2, the proof of the second case is similar. The statement of Theo-

rem 2 follows.

The next theorem states the asymptotic normality of the estimator (8) under some

additional conditions imposed on the class {Fθ , θ ∈ �}. Denote S(x, θ) = − ln(1 −
Fθ (x)). It is easy to see, that the function S(x, θ) is differentiable with respect to θ

if and only if cdf Fθ (x) is differentiable with respect to θ . Let us denote

I (q, θ) = 1

1 − Fθ (q)

� ∞

q

∂S(x, θ)

∂θ
d Fθ (x) − ∂S(q, θ)

∂θ
.

Consider the following regularity conditions.

A1 The function ∂S(x,θ)

∂θ
is continuous in (x, θ) as x > x0;

A2 There exists x1 = x1(θ0) for all θ0 ∈ � such that the function ∂S(x,θ)

∂θ
is mono-

tone in θ in some neighborhood of θ0 as x > x1(θ0).

A3 There exists x2(θ0) for all θ0 ∈ � such that |I (x, θ0)| < ∞ as x > x2(θ0).

Theorem 3 Let the conditions A1-A3 be fulfilled. Then under the conditions of

Theorem 2, √
k I (X(n−k),"θk,n)("θk,n − θ0)

dθ0−→ ξ ∼ N (0, 1)

for all θ0 ∈ �.

Proof of Theorem 3 From (8), we have
√

k(Rk,n("θk,n) − 1) = 0. Denote

τ =
√

k I (X(n−k), θ0)("θk,n − θ0)

and expand
√

k(Rk,n("θk,n) − 1) in a Taylor’s series in θ0 with a Lagrange form of

the reminder,

0 =
√

k(Rk,n("θk,n) − 1) =
√

k(Rk,n(θ0) − 1) + τ

I (X(n−k), θ0)

∂

∂θ
Rk,n(�θ) (10)

where �θ is between θ0 and "θk,n. It follows from Theorem 1 [18], that

√
k(Rk,n(θ0) − 1)

dθ0−→ N (0, 1) (11)

under the conditions of Theorem, and, additionally, that the distribution of the statistic

Rk,n(θ0) does not depends on X(n−k).

Consider τ(I (X(n−k), θ0))
−1 ∂

∂θ
Rk,n(�θ) given X(n−k) = q. Note, that if {ξn} is some

sequence of random variables such that ξn → C a.s. as n → ∞, C ∈ R, then it
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follows from criterion for almost sure convergence, that for all ε > 0 there exists the

sequence cn > 0, cn → 0 as n → ∞, such that for some n = n(ε) it holds

P(∀l > n : |ξl − C | > cl) < ε. (12)

Let ε > 0 be fixed. Since �θ is between θ0 and "θk,n, then �θ → θ0 Pθ0
-a.s. under

the conditions of Theorem. Using (12) and monotonicity of ∂S(x,θ)

∂θ
(without loss

of generality suppose that ∂S(x,θ)

∂θ
increases monotonically with θ ), we have with a

probability of 1 − ε as n > n(ε),

1

k

n�

i=n−k+1

∂

∂θ
S(X(i), θ0 − cn) − ∂

∂θ
S(X(n−k), θ0 + cn) ≤ ∂

∂θ
Rk,n(�θ) ≤

1

k

n�

i=n−k+1

∂

∂θ
S(X(i), θ0 + cn) − ∂

∂θ
S(X(n−k), θ0 − cn) (13)

From lemma 3.4.1 [8], the joint distribution of {X(i)}n
i=n−k+1 given X(n−k) = q

agrees with the joint distribution of the set of order statistics {X∗
( j)}k

j=1 of the sample

{X∗
i }k

j=1 with the cdf

Fq(x) = Fθ0
(x) − Fθ0

(q)

1 − Fθ0
(q)

, q < x .

We have given X(n−k) = q

1

k

n�

i=n−k+1

∂

∂θ
S(X(i), θ0 − cn) − ∂

∂θ
S(q, θ0 + cn)

dθ0= 1

k

k�

j=1

∂

∂θ
S(X∗

( j), θ0 − cn) −

∂

∂θ
S(q, θ0 + cn) = 1

k

k�

j=1

∂

∂θ
S(X∗

j , θ0 − cn) − ∂

∂θ
S(q, θ0 + cn).

From the Law of large numbers,

1

k

k�

j=1

∂

∂θ
S(X∗

j , θ0 − cn) − 1

1 − Fθ0
(q)

� ∞

q

∂

∂θ
S(x, θ0 − cn)d Fθ0

(x)
Pθ0−→ 0.

Therefore, we obtain

1

I (q, θ0)

⎛
¿1

k

k�

j=1

∂

∂θ
S(X∗

j , θ0 − cn) − ∂

∂θ
S(q, θ0 + cn)

À
⎠ Pθ0−→ I (q, θ0)

I (q, θ0)
= 1.
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Similarly we derive, that the expression in the right-hand side of the relation (13)

given X(n−k) = q converges to 1 is probability. Since the value of ε is arbitrary, then

it holds ∂
∂θ

Rk,n(�θ)
Pθ0−→ 1 given X(n−k) = q. Therefore, from (10) and (11) we have

τ =
√

k I (q, θ0)("θk,n − θ0)
dθ0−→ N (0, 1).

Using the regularity conditions A1, A3 and Slutsky’s theorem, we obtain given

X(n−k) = q
√

k I (q,"θk,n)("θk,n − θ0)
dθ0−→ N (0, 1).

Note, that the last relation holds for all q, the statement of Theorem 2 follows.

3 Simulation Study

In our simulation study, we focus on the performance of the proposed method applied

to estimating the Weibull-tail index in comparison with performance of two other

Weibull-tail index estimators. We also show the performance of our approach adapted

to estimating the log-Weibull-tail index.

In [3], the following estimator of the Weibull-tail index is proposed,

"θ (1) = X(n−k+1)

ln(n/k)

�
k−1�

i=1

(X(n−i+1) − X(n−k+1)) .

We also consider another estimator of the Weibull-tail index introduced in [10],

"θ (2) =
k−1�

i=1

(ln2(n/ i) − ln2(n/k))

�
k−1�

i=1

(ln X(n−i+1) − ln X(n−k+1)) ,

where ln2(x) = ln(ln x), x > 1. The latter estimator is a normalization of the Hill tail

index estimator, [14]. We compare the finite sample performance of the estimators
"θ (1), "θ (2) and "θ (0) = "θk,n (for the latter we select Fθ (x) = 1 − exp(−xθ ), x > 0) on

4 different distributions: Exp(1), �(3, 1), N (0, 1) and Weibull distribution W (3)

with cdf F(x) = 1 − exp(−x3), x > 0. In each case, m = 300 samples (Xi )
m
i=1 of

size n = 1000 are simulated. On each sample Xi , the estimates "θbr
i , "θ g

i and "θi are

computed for k = 5, 10, . . . , 150. Finally, we build the Hill-type plots by draw-

ing the points
�

k, 1
m

�m
i=1

"θ ( j)

i

�
, j = 0, 1, 2 for samples generated from �(3, 1),

N (0, 1) and W (3). We also present the MSE plots obtained by plotting the points�
k, 1

m

�m
i=1(

"θ ( j)

i − θ)2
�

, j=0,1,2 for observations sampled from standard exponen-

tial distribution.
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(a) Γ (3,1) (b) N(0,1)

(c) W (3) (d) Exp(1)

Fig. 1 Comparison of the estimators θ̂ ( j), j = 0, 1, 2 for various distributions. Solid line: true

value, dashed line: θ̂ (0), dot-dash line: θ̂ (1), dotted line: θ̂ (2).

Results are presented on Fig. 1. It appears that, in all the simulated cases, the

estimator"θ (0) is better than others. One can also note, that all considered estimators do

not provide the best performance for the standard normal distribution. Our simulation

results correspond to the numerical results provided in [10].

The numerical performance of the estimator"θk,n of log-Weibull-tail index is inves-

tigated for two classes, F
0 = {F0

θ , θ > 0} with F0
θ (x) = 1 − exp(−(ln x)θ ), x > 1,

and F
1 = {F1

θ , θ > 1} with F1
θ (x) = 1 − x−1 exp(−(ln x)θ ), x > 1. The observa-

tions are sampled in each case from the standard log-normal distribution. One can

see that the log-normal distribution does not belong to any of the considered classes.

As before, we present Hill-type plots built on m = 300 samples of size n = 1000 for

k = 5, 10, . . . , 150.

Results for estimating the log-Weibull-tail index are presented on Fig. 2. One can

see, that the choice of the class of distribution tails within the proposed approach is

significant enough for the problem of log-Weibull-tail index estimation.



454 I. Rodionov

(a) F0 (b) F1

Fig. 2 Comparison of the estimates θ̂k,n built on classes F
0 and F

1. Solid line: true value, dashed

line: θ̂n,k , dotted lines: empirical 95% confidence interval
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An Empirical Comparison of Global and
Local Functional Depths

Carlo Sguera and Rosa E. Lillo

Abstract A functional data depth provides a center-outward ordering criterion that

allows the definition of measures such as median, trimmed means, central regions, or

ranks in a functional framework. A functional data depth can be global or local. With

global depths, the degree of centrality of a curve x depends equally on the rest of the

sample observations, while with local depths the contribution of each observation

in defining the degree of centrality of x decreases as the distance from x increases.

We empirically compare the global and the local approaches to the functional depth

problem focusing on three global and two local functional depths. First, we consider

two real data sets and show that global and local depths may provide different data

insights. Second, we use simulated data to show when we should expect differences

between a global and a local approach to the functional depth problem.

1 Introduction

The theory of statistics for functional data is a well-established field with a great

amount of applications and ongoing research. See, for instance, [5, 11, 12, 16] for

overviews of Functional Data Analysis (FDA).

In this paper we deal with the notion of data depth in the functional framework. A

functional depth provides a center-outward data ordering criterion that, for example,

allows the definition of the functional median or ranks. Behind any implementation

of the idea of data depth there is an explicit or implicit approach to the depth problem.

For example, in the multivariate framework, where the notion of depth originated,

we find a well-established classification of depths in global and local measures. A

multivariate global depth provides a data ordering based on the behavior of each

observation relative to the complete sample. Several implementations of this notion

have been proposed in the literature, e.g., [20] proposed the halfspace depth, [13]
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introduced the simplicial depth, while [17] defined the spatial depth. On the contrary,

a multivariate local depth provides a data ordering based on the behavior of each

observation relative to a certain neighborhood. Existing multivariate local depths

are the kernelized spatial depth proposed by [4], local versions of the halfspace and

simplicial depths introduced by [1] and theβ-local depth defined by [15]. Multivariate

local depths try to deal with data that have some complex or local features, and they

are usually able to capture the underlying structure of data in nonstandard scenarios.

Global and local depths have been proposed also in FDA, but there are no studies

that provide researchers and practitioners with guidance on differences between

them. Therefore, the main aim of this paper is to point out the structural differences

between global and local functional data depths and help users to decide which type

of functional data depth to use.

As global-oriented depths, in this paper we consider the Fraiman and Muniz depth

(FMD, [10, 10]), which measures how long a curve remains in the middle of a sample

of functional observations, the modified band depth (MBD, [14, 14]), which is based

on a measure of how much a curve is inside the bands defined by all the possible

pairs of curves of a sample, and the functional spatial depth (FSD, [3, 3]), which is

a functional version of the multivariate spatial depth. As local-oriented depths, we

consider the h-modal depth (HMD, [6, 6]), which measures how densely a curve is

surrounded by other curves in a sample, and the kernelized functional spatial depth

(KFSD, [18, 18]), which represents an explicit local version of the functional spatial

depth.

To compare global and local functional depths, we first consider two real data

examples that involve the presence of functional local features such as bimodality,

presence of isolated observations and potential outliers, or asymmetry (Sect. 2).

Then, we focus on the relationship between FSD and KFSD (Sect. 3). Finally, we

use a simulation study to analyze the behavior of global and local depths under the

presence of complex features (Sect. 4) and draw some conclusions (Sect. 5).

2 Comparing Global and Local Depths: Real Data

Examples

This section represents an introductory part of our empirical study. Here will illustrate

the differences between global depths (FSD, FMD, and MBD) and local depths

(KFSD and HMD) using two real functional data sets: phonemes data (Sect. 2.1) and

nitrogen oxides data (Sect. 2.2).

2.1 Phonemes Data

The phonemes data set, available in the fda.usc R package [8, 8], consists in

log-periodograms corresponding to recordings of speakers pronouncing specific
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Fig. 1 Log-periodograms of 10 speakers pronouncing sh and 10 speakers pronouncing dcl

phonemes. A detailed description of the data set which contains information about

five speech frames corresponding to five phonemes can be found in [9]. In this sub-

section we consider 50 observations for the phoneme sh as in she and 50 observations

for the phoneme dcl as in dark. For illustrative purposes, Fig. 1 shows 10 randomly

chosen log-periodograms for each phoneme. As in [9], we consider the first 150

frequencies from each recording.

Treating this data set as a unique sample, we obtain data that show bimodality,

in particular starting from frequencies around 40, and a central region where fall

few isolated observations (see Fig. 1). Our first goal is to show that global and local

depths may behave differently in presence of such complex data features, and since

the center-outward ordering of curves is possibly the main by-product of any depth

analysis, we evaluate depth measures considering the ranks associated to its values.1

We first consider all the possible pairs of depths, and then we focus on the pair

FSD-KFSD due to their direct relationship (see Sect. 3 for more details).

Figure 2 shows the scatter plots of the ten possible pairs of depth-based ranks, and

we observe strong relationships between either global or local depths and relatively

weaker relationships between global and local depths.

In Table 1 we report the Spearman’s rank correlation coefficients corresponding to

Fig. 2, and they confirm the visual inspection of the figure: the coefficients are never

less than 0.96 between either global or local depths, while they are never greater than

0.26 between a global and a local depth.

In Fig. 3 we focus on the scatter plot of the FSD-based and KFSD-based ranks to

compare more in detail the behaviors of a global and a local depth: it is clear that there

are important differences in terms of ranks, except for low FSD-based ranks (lower

than 20). Therefore, the functional phonemes data set represents a clear example of

global and local depths showing very different behaviors.

1Note that the higher the depth values, the higher the associated ranks.
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Fig. 2 Scatter plots of the ten possible pairs of depth-based ranks for the phonemes data set

Table 1 Spearman’s rank correlation matrix of FSD, FMD, MBD, KFSD, and HMD values for

the phonemes data set

FSD FMD MBD KFSD HMD

FSD 1.00 0.97 0.98 0.17 0.26

FMD 0.97 1.00 0.99 0.02 0.13

MBD 0.98 0.99 1.00 0.08 0.19

KFSD 0.17 0.02 0.08 1.00 0.96

HMD 0.26 0.13 0.19 0.96 1.00
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Fig. 3 Scatter plot of the FSD-based and KFSD-based ranks for the phonemes data set

2.2 Nitrogen Oxides (NOx) Data

The nitrogen oxides (NOx ) data set, also available in the fda.usc R package, con-

sists in nitrogen oxides (NOx ) emission daily levels measured in a Barcelona area

between 2005-02-23 and 2005-06-29. More details about this data set can be found

in [7], where it is used to implement functional outlier detection techniques after
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Fig. 4 NOx levels (nanograms per cubic meter) measured every hour of 39 nonworking days

between 23/02/2005 and 26/06/2005 close to an industrial area in Poblenou, Barcelona, Spain
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Fig. 5 Scatter plots of the ten possible pairs of depth-based ranks for the NOx data set

splitting the whole data set in two samples referring to working and nonworking

days, respectively. In this subsection we consider the nonworking days sample (see

Fig. 4).

Observing Fig. 4 we notice at least two features that can be described as complex

and/or local: first, the data set contains NOx levels having a potential atypical behav-

ior; second, the data set shows partial asymmetry, i.e., between roughly 10 and 24

24 h there are many relatively low NOx levels and few relatively high NOx levels.

Therefore, it seems interesting to compare the behavior of global and local functional

depths using this sample affected by potential outliers and asymmetry.

Figures 5 and 6 and Table 2 mimic Figs. 2 and 3 and Table 1 for this new data

set: when comparing all the depths between each other in Fig. 5, we see that the

juxtaposition between global and local depths exists but it appears less strong than

in the phonemes data set.
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Table 2 Spearman’s rank correlation matrix of FSD, FMD, MBD, KFSD, and HMD values for

the NOx data set

FSD FMD MBD KFSD HMD

FSD 1.00 0.83 0.82 0.82 0.80

FMD 0.83 1.00 0.97 0.75 0.73

MBD 0.82 0.97 1.00 0.67 0.64

KFSD 0.82 0.75 0.67 1.00 0.99

HMD 0.80 0.73 0.64 0.99 1.00
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Fig. 6 Scatter plot of the FSD-based and KFSD-based ranks for the NOx data set

However, analyzing Table 2 we see that for each depth measure the highest Spear-

man’s rank correlation coefficient is still observed with a depth measure of the same

nature, and therefore global and local depths show different behaviors also when

they are used to analyze a data set affected by the complex features identified in the

NOx data set.

Focusing on FSD and KFSD, in Fig. 6 we observe that these depths have a stronger

relationship than in the phonemes data set. However, there are several observations

for which the FSD-based ranks differ significantly from the KFSD-based ranks.

For example, it is easily seen a group of five observations having FSD-based ranks

roughly between 5 and 15 and KFSD-based ranks roughly between 20 and 30.

The real data examples of this section show that we may expect different behaviors

from global and local depths. In the next section we give an idea about the why,

focusing on FSD and KFSD.
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3 Comparing Global and Local Depths: FSD Versus KFSD

For reasons of space, we present the global and local approach to the functional depth

problem focusing on the relationship between FSD and KFSD since the second is a

direct local version of the first, and we refer to the original articles for the definitions

of FMD, MBD, and HMD.

[3] introduced an extension of the multivariate spatial depth, the Functional Spatial

Depth (FSD), with the aim of considering the geometry of the data to assign depth

values. Let H be an infinite-dimensional Hilbert space. The FSD of x ∈ H with

respect to the functional sample Yn = {y1, . . . , yn} is defined as

F SD(x, Yn) = 1 −
1

n

"
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"

"

n
"
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x − yi
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, (1)

where � · � is the norm induced by the inner product �·, ·� defined in H.

[18] introduced the kernelized functional spatial depth modifying FSD in the

following way:

K F SD(x, Yn) = 1 −
1
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where φ : H → F is an embedding map and F is a feature space. Since φ can be

defined implicitly by a positive definite and stationary kernel through κ(x, y) =
�φ(x), φ(y)�, x, y ∈ H, and after some standard calculations, the kernel-based def-

inition of KFSD is given by
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Note that KFSD has been used for classification [18, 18] and outlier detection [2,

2, 19, 19].

As stated before, the pair FSD-KFSD represents the unique case where one func-

tional depth (KFSD) is a direct local version of another (FSD), and therefore in what

follows we briefly explain the why.

On the one hand, F SD(x, Yn) depends equally on all the possible deviations of

x from yi , for i = 1, . . . , n. Therefore, behind FSD there is an approach based on

the following fundamental assumption: each yi should count equally in defining the

degree of centrality of x . This is the feature that turns FSD into a global-oriented

functional depth. A similar approach is behind FMD and MBD.
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On the other hand, as a modification of FSD, KFSD aims to substitute the equally

dependence of the depth value of x on the yi ’s with a kernel-based dependence

producing that yi ’s closer to x influence more the depth value of x than yi ’s that

are more distant. Therefore, the alternative approach behind KFSD suggests that the

contribution of each yi in defining the degree of centrality of x should decrease for

yi ’s distant from x . This is the feature that turns KFSD in a local-oriented functional

depth. A similar approach is behind HMD.

Moreover, the choice of the kernel makes KFSD and HMD flexible tools as it

allows the practitioner to implement her/his preferences about the form of the neigh-

borhoods of x . Additionally, the kernel bandwidth allows to tune the size of the

neighborhood of x . In this paper we implement KFSD and HMD using a Gaussian

kernel and setting the kernel bandwidth equal to the 25% percentile of the empiri-

cal distribution of
�

�yi − y j �, i = 1, . . . , n; i < j ≤ n
"

. Such a bandwidth defines fairly

local versions of KFSD and HMD.

In the next section we complete our empirical study using simulated data.

4 Simulation Study

In Sect. 2 we have anticipated that global and local depths may behave differently

when used to analyze real functional data sets. In this section, using the results of a

simulation study, our goal is to establish when we should expect that a local functional

depth may provide alternative data insights with respect to the ones that would arise

using a global functional depth.

We are interested in models capable to replicate specific data features such as:

• absence of complex/local features;

• presence of atypical observations;

• asymmetry;

• bimodality and presence of isolated observations.

To do this, we consider models based on truncated Karhunen-Loève expansions

to which we add an error term. For example, the curves generating process defining

the first model (Model 1) is given by

x(t) = μ(t) + ξ1φ1(t) + ξ2φ2(t) + �(t), (4)

where t ∈
�

s−0.5
50

, s = 1, . . . , 50
"

, μ(t) = 2t , ξ1 ∼ N (0, λ1) and λ1 = 1.98, ξ2 ∼
N (0, λ2) and λ2 = 0.02, φ1(t) = 1, φ2(t) =

√
7

"

20t3 − 30t2 + 12t
"

and �(t) ∼
N (0, σ 2 = 0.01). Figure 7 shows a simulated data set under Model 1 with sample

size n = 100. We use this sample size along the whole simulation study.

Model 1 generates functional data that strongly depend on the realizations of ξ1.

Since ξ1 is normal, Model 1 represents a scenario where complex data features are

absent. Models 2, 3, and 4 will be defined modifying the distribution of ξ1 and they
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Fig. 8 Model 1: boxplots of the Spearman’s rank correlation coefficients between the FSD, FMD,

MBD, KFSD and HMD values and the f (ξ1) values

will reproduce other data features of our interest. The design of our simulation study

allows the attainment of two goals: first, the considered models will both replicate and

isolate specific data features, and, second, the theoretical densities of the realizations

of ξ1, say f (ξ1), will represent a natural benchmark to evaluate the performances of

the functional depths under study.

We generate 100 samples from Model 1, and we evaluate the performance of a

functional depth with each generated data set from Model 1 looking at the Spearman’s

rank correlation coefficient between depth and f (ξ1) values. Figure 8 shows the

five boxplots obtained under Model 1. The boxplots illustrate that in absence of

complex features there are very mild differences in favor of global depths, which

behave similarly among them. Local depths show similar but slightly more variable

performances.

Model 2 is obtained modifying the distribution of ξ1.
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Fig. 10 Model 2: boxplots of the Spearman’s rank correlation coefficients between the FSD, FMD,

MBD, KFSD, and HMD values and the f (ξ1) values

Under Model 2, ξ1 ∼
�

λ1
3
5

X and X ∼ t5. Note that this change allows us to

obtain functional data sets potentially contaminated by atypical observations (see

Fig. 9 for an example).

Figure 10 replicates Fig. 8 for Model 2. According to this new figure, in presence

of a complex feature such as the existence of potential outliers both classes of depths

behave very similarly. We claim that this result is due to the fact that both global

and local depths analyze reasonably well those functional samples symmetrically

contaminated by curves that are outlying because of their relative levels.

To obtain Model 3 we consider an alternative modification of the distribution of

ξ1.

Under Model 3, ξ1 ∼
�

λ1
1

10
X and X ∼ χ2

5 . In this case the change allows to

obtain asymmetric functional data sets, i.e., for all t , Model 3 generates many rela-

tively low x(t) and fewer relatively high x(t) (see Fig. 11 for an example).
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Fig. 11 Simulated data set from Model 3
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Fig. 12 Model 3: boxplots of the Spearman’s rank correlation coefficients between the FSD, FMD,

MBD, KFSD, and HMD values and the f (ξ1) values

Figure 12 shows the boxplots obtained under Model 3, and it is clear that asymme-

try represents a complex feature that affects the performances of all the depths under

study, but in general local-oriented KFSD and HMD show a stronger association

with the benchmark f (ξ1).

Finally, we consider a mixture of two normals to obtain Model 4: with equal prob-

ability, ξ1 ∼ N
�

−
�

λ1 − 1
10

, 1
10

�

or ξ1 ∼ N
�
�

λ1 − 1
10

, 1
10

�

. We employ Model 4

to obtain data showing bimodality and potential presence of isolated observations

lying between the two main groups of curves (see Fig. 13 for an example).

Due to the behaviors of FSD, FMD, and MBD under Model 4, when reporting the

boxplots in Fig. 14, we use [−1, 1] as range for the vertical axis. The information

provided by Fig. 14 suggests that the ranking of whole bimodal data sets represents

a problem that is hard to be handled in an unsupervised way by the functional depths

under study. However, the local-oriented KFSD and HMD show a generally positive

association with the benchmark f (ξ1), whereas for the global-oriented FSD, FMD,
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Fig. 14 Model 4: boxplots of the Spearman’s rank correlation coefficients between the FSD, FMD,

MBD, KFSD, and HMD values and the f (ξ1) values

and MBD we observe Spearman’s rank correlation coefficients that vary symmetri-

cally around 0.

The results of the simulation study presented in this section have shown that the

behaviors of global and local functional depths can be fairly similar under some

circumstances (e.g., absence of complex data features and presence of a particular

type of outliers), but quite different under others (e.g., asymmetry and bimodality).

5 Conclusions

With the aim of extending to the functional context the knowledge about the differ-

ences between a global and a local approach to the depth problem, in this paper we

have presented an empirical study that studied and compared the behavior of three
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global and two local functional depths. We have illustrated that local functional

depths may behave differently with respect to their global alternatives. Indeed, using

real and simulated data sets, we have observed that analyses based on local depths

may be an alternative under specific scenarios. In this work we have identified at

least two: first, in presence of asymmetry (see Model 3 and NOx analyses); second,

in presence of bimodality and isolated observations (see Model 4 and phonemes

analyses).
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AutoSpec: Detecting Exiguous Frequency

Changes in Time Series

David S. Stoffer

Abstract Most established techniques that search for structural breaks in time series

may not be able to identify slight changes in the process, especially when looking

for frequency changes. The problem is that many of the techniques assume very

smooth local spectra and tend to produce overly smooth estimates. The problem

of over-smoothing tends to produce spectral estimates that miss slight frequency

changes because frequencies that are close together will be lumped into one fre-

quency. The goal of this work is to develop techniques that concentrate on detecting

slight frequency changes by requiring a high degree of resolution in the frequency

domain.

1 Introduction

Many time series are realizations of nonstationary random processes, hence estimat-

ing their time varying spectra may provide insight into the physical processes that

give rise to these time series. For example, EEG time series are typically nonstation-

ary, and estimating the time varying spectra based on the EEG of epilepsy patients

may lead to methods capable of predicting seizure onset; e.g., see [2]. Similarly,

analyzing the time varying spectrum of the Southern Oscillation Index (SOI) may

further our knowledge of the frequency of the El Niño Southern Oscillation (ENSO)

phenomenon and its impact on global climate; e.g., see [3].

Most established techniques that search for structural breaks in time series, how-

ever, may not be able to identify slight frequency changes at the resolution of interest.

Of course, the resolution depends on the particular application. The problem is that

many of the techniques assume very smooth local spectra and tend to produce overly

smooth estimates. The problem of assuming very smooth spectra produces spectral
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estimates that may miss slight frequency changes because frequencies that are close

together will be lumped into one frequency; see Sect. 5 for further details. The goal

of this work is to develop techniques that concentrate on detecting slight frequency

changes by requiring a high degree of resolution in the frequency domain.

The basic assumptions here are that, conditional on the location and number of

segments, the time series is piecewise stationary with each piece having a spectral

density. A detailed description of the model is given in Sect. 2. In addition to repre-

senting time series that have regime changes, the model can be used to approximate

slowly varying processes; e.g., see [1], which uses dyadic segmentation to find the

approximate location of breakpoints. The approach taken in [8] was to fit piecewise

AR models using minimum description length and a genetic algorithm for solving

the difficult optimization problem. [13] proposed nonparametric estimators based

on dyadic segmentation and smooth local exponential functions. [15] estimated the

log of the local spectrum using a Bayesian mixture of splines. The basic idea of this

approach is to first partition the data into small sections. It is then assumed that the

log spectral density of the evolutionary process in any given partition is a mixture of

individual log spectra. A mixture of smoothing splines model with time varying mix-

ing weights is used to estimate the evolutionary log spectrum. Later, [16] improved

on the technique of [15] by adaptively selecting breakpoints.

For background, note that spectral analysis has to do with partitioning the variance

of a stationary time series, {X t }, into components of oscillation indexed by frequency

ω, and measured in cycles per unit of time, for −1/2 < ω ≤ 1/2. Given a time series

sample, {X t ; t = 1, ..., n}, that has been centered by its sample mean, the sample

spectral density (or periodogram) is defined in terms of frequency ω:

In(ω) =
∣

∣

∣
n−1/2

n
∑

t=1

X t e−2π iωt
∣

∣

∣

2

. (1)

The periodogram is essentially the squared-correlation of the data with sines and

cosines that oscillate at frequency ω.

The spectral density, f (ω), of a stationary time series can be defined as the limit

(n → ∞) of E[In(ω)], provided that the limit exists; details can be found in [17,

Chap. 4]. It is worthwhile to note that f (ω) ≥ 0, f (ω) = f (−ω), and

∫ 1/2

−1/2

f (ω) dω = 2

∫ 1/2

0

f (ω) dω = σ 2, (2)

where σ 2 = var(X t ) < ∞. Thus, the spectral density can be thought of as the vari-

ance density of a time series relative to frequency of oscillation. That is, for positive

frequencies between 0 and 1/2, the proportion of the variance that can be attributed

to oscillations in the data at frequency ω is roughly 2 f (ω)dω. If the time series

X t is white noise, that is, E(X t ) is independent of time t , and cov(Xs, X t ) = 0 for

all s �= t , then f (ω) ≡ σ 2. The designation white originates from the analogy with

white light and indicates that all possible periodic oscillations are present with equal

strength.
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2 Model and Existing Methods

Let a time series {X t ; t = 1, . . . , n} consist of an unknown number of segments, m,

and let ξ j be the unknown location of the end of the j th segment, j = 0, 1, . . . , m,

with ξ0 = 0 and ξm = n. Then conditional on m and ξξξ = (ξ0, . . . , ξm)�, we assume

that the process {X t } is piecewise stationary. That is,

X t =

m
∑

j=1

X t, j δt, j , (3)

where for j = 1, . . . , m, the processes X t, j have spectral density f θ
j (ω) that may

depend on parameters θ , and δt, j = 1 if t ∈ [ξ j−1 + 1, ξ j ] and 0 otherwise.

Consider a realization xxx = (x1, . . . , xn)
� from process (3), where the number and

locations of the stationary segments is unknown. Let n j be the number of observations

in the j th segment. We assume that each n j is large enough for the local Whittle

likelihood (see [20]) to provide a good approximation to the likelihood. Given a

partition of the time series xxx , the j th segment consists of the observations xxx j =

{xt : ξ j−1 + 1 ≤ t ≤ ξ j }, j = 1, . . . , m, with underlying spectral densities f θ
j and

periodograms I j , evaluated at frequenciesωk j
= k j/n j , 0 ≤ k j ≤ n j − 1. For a given

partition ξξξ , the approximate likelihood of the time series is given by

L( f θ
1 , . . . , f θ

m | xxx, ξξξ) ≈

m
∏

j=1

(2π)−n j /2

n j −1
∏

k j =0

exp
{

−
1

2

[

log f θ
j (ωk j

)

+ I j (ωk j
)/ f θ

j (ωk j
)
]}

. (4)

Note that in setting up the model, most items depend on the number of regimes, m.

For ease, that dependence is understood and dropped from the notation.

2.1 AdaptSpec

The frequency domain approach used in [16] is a Bayesian method that incorpo-

rates (4) with a linear smoothing spline prior on the log f θ
j (ω) for j = 1, . . . , m.

In addition, a uniform prior is placed on the breakpoints, Pr(ξ j = t | m) = 1/p j ,

for j = 1, . . . , m − 1, where p j is the number of available locations for split point

ξ j , as is the prior on the number of segments, Pr(m = k) = 1/M for k = 1, . . . , M

and M is some large but fixed number. The approach uses reversible jump Markov

chain Monte Carlo (RJ-MCMC) methods to evaluate the posteriors. The technique

is available in an R package called BayesSpec.
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2.2 AutoParm

Although this method, which is described in [8], is a time domain approach, the

authors argue that AR models are dense in the space of bounded spectral densities

(e.g., see [17, Sect. 4.5]) and can thus be used as a frequency domain approach. In this

case, each time series {X t, j } is piecewise stationary with AR(p j ) behavior in each

segment, j = 1, . . . , m. Then, Minimum Description Length (MDL) as described

in [14] is used to find the best combination of the number of segments, m, the

breakpoints ξ j (or segment sizes n j ), and the orders/estimates of the piecewise AR

processes. The idea is to minimize the Code Length (CL) necessary to store the data

(i.e., the amount of memory required to encode the data), which leads to a BIC-type

criterion to find the model that minimizes

∑

j

(

� j + log p j +
p j + 2

2
log n j

)

+ log m + (m + 1) log n, (5)

where � j = − log L̂ j (μ j , φ1, . . . , φp j
, σ 2

j | x, ξm) and L̂ j maximized value of the

usual Gaussian AR(p j ) likelihood for segment j = 1, . . . , m,

L j (· | ·) = (2π)−n j /2|� j |
−1/2 exp

{

− 1
2
(xxx j − μ j111)�� j

−1(xxx j − μ j111)
}

, (6)

where μ j is the segment’s constant mean value, 111 is the corresponding vector of

ones, and � j = σ 2
j V j is the usual AR(p j ) variance-covariance matrix corresponding

to xxx j . Because of the Markov structure of AR models, the likelihood has a simple

form; see [6, Prob. 8.7] for details. Fitting the model has to be done via numerical

optimization, which is accomplished via a genetic algorithm (a derivative free smart

search for minimization based on evolutionary biology concepts). Basic information

on genetic algorithms may be obtained from the Mathworks site [11].

2.3 The Problem Is Resolution

The problem with the aforementioned techniques is that they tend to over-smooth the

spectral density estimate so that small frequency shifts cannot be detected. Resolution

problems were thoroughly discussed in the literature in the latter half of the twentieth

century. Some details of the history of the problem as well as a simulation example

are given in Sect. 5. For our analysis, we focus on El Niño–Southern Oscillation

(ENSO). The Southern Oscillation Index (SOI) measures changes in air pressure

related to sea surface temperatures in the central Pacific Ocean. The central Pacific

warms every three to seven years due to the El Niño effect, which has been blamed

for various global extreme weather events. It has become taken as fact that sometime

after 1980, the frequency of the El Niño–La Niña (or ENSO) cycle has increased

with the global warming; e.g., see [19].
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Fig. 1 Monthly values of the SOI for years 1866–2017 with breakpoints (vertical lines) determined

by AutoParm (- - -) and by AdaptSpec (|). The solid smooth line is the filtered series that exhibits the

ENSO cycle. For AdaptSpect, Pr(break | data) = 0.3 indicates there is probably not a breakpoint

Monthly values of the SOI are displayed in Fig. 1 for years 1866–2017 [7];

additionally, the data have been filtered to exhibit the ENSO cycle. Also shown

in Fig. 1 are the AutoParm results (vertical dashed line) and AdaptSpec results

(vertical solid line) when applied to the SOI series. AutoParm prefers a breakpoint

around 1920, whereas AdaptSpec is indicating there are no breakpoints because

Pr(break | data) = 0.3. However, assuming that there is one structural break, the

posterior distribution of the breakpoints (with a vertical line at the mean) is displayed

in the figure.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.6

1
.2

frequency

AutoParm

S
e

g
m

e
n

t 
1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.3

0
.6

frequency

S
e

g
m

e
n

t 
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

AdaptSpec

frequency

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

frequency

Fig. 2 The segmented spectral estimates using AutoParm and AdaptSpec. The vertical lines show

the 3–7 7 year cycle known ENSO cycle range. The frequency scale is in years and is truncated at

the annual cycle
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Figure 2 shows the estimated spectra for each segment for the AutoParm and

AdaptSpec techniques. The vertical lines show the 3–7 year cycle known ENSO

cycle (see https://www.weather.gov/mhx/ensowhat for more details). Both methods

indicate that in the second segment, the ENSO cycle is much more broad, including

both slower and faster frequencies than the usual ENSO cycle. One thing that is clear

from both methods is that the estimated spectra are too smooth (broad) to reveal if

there has been a decisive frequency shift in the ENSO cycle.

3 AutoSpec—Parametric

Since the interest is in spectra, an obvious extension of AutoParm is to replace the

Gaussian AR likelihood in MDL with Whittle likelihood. That is, in (6), replace L j

with the Whittle likelihood (4) but with

f θ
j (ω) = σ 2

j |φ j (e
2π i ω)|−2 , (7)

where φ j (z) is the AR polynomial of order p j given by.

φ j (z) = 1 − φ1z − · · · − φp j
z p j ,

for j = 1, . . . , m. The basic idea is use peridograms as the data in a move from the

time domain to the frequency domain. Another similar method would be to use the

Bloomfield EXP model [5],

f θ
j (ω) = σ 2

j exp
(

2

p j
∑

�=1

θ�, j cos(2π�ω)
)

.

However, EXP yields spectral estimates that are very similar to the AR spectra, so

these are not displayed. Using the AR form in (7) yields an interesting and different

result, which is shown in Fig. 3. The method finds three segments, but no break

near 1980. The AR spectral estimates are shown in Figure 3, and because they are

so smooth, it is not easy to interpret the results. However, we used nonparametric

spectral estimates (see [17, Sect. 4]) on the three chosen segments and those estimates

are displayed in Fig. 4. Here we note that segments two and three show an increased

frequency around the 2.5 year cycle, and segment three shows an additional slower

frequency, which may be interpreted as the existence of longer El Niño/La Niña

cycles.

https://www.weather.gov/mhx/ensowhat
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AutoSpec Breakpoints
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Fig. 3 The SOI series with the two breakpoints found using AutoSpec. The individual AR spectral

estimates for each of the three segments. The vertical lines show the 3–7 year cycle known ENSO

cycle range
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Fig. 4 Nonparametric estimates of the spectra in the three segments identified by AutoSpec; com-

pare to Figure 3. The vertical lines show the 3–7 year cycle known ENSO cycle range

4 AutoSpecNP—Nonparametric

Because of the success of the nonparametric approach in the previous section, the

natural next step would be to develop a fully nonparametric technique. To this end,

consider a triangular kernel (Bartlett window), {W (�); � = 0,±1, . . . ,±b} with

W (�) ∝ 1 − |�|/(b + 1) such that
∑

W (�) = 1, with the bandwidth b chosen by

MDL to smooth the periodogram of the fully tapered data and then used the Whittle

likelihood for the given spectral estimate. That is, to nonparametrically evaluate the

likelihood (4) in each segment j = 1, . . . , m, use
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Fig. 5 Example of the Bartlett kernel and the corresponding Fejér spectral window when a taper

is applied

f̂ j (ωk j
) =

b j
∑

�=−b j

W (�) I
taper

j (ωk j
+ �), (8)

where the b j = 1, 2, . . . are chosen by MDL (similar to AR orders in AutoParm).

Here, I
taper

j (·) represents the periodogram of the fully cosine tapered data in segment

j for j = 1, . . . , m.

For example, if {xt } represents the data in a segment, then they are preprocessed

as yt = ht xt where ht is the cosine bell taper favored by [4],

ht = .5

[

1 + cos

(

2π(t − t)

n

)]

,

where t = (n + 1)/2 and n is the number of observations in that segment. In this case,

the periodogram is of the preprocessed data, yt . Figure 5 shows an example of the

Bartlett window with b = 4; the corresponding spectral window (see [17, Sect. 4]) of

the Bartlett kernel is not very good unless the data are tapered. The spectral window

corresponding to the Bartlett kernel with tapering is also displayed in Figure 5.

Figure 6 shows the results of the fully nonparametric method. The figure displays

the SOI series along with the estimated breakpoints. The fully nonparametric method

finds a breakpoint near 1980 as has been suggested by climatologists, initially in [18].

Although the differences in each segment are subtle, this method has enough resolu-

tion to distinguish between minor frequency shifts. We may interpret the findings as

follows. From 1866 to 1905, the ENSO cycle was a 3–7 year cycle. After that, there

appears to be a shift to a higher ENSO cycle of about 2.5 years in addition to the usual

3–7 year cycle. Finally, after 1980, there appears to be a slower cycle introduced into

the system. That is, after 1980, the ENSO cycle included a much slower cycle that

indicates that El Niño events tend to be longer, but not faster than 2.5 years.
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Fig. 6 Nonparametric estimates of the spectra in the three segments identified by AutoSpecNP;

compare to Figs. 3 and 4. The vertical lines show the 3–7 year cycle known ENSO cycle range

5 Spectral Resolution and a Simulation

As previously stated, the problem of resolution was discussed in the literature in the

latter half of the twentieth century; e.g., [9, 10]. The basic rule of thumb is that the

achievable frequency resolution, �ω should be approximately the reciprocal of the

observational time interval, �t of the data, �ω ≈ 1/�t . Two signals can be as close

as 1/�t apart before there is significant overlap in the transform and the separate

peaks are no longer distinguishable.

For example, we generated a time series of length 2000 where

X t =

{

X1t = 2 cos(2πω t) cos(2πδ t) + Z1t , 1 ≤ t ≤ 1000 ,

X2t = cos(2πω t) + Z2t , 1001 ≤ t ≤ 2000 ,
(9)

ω = 1/25, δ = 1/150, and Z i t for i = 1, 2 are independent i.i.d. standard normals.

The difference between the two halves of the data is that X1t is a modulated version

of X2t . Modulation is a common occurrence in many signal processing applications,

e.g., EEG (see [12]). In addition, note that

X1t = cos(2π [ω + δ] t) + cos(2π [ω − δ] t) + Z1t ,

so that X1t is distinguishable by twin peaks in the frequency domain.

Figure 7 shows a realization of X t with the changepoint marked. The figure also

displays the breakpoint t = 1087 identified by AutoSpecNP. We note, however, that

AutoSpec and AutoParm do not identify any breakpoints.
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Fig. 7 Realization of (9) showing the true breakpoint as a solid vertical line; the dashed vertical

line shows the breakpoint identified by AutoSpecNP
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Fig. 8 The results of running AutoSpecNP on the data X t , which finds one breakpoint at t = 1087.

The figures are the estimated AutoSpecNP spectra for each identified segment and the estimate (8)

with b = 4 on all the data

Figure 8 shows the results of running AutoSpecNP described in Sect. 4 on the

data X t . As seen from the figure, the procedure is able to distinguish between the two

processes (with a breakpoint at t = 1087). The method works because the procedure

allows very limited to no smoothing of the periodogram. In addition to showing the

spectral estimates of each segment, the figure also displays the estimate (8) with

b = 4 on the entire realization of X t . This figure helps in realizing why the method

works.
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Bayesian Quantile Regression in
Differential Equation Models

Qianwen Tan and Subhashis Ghosal

Abstract In many situations, nonlinear regression models are specified implicitly

by a set of ordinary differential equations. Often, mean regression may not adequately

represent the relationship between the predictors and the response variable. Quantile

regression can give a more complete picture of the relationship, can avoid distribu-

tional assumptions and can naturally handle heteroscedasticity. However, quantile

regression driven by differential equations has not been addressed in the literature. In

this article, we consider the problem and adopt a Bayesian approach. To construct a

likelihood without distributional assumptions, we consider all quantile levels simul-

taneously. Because of the lack of an explicit form of the regression function and the

indeterminate nature of the conditional distribution, evaluating the likelihood and

sampling from the posterior distribution are very challenging. We avoid the compu-

tational bottleneck by adopting a “projection posterior” method. In this approach,

the implicit parametric family of regression function of interest is embedded in the

space of smooth functions, where it is modeled nonparametrically using a B-spline

basis expansion. The posterior is computed in the larger space based on a prior with-

out constraint, and a “projection” on the parametric family using a suitable distance

induces a posterior distribution on the parameter. We illustrate the method using both

simulated and real datasets.

Keywords Differential equation model · Projection posterior · Quantile

regression · B-splines · Finite random series prior

1 Introduction

We consider a nonlinear quantile regression model, where for a specific τ , the τ th

quantile regression function is given implicitly through a set of Ordinary Differential
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Equations (ODE). Quantile regression Koenker and Bassett [11] is popularly used

as a robust and more flexible alternative to the standard mean regression. The like-

lihood function may be constructed without any distributional assumption from the

specification of quantiles of all levels u, 0 < u < 1; see Tokdar and Kadane [14],

Das and Ghosal [7]. However, since the τ th quantile regression function is given

only implicitly through an ODE and the τ th quantile alone does not determine the

entire conditional distribution, evaluation of the likelihood function of the parame-

ters of the ODE is very challenging. We adopt a Bayesian approach, but avoid the

computational barrier by using a “projection posterior”. This posterior distribution is

obtained by modeling all quantile regression functions nonparametrically as a func-

tion of both quantile level u and predictor variablesś value t , without any functional

constraint on the τ th quantile regression function and then inducing a distribution

on the parameter through a map obtained by minimizing the distance to the para-

metric family specified by the ODE. For mean regression driven by an ODE, this

type of Bayesian approach was proposed by Bhaumik and Ghosal [1–3] building on

the two-step method of Varah [15] and Brunel [5], who used the classical approach

instead based on the least-squares method of estimation. In this paper, we modify the

Bayesian two-step procedure for quantile regression, by first considering a nonpara-

metric approach to simultaneous quantile regression for all quantiles 0 < u < 1, and

then inducing the projection posterior on the parameter θ of the ODE by minimizing

a distance based on the ODE between the τ th quantile in the nonparametric model

with the parametric family described by the ODE. It may be noted that, even though

we are primarily interested in the inference on θ , which is linked with the specific

τ th quantile, the evaluation of the likelihood function without a parametric model

for the residual is possible only by considering the simultaneous quantile regression

of all levels 0 < u < 1.

The paper is organized as follows, Sect. 2 contains the modeling assumptions and

prior specifications. A block-Metropolis–Hastings MCMC algorithm for the com-

putation of the posterior and the details about the projection step are also described

there. In Sect. 3, we carry out a simulation study for a quantile regression model

governed by a set of ordinary differential equations describing the dynamics of the

relations between prey and predator populations. We analyze a real-life data on stock

prices in Sect. 4 using a simplified hyperbolic diffusion equation model Bibby and

Sørensen [4].

2 Methodology and Computation

Consider observations Yi of the i th measurement taken at a point ti ∈ [0, 1], i =

1, . . . , n, where the predictor variable typically stands for time, and Y = (Yi : i =

1, . . . , n). We assume, without loss of generality, that each observation of response

variables has been monotonically transformed into the unit interval. Let Q(u|t) stand

for the uth quantile of Y at the value t of the predictor, 0 ≤ u ≤ 1. We assume that,

for a specific fixed τ , 0 < τ < 1, the τ th quantile Q(τ |t) is given by a nonlinear
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function fθ (t) depending on an unknown parameter θ ∈ �, where � is a compact

subset of R
d . However, the function fθ (t) is only implicitly given, as the solution of

the ODE
d fθ (t)

dt
= F(t, fθ (t), θ), t ∈ [0, 1], θ ∈ �, (1)

where F is a given smooth function of its co-ordinates.

The first step of the two-step method is to embed the implicit parametric nonlin-

ear quantile regression model in a nonparametric model for simultaneous quantile

regressions and put a prior distribution in the bigger nonparametric model which

does not have any restriction on its τ th quantile function. To this end, we follow

the approach of Das and Ghosal [8] of using a finite random series based on tensor

products of B-splines; see Shen and Ghosal [12] and Ghosal and van der Vaart [10]

for a systematic development of the finite random series prior for function estima-

tion. Let {Bs(·) : s = 1, . . . , J } denote B-spline basis functions of order m on k − 1

equidistant interior knots, J = m + k − 1; see de Boor [9] for an introduction to

B-splines. Expanding the quantile function in a series

Q(u|t) =

J1
∑

s1=1

J2
∑

s2=1

³s1s2
Bs1

(u)Bs2
(t), u, t ∈ [0, 1], (2)

we put prior on the coefficients (³s1s2
: s1 = 1, . . . , J1, s2 = 1, . . . , J2), given J1, J2.

Note that Q(0|t) = 0, Q(1|t) = 1, and Q(u|t) is increasing in u for every t . These

constraints are addressed by the condition 0 = ³1s2
< ³2s2

< · · · < ³J1s2
= 1 for

every s2 = 1, . . . , J2. We put a prior of these coefficients by considering the vector

of the spacings (´s1s2
= ³(s1+1)s2

− ³s1s2
: s1 = 1, . . . , J1 − 1), which lives on the

(J1 − 1)-unit simplex for all s2 = 1, . . . , J2. We put the uniform prior on each of

these J2 many (J1 − 1)-simplex blocks. Ideally, an infinitely supported prior with

geometric-like tail should be put of J1, J2. However, to reduce computational cost,

we do not put any prior on J1 and J2, but in the end we choose them based on the

data using the Akaike Information Criterion (AIC).

The likelihood
∏n

i=1 p(Yi |ti ) in the nonparametric model is derived from the quan-

tile function through the relation p(Yi |ti ) =
(

∂
∂u

Q(u|ti )
∣

∣

u=uti
(Yi )

)−1
, i = 1, . . . , n,

where uti (Yi ) solves the equation

Yi = Q(u|ti ) =

J1
∑

s1=1

J2
∑

s2=1

³s1s2
Bs1

(u)Bs2
(ti ). (3)

Since Q(u|ti ) is monotonically increasing in u and is a piece-wise polynomial,

the solution of (3) is unique and can be easily computed. In particular, if we use

piece-wise quadratic B-spline (i.e., m = 3), (3) reduces to a quadratic equation and

hence can be solved analytically. Now the B-spline representation, ∂
∂u

Q(u|ti ) =
∑J1

s1=1

∑J2

s2=1 ³s1s2
Ḃs1

(u)Bs2
(ti ), where Ḃs(·) is the derivative of the B-spline basis

functions and is itself a spline function. Hence the log-likelihood is given by
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n
∑

i=1

log p(Yi |ti ) = −

n
∑

i=1

log

{ J1
∑

s1=1

J2
∑

s2=1

³s1s2
Ḃs1

(uti (Yi ))Bs2
(ti )

}

. (4)

Note that like the two-step method for mean regression, the likelihood is based on

the nonparametric model only, and can be used to make inference on all quantile

functions {Q(u|t) : 0 ≤ u, t ≤ 1} independent of the ODE. With fixed J1, J2, the

likelihood may also be regarded as a function of the array ((³s1s2
)).

The posterior distribution in the nonparametric model may be computed by the

following block-Metropolis–Hastings Markov chain Monte Carlo (MCMC) algo-

rithm. Following Das and Ghosal [7], we propose Metropolis–Hastings moves as

follows. For a given s2 = 1, . . . , J2, we generate independent sequence (Us1
: s1 =

1, . . . , J1) from Unif(1/r, r) for some r > 1. Let Vs1s2
= ´s1s2

Us1
and propose a

move ´s1s2
�→ ´ ∗

s1s2
, where ´ ∗

s1s2
= Vs1s2

/
∑J1

s "
1=1

Vs "
1s2

, s1 = 1, . . . , J1. The conditional

density of ´ ∗
·s2

= (´ ∗
s1s2

: s1 = 1, . . . , J1) given ´·s2
= (´s1s2

: s1 = 1, . . . , J1) with

respect to the Lebesgue measure on the simplex is then

h(´ ∗
·s2

|´·s2
) =

(

r

r2 − 1

)J1
( J1

∏

s1=1

´s1s2

)−1(
D1 − D2

J1

)

,

where D1 = (max{r´s1s2
/´ ∗

s1s2
: 1 ≤ s1 ≤ J1})

J1 and D2 = (min{r´s1s2
/´ ∗

s1s2
: 1 ≤

s1 ≤ J1})
J1 .

Denote the likelihood at the parameter values ´·s2
and ´ ∗

·s2
by L(´·s2

) and

L(´ ∗
·s2

) respectively. Then the acceptance probability of a single block update for

s2 = 1, . . . , J2 is Rs2
= min(1, L(´ ∗

·s2
)h(´·s2

|´ ∗
·s2

)/L(´·s2
)h(´ ∗

·s2
|´·s2

)).

The parameter r works as a tuning parameter of the MCMC procedure. A smaller

value of r yields sticky movement with a higher acceptance rate while a larger

value of r results in bigger jumps with a lower acceptance rate. We maintain the

acceptance rate within [0.15, 0.45] by tuning r , following the standard recipe for the

Metropolis–Hastings algorithm.

Since the parameter space is very large consisting of several simplexes, a good

starting point in the center of the posterior distribution for the MCMC is essential. We

use the Maximum Likelihood Estimator (MLE) of {³s1s2
: 1 ≤ s1 ≤ J1, 1 ≤ s2 ≤ J2}

given by maximizing (4) for the purpose. The optimization of the likelihood func-

tion is itself challenging since there is no convexity or explicit expression for the

derivative function. We use the Greedy Coordinate Descent of Varying Step sizes on

Multiple Simplexes (GCDVSMS) algorithm of Das [6] specifically designed for sim-

plex parameter spaces, which seemed to work well for nonparametric simultaneous

quantile regression Das and Ghosal [7].

Now we describe the projection step on the parameter space �. Let w(·) be a

continuous weight function with w(0) = w(1) = 0 and be positive on (0, 1), such

that w(t) = t (1 − t). For a given function f , its derivative ḟ and η ∈ �, define
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R f (η) =

√

∫ 1

0

| ḟ (t) − F(t, f (t), η)|2w(t)dt (5)

and a functional ψ( f ) = argmin{R f (η) : η ∈ �} from the space of smooth func-

tions on [0, 1] to �. Now for each sampled array of the coefficients ³ = (³s1s2
:

s1 = 1, . . . , J1, s2 = 1, . . . , J2), we obtain its projection on � as ψ( f (·;³)), where

f (t;³) =
∑J1

s1=1

∑J2

s2=1 ³s1s2
Bs1

(τ )Bs2
(t).

3 Simulation Study

Let fθ (t) = ( fθ,1(t), fθ,2(t)) be the solution of the system of ODE given by the

Lotka–Volterra equations

d fθ,1(t)

dt
= θ1 fθ,1(t) − θ2 fθ,1(t) fθ,2(t),

d fθ,2(t)

dt
= −θ3 fθ,2(t) + θ4 fθ,1(t) fθ,2(t),

(6)

where t ∈ [0, 1] and the parameters are θ = (θ1, θ2, θ3, θ4) and with initial condi-

tions fθ,1(0) = 1, fθ,2(0) = 0.5. These equations are often used to model the average

size of prey and predator populations respectively in natural habitat. For a specific

0 < τ < 1, we assume that the τ th quantiles of response variables Y and Z are given,

respectively, by fθ (t) = ( fθ,1(t), fθ,2(t)), where θ = (θ1, θ2, θ3, θ4). The true value

θ0 of the vector of these parameters is taken to be (10, 10, 10, 10) in our simula-

tion study, and fθ0,1 and fθ0,2 are computed by numerically solving (6). We gener-

ate the data from independent gamma distributions Yi ∼ Gamma(α1(ti ), λ1(ti )) and

Z i ∼ Gamma(α2(ti ), λ2(ti )), where we choose the parameters such that the vector of

medians of (Y, Z) at a given time t is fθ0
(t), i.e., τ = 0.5 and (Qτ (Y |t), Qτ (Z |t)) =

( fθ0,1(t), fθ0,2(t)). More specifically, we choose the shape functions α1(t) = t (1 −

t)/4 + 5 and α2(t) = 5t (1 − t) + 5, and determine the scale parameters λ j (t) =

fθ0, j (t)/Qτ (Gamma(α j (t), 1)), j = 1, 2, by back-calculation using the scaling

property of the gamma distribution Gamma(α, λ)
d
= λ × Gamma(α, 1). For a sam-

ple of size n, the observation points t1, . . . , tn are chosen as ti = (2i − 1)/2n for

i = 1, . . . , n. Samples of sizes n = 200, 500, and 1000 are considered. We simulate

1000 replications for each case.

Under each replication, in the first step, we first transform the prey and predator

population sizes into the unit interval. We use the gamma distribution function to

transform the population sizes into the unit interval. For the prey population we

choose the parameters of the transforming gamma distribution to be α1 = 2.9620,

³2 = 0.3871; and for predator population we choose the values as α2 = 2.6097,

³2 = 0.4135. We choose these parameter values to match the mean and variance of

data we generated for prey and predator populations.
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In the simulation setting, although the observations are two-dimensional, the

methodology described in Sect. 2 still applies on each component separately, and

the joint inference on θ is obtained in the projection step.

We use piece-wise quadratic B-splines to expand Q(u|t) in both u and t (i.e.,

m1 = m2 = 3), so that the solution of (3) can be obtained analytically. Using k

equidistant knots for the B-spline functions used to expand Q(u|t) in both u and t ,

we let k = 3, . . . , 10, and choose the best model using the AIC. We obtain 10000

MCMC samples and discard the first 1000 iterations as burn-in. After the quantile

curves are estimated, the corresponding inverse transformation is performed on the

response variables to their original scales.

To obtain the projection posterior using the two-step method with the distance

given by (5), where the weight function is chosen as w(t) = t (1 − t), t ∈ [0, 1], and

consider the functional ψ( f ). For each posterior draw of B-spline coefficients ³, we

obtain the induced posterior of θ = ψ( f (·;³)) and then calculate the Monte Carlo

bias and Mean Squared Error (MSE) of the Bayes estimator of θ . To compare, we

also consider a non-Bayesian estimator θ̂ = ψ( f̂ ) of θ , where f̂ (t) is a nonpara-

metric estimate of the vector of median regression function of (Y, Z) at t , obtained

by applying a smoothing method. In this application, we also apply the B-spline

smoothing method to estimate f by minimizing
∑n

i=1 |Yi −
∑J2

s2=1 ´1,s2
Bs2

(ti )| and
∑n

i=1 |Z i −
∑J2

s2=1 ´2,s2
Bs2

(ti )| with respect to (´1,s2
: s2 = 1, . . . , J2) and (´2,s2

:

s2 = 1, . . . , J2), and plugging in the series expansions f1(t) =
∑J2

s2=1 ´1,s2
Bs2

(t) and

f2(t) =
∑J2

s2=1 ´2,s2
Bs2

(t), respectively. Convergence properties of this estimator and

numerical performance were studied in Chap. 3 of Tan [13]. We use 1000 replications

to calculate the Monte Carlo bias and MSE for this estimator. The Monte Carlo bias

Table 1 Monte Carlo bias and MSE of two-step estimators based on Bayesian nonparametric simul-

taneous quantile regression (TSBNPSQR) and quantile regression (TSQR). The data are generated

from a gamma population with median regression curves satisfying the Lotka–Volterra equations

TSBNPSQR TSQR

n θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

200 Bias −0.424 0.822 0.481 −0.848 −0.874 −0.950 −0.924 −1.081

(0.046) (0.061) (0.046) (0.062) (1.010) (1.011) (1.011) (1.010)

MSE 2.467 3.025 2.627 3.184 4.850 4.950 5.184 4.896

(0.089) (0.090) (0.089) (0.091) (1.010) (1.011) (1.011) (1.010)

500 Bias −0.186 0.363 0.174 −0.353 −0.375 −0.731 −0.389 −0.810

(0.024) (0.031) (0.024) (0.031) (0.042) (0.055) (0.043) (0.058)

MSE 1.063 1.490 1.129 1.597 1.877 1.955 2.034 1.960

(0.078) (0.085) (0.081) (0.085) (0.087) (0.087) (0.088) (0.088)

1000 Bias −0.111 0.193 0.101 −0.248 −0.199 −0.674 −0.270 0.752

(0.022) (0.022) (0.022) (0.021) (0.024) (0.051) (0.021) (0.057)

MSE 0.406 0.417 0.503 0.581 0.509 0.919 1.010 1.577

(0.045) (0.046) (0.048) (0.053) (0.048) (0.078) (0.078) (0.085)
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(a) Prey population (b) Predator population

Fig. 1 Estimated median regression curves using nonparametric simultaneous quantile regression

(TSBNPSQR) and two-step quantile regression (TSQR) based on n = 500 observations from a

gamma population with median regression curves satisfying the Lotka–Volterra equations

and MSE of the two-step Bayesian nonparametric estimator based on simultaneous

quantile regression and the two-step (non-Bayesian) quantile regression estimator

based on median regression are given in Table 1, where the two methods are referred

to as TSBNPSQR and TSQR, respectively. The corresponding Monte Carlo errors

of the Monte Carlo bias and MSE are given inside parentheses. It is evident from the

table that the Bayesian method TSBNPSQR based on simultaneous quantile regres-

sion is considerably more accurate than the two-step non-Bayesian method TSQR

based on nonparametric median regression. The higher accuracy is also reflected in

the estimated median regression curves for both populations by these two methods,

as shown in Figure 1.

The proposed method also gives estimated quantile regression curves at any quan-

tile level as a by-product. In Fig. 2, we present the true and the estimated quantiles of

prey and predator populations at the quantile levels u = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 0.95 for n = 500 using the two-step approach for nonparametric

simultaneous quantile regression with the data points generated from a gamma dis-

tribution. Note that for low quantile levels, the nonparametric simultaneous quantile

regression method performs quite well. For high quantile levels, i.e., u = 0.9 and

u = 0.95, as there are very few data points above 2.5 for both prey and predator

populations, it is very difficult to estimate these high-level quantile functions.

4 Realdata Analysis

Bibby and Sørensen [4] introduced a hyperbolic diffusion model for stock prices,

where the log-price is a diffusion process with coefficient depending on the instan-

taneous stock price in a particular way, plus a linear trend. We consider a simplified

version of the model for the trend, ignoring the temporal correlation. The model can

be described by the ordinary differential equation
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(a) True prey quantiles (b) Estimated prey quantiles

(c) True predator quantiles (d) Estimated predator quan-

tiles

Fig. 2 True and estimated quantiles using NPSQR with sample size n = 500 at levels u =

0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 of prey and predator populations

d

dt
fθ (t) = κ +

σ 2

2
exp

{

α
√

δ2 + ( fθ (t) − κt − μ)2 − ³( fθ (t) − κt − μ)
}

for the median regression function fθ (t) involving unknown parameters

θ = (κ, σ, α, δ, μ, ³). We apply the proposed methodology on this model to ana-

lyze the bi-weekly Walmart stock-price data during the period 1999–2011 obtained

from Yahoo! Finance. We use the closing price, adjusted for both dividends and

splits. First, the explanatory variable time is linearly transformed to the unit interval

such that the years 1999 and 2011 are mapped to 0 and 1, respectively. To transform

the stock prices into the unit interval, we use the log-normal distribution function

F(y) = �
(

(log y − μ)/σ
)

, where � is the standard normal cumulative distribution

function. We choose μ = 3.6812, σ = 0.1070 to match the mean and variance of

the stock prices. After transforming both explanatory and response variables into the

unit interval, we use nonparametric simultaneous quantile regression method to esti-

mate the simultaneous quantiles of the stock price St at time t . We start the MCMC

procedure with a warm starting point using the GCDVSMS algorithm. We obtain

10000 posterior samples discarding the first 1000 samples as burn-in. The number of

equidistant knots to be used for B-spline basis functions is selected using the AIC.

After the quantile curves are estimated, the corresponding inverse transformations
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(a) Walmart stock-price quan-

tiles 1999–2011.

(b) Trace and density plots of

the posterior of σ, α, δ and β.

Fig. 3 Estimated quantiles of Walmart stock prices, and trace and density plots of posterior distri-

butions of model parameters

are performed on the response and the explanatory variables before plotting them.

In Fig. 3, we note that the upper quantiles of the stock prices have changed more

dramatically over time compared to the lower quantiles. We note a periodic pattern

in the quantiles at all levels u = 0.8, 0.9, 0.95.

To fit this median regression model, we apply the projection method based on the

distance (5) with weight function w(t) = t (1 − t). Since the ordinary differential

equation is a very complicated nonlinear function in parameters, like Bibby and

Sørensen [4], we first estimate the slope κ and intercept μ parameters from the linear

regression model log St = μ + κt . For the Walmart stock price we found the value

κ = 0.0135 and μ = −23.3375. Then the optimization step is simplified to finding

the location of the minimum of

∫

∣

∣ f "(t) − κ −
σ 2

2
exp

(

α
√

δ2 + ( f (t) − κt − μ)2 − ³( f (t) − κt − μ)
)
∣

∣

2
w(t)dt

with respect to (σ, α, δ, ³) only.

Based on the data, we find that the 95% credible interval for σ is (0.0047, 0.0073),

for α is (4.4875, 6.8396), for δ is (1.1840, 1.1949), and for ³ is (−3.8412,−1.1496).

Note that since the value of σ is close to zero, the squared diffusion coefficient

v2(x) = σ 2 exp
{

α
√

δ2 + (x − κt − μ)2 − ³(x − κt − μ)
}

is a very small number

for all log-prices over the time period. Figure 3 also shows the trace plots and posterior

densities of the parameters σ , α, δ and ³ assuring convergence of MCMC after the

burn-in period.
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Predicting Plant Threat Based on
Herbarium Data: Application to French
Data

Jessica Tressou, Thomas Haevermans, and Liliane Bel

Abstract Evaluating formal threat criteria for every organism on earth is a tremen-

dously resource-consuming task which will need many more years to accomplish

at the actual rate. We propose here a method allowing for a faster and reproducible

threat prediction for the 360,000+ known species of plants. Threat probabilities are

estimated for each known plant species through the analysis of the data from the

complete digitization of the largest herbarium in the world using machine learning

algorithms, allowing for a major breakthrough in biodiversity conservation assess-

ments worldwide. First, the full scientific names from the Paris herbarium database

were matched against all the names from the international plant list using a text

mining open-source search engine called Terrier. A series of statistics related to the

accepted names of each plant were computed and served as predictors in a statis-

tical learning algorithm with binary output. The training data was built based on

the International Union for Conservation of Nature (IUCN) global Redlisting plants

assessments. For each accepted name, the probability to be of least concern (LC, not

threatened) was estimated with a confidence interval and a global misclassification

rate of 20%. Results are presented on the world map and according to different plant

traits.

Keywords Machine learning · Threatened species · Digitization · The plant list ·

Random uniform forest algorithm
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Introduction

In the last years, the French National Museum of Natural History (MNHN) started

a huge work of digitalization of its herbarium, one of the largest collections in the

world. Based on this and the increasing development of machine learning in all fields,

botanists from the MNHN met the statisticians from INRAE to develop an algorithm

allowing to predict plant threat and constitute a list of threatened species similar to

what is currently performed in the IUCN Red List. These assessments require a lot

of time and resources and many plants still have not been assessed (20,000 out of

nearly 400,000 have been assessed).

We propose in this work an original approach combining the French Paris (P)

herbarium data to international public data to classify plants according to their threat

level, first in a binary model (threatened vs not threatened) and then in a multinomial

model (merging some of the IUCN threat categories). A huge part of the work

concerned the matching of the different databases and the construction of predictors

based on the available data and the knowledge of what is actually used for performing

red list assessments for the IUCN. Then based on the 20, 000 plants already classified

by IUCN, a uniform random forest algorithm is trained to be able to predict the threat

category of all 400,000 plants. The end goal of the present work is to provide a tool

that can rapidly and at a less cost predict roughly the threat level for a large amount

of plants so that it may help botanists prioritize which plant should be assessed in

detail next. A side result is also the analysis of the features determining whether a

plant is endangered or not.

The paper is organized as follows. First, we give a brief description of the avail-

able databases that were combined in the analysis. Then we describe the proposed

methodology with a focus first on the matching between the different databases and

then on the modeling approach based on random uniform forests. In the last section,

we expose some of the results and discuss the perspectives of this work.

1 Data Description

The data used come from three main different sources: the data collected by the

Herbarium of the National Museum of Natural History in Paris (MNHN, available

at https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form); interna-

tional public data from The Plant List (TPL, http://www.theplantlist.org/), and pre-

viously assessed plants from the IUCN redlisting data (http://www.iucnredlist.org).

1.1 Herbarium

The specimens stored at Paris MNHN Herbarium were fully digitized constituting

one of the largest collections in the world, see [5] for the construction of this huge

https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form
http://www.theplantlist.org/
http://www.iucnredlist.org
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database. For this study, we extracted the following information: taxonomic infor-

mation (family, genus, species, names of authors), geographic sector information,

and collected information when available (ISO code of the country where the plant

was collected, year when collected). External data was used to add the area of each

country with respect to its ISO code. The raw data is constituted of 6,104,130 records,

associated with 5,318,001 physical distinct herbarium sheets. Each of these sheets is

identified by a barcode. Each barcode is associated with at least one plant name (and

up to 8 due to synonymy) and a geographic sector (ASI, AME, EUR, FRA, etc.).

A total of 613,313 collections were described covering 1,463,754 of the records

(24.0%).

1.2 TPL and International Databases

The Plant List is a working list of all known plant species. It aims to be comprehensive

for species of Vascular plants (flowering plants, conifers, ferns, and their allies) and

of Bryophytes (mosses and liverworts). It was created jointly by the Royal Botanic

Gardens, Kew, and Missouri Botanical Garden. It provides the Accepted Latin name

for most species, with links to all synonyms by which that species has been known.

Around 20% of names are unresolved indicating that the data sources included pro-

vided no evidence or view as to whether the name should be treated as accepted or

not, or there were conflicting opinions that could not be readily resolved. See http://

www.theplantlist.org/ for summary statistics by the family of plants. Our extract

from the TPL database contained 1,298,042 records: each record has an identifier,

a scientific name (family, genus, species, authors), the associated accepted name

(ANID in the following), and the year of publication. 393,585 names are recognized

as accepted names, 356,106 if we narrow the database to vascular plants only. This

database has been supplemented with geographical, climate, and plant life infor-

mation from the Royal Botanical Gardens Kew, World Checklist of Selected Plant

Families http://apps.kew.org/wcsp/, 684,477 records). Geographical information (9

continent codes, 53 region codes, 388 sub-region codes or “area” called TDWG code

and used in Figure 1) of the collection site of the plant is available for 168,725 distinct

plants (among which 130,726 have accepted names). Lifeform data was available for

126,730 plants (among which 113,264 have accepted names) and climate information

for 136,783 plants (among which 122,346 have accepted names). The 258 described

lifeforms were summarized into 25 lifeform binary criteria (such as phanerophyte,

epiphyte, annual, climbing, hydrophyte, ...). Similarly, the 23 described climates

were summarized into 5 climate binary criteria (tropical, aquatic, temperate, dry,

altitude). To group plants at a more aggregated level than the family level (about 500

distinct categories), the order (around 70 categories) was considered as well as the

“super order” (8 distinct categories: Gymnosperms, Magnoliids, Monocots, other

Angiosperms, other Eudicots, Pteridophyta, Superasterids, Superrosids).

http://www.theplantlist.org/
http://www.theplantlist.org/
http://apps.kew.org/wcsp/
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1.3 IUCN Redlist

The IUCN Red List consisted of 19,200 assessments that can be extracted by country

or by taxon ranking plants as LC for Least Concern (28.3%), NT for Near Threatened

(9.1%), VU for Vulnerable (27.0%), EN for Endangered (16.4%), CR for Critically

Endangered (10.8%), EW for Extinct in the Wild (0.2%), EX for Extinct (0.5%), or

DD for Data Deficient (7.7%). These 19,200 rankings correspond to 18,826 accepted

names (all vascular plants): when several evaluations relate to the same plant in the

sense of the accepted name, the “highest” ranking was retained, considering the

following order LC > NT > VU > EN > CR > EW > EX > DD. In the following,

the plants classified as DD are excluded from the training data, yielding a training

sample of size 15,824.

2 Methods

The main idea of the proposed methodology was to predict the red list status of

each plant based on training data (IUCN data) and the available information from

the French herbarium and general information (TPL mainly). A first step to this

approach is to match the different databases which all have taxonomic information

but no common identifier. Then the information available in the Herbarium and TPL

had to be summarized at the accepted name level, that is, each and every synonym

of a plant will have the same red list status prediction. We first considered the binary

problem of predicting whether a species is of least concern (LC) or not. A natural

extension is to predict each of the nine statuses or at least to work with some groupings

of these, isolating the three categories of endangered species that are CR, EN, and

VU in a group.

2.1 Text Mining

The matching of the three main databases described in the previous section was

done manually concerning IUCN and TPL and from an open-source search engine

called Terrier [6] for the Herbarium and TPL. For each row of the databases, a

“document” is created by concatenating the text (in lower case) of the family, genus,

species, and different fields of authors. Then, a similarity score is calculated between

each “Herbarium” document and the list of “TPL” documents that constitute our

reference/dictionary. This allows us to identify for each record of the Herbarium the

closest record in TPL. To ensure a certain efficiency of the procedure, the records of

the herbarium with too many missing or indeterminate values were deleted, leaving

5,589,233 records to be matched to the TPL reference. The quality of this matching

was evaluated by calculating the concordance rate of different fields. Some random

checks were also performed by the botanists to ensure the number of errors resulting

from this approach which remains low.
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2.2 Dealing with Synonyms

When several names (synonymy) coexist for the same plant, one of these synonyms

is retained as the accepted name of the plant that will serve as an identifier (ANID

for “accepted name identifier”). Each TPL line is either an accepted name or a syn-

onym pointing to an accepted name or an “unresolved” (i.e., the name has not been

critically evaluated yet and is thus neither an accepted name nor a synonym). The

1,298,052 lines correspond to 393,585 separate ANIDs, (356,106 ANID excluding

non-vascular plants). In the Herbarium, after matching the names to the TPL refer-

ence, the 5,589,233 records finally correspond to 167,891 ANID, (167,355 exclud-

ing non-vascular plants). For IUCN, the 19,200 lines correspond to 17,098 distinct

ANIDs (15,824 excluding those classified as DD). Non-vascular plants are excluded

from the analysis because they are absent from our learning base (IUCN).

2.3 Construction of the Predictors

Predictors were constructed by summarizing the available information at the accepted

name id level. For example, for each ANID, the variable N_LINE counts the num-

ber of herbarium records related to the ANID, N_CB counts the number of barcodes

linked to the ANID, NB_SYN_SONNERAT counts the number of synonyms linked

to the ANID, NB_SECTOR counts the number of distinct geographical sectors, the

number of occurrences in each sector being stored in the variables ASI for Asia, AME

for America,EUR for Europe,AFT for Tropical and South Africa,AFM for Africa and

Madagascar, OCE for Oceania, etc. N_ISO counts the number of distinct ISO codes.

In TPL, in addition to the year of publication of ANID (YEAR_TPL), the minimum

and maximum year of publication associated with the ANID via the dates of publi-

cation of the synonyms were calculated, as well as the difference between the two

(DELTA_YEAR_TPL). The number of synonyms in TPL was also calculated for each

ANID (NB_SYN_TPL) and used to compute the ratio of the number of synonyms

in the Herbarium to the number of synonyms in TPL (RATIO_SYN). The number

of distinct continents, regions, and areas (N_CONTINENT,N_REGION, N_AREA)

from the checklist data were computed for each ANID including the synonyms or

not (suffix _ANID added when synonyms are not included).

A total of 38 quantitative variables and 31 qualitative variables (SUPER_ORDER,

5 on climate, and 25 on lifeforms) were constructed following this principle. Other

variables were not included in the model but constructed for the presentation of

results such as the number of ANIDs associated with a TDWG code or ISO code,

or the lifeform and climate most frequently associated with a given code. Due to the

predictor construction process, a large number of data is missing, some are missing

from the original database and some are inherently missing due to the fact, for

example, that some ANID do not appear in the French herbarium.



498 J. Tressou et al.

2.4 Random Uniform Forests

Several approaches have been tested. The most classic approach is logistic regres-

sion (binary case) or multinomial regression (to classify into three or more cate-

gories). They are well known and very popular methods among botanists but they

lack robustness when dealing with a high number of covariates or/and factors with

many levels. Our choice then turned to a method based on regression trees [2] of the

CART type that allows a non-parametric modeling of the link between predictors and

response, and the interpretation of the decision rules in a graphical form. However,

the simplest approaches in this family are generally too close to the training data

and present a high risk of overlearning. Methods where individuals and/or variables

are randomly resampled are more robust, hence the use of boosting [4] or random

forests [1]. Missing values can be dealt with using imputation. We have retained

uniform random forests because of their low sensitivity to tuning parameters, the

possibility of including/comparing different methods for the imputation of missing

values (FastImpute, AccurateImpute), and its native handling of categorical variables

using a randomization mechanism at the node level (see [3] for details). Furthermore,

the associated R package includes the calculation of the generalization error (OOB

prediction for “out of bag”), and the graph showing the influence of the different

predictors. It is referred to hereinafter as the RUF algorithm. The principle of this

algorithm is to combine the responses of several regression trees, presenting a very

low correlation that is obtained by randomly choosing the variables to be included

in each tree and by choosing from the uniform distribution the cut-points which

determine the branches of the tree. Each tree is grown on a random subsample of

the training observations; the rest of them is used to evaluate the generalization error

(OOB) similar to what cross-validation allows to do. The missing value imputation

can either be performed within the R package by FastImpute (missing values are

replaced with the median value of the observed) or AccurateImpute (after initializa-

tion with FastImpute, a RUF learning algorithm is run on the observed values of each

variable using the remaining ones as predictors).

3 Main Results

Text mining

The text analysis of plant names allowed to determine that the Herbarium of Paris

covers about 42.7% of the plant species in terms of accepted names, and even 47%

if we exclude non-vascular plants.
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Table 1 OOB prediction errors for different tuning parameters of the RUF model (ntree is the

number of trees to grow, mtry is the number of variables randomly sampled with replacement as

candidates at each split)

Missing

imputation

method

ntree mtry OOB error (%) Time

Fast 100 69 19.8 2.5 min

Accurate 100 69 5.9 6.6 min

Fast 200 69 19.7 5.1 min

Fast 500 69 19.6 12.8 min

Fast 1000 69 19.7 37.6 min

Fast 50 69 20.5 1.3 min

Fast 100 50 20.3 1.9 min

Fast 100 100 19.9 3.2 min

Generalization error

We run the RUF algorithm using the default parameters with the 69 predictors (31

categorical variables). We obtained an OOB prediction error of 19.8% on the training

dataset of size 15,824. This OOB prediction error was compared to the misclassi-

fication error obtained by cross-validation: from the 15,824 training observations,

we built 40 test sets (sampled with replacement) of size 1,000 (or 5,000) and used

the remaining observations to train the model. For each test set, the misclassification

error is calculated: it varies from 17.9 to 22.3% for the 1,000 size, and from 19.1%

to 21.3% for the 5,000 size. The OOB prediction error is therefore a good proxy of

the generalization error.

Tuning the RUF algorithm

Table 1 illustrates how the OOB prediction error varies when modifying the tuning

parameters that are the missing value imputation method, ntree, the number of

trees to grow, mtry, the number of variables randomly sampled with replacement as

candidates at each split, and the nested missing values treatment. Modifying ntree

and mtry does not reduce the OOB error but can substantially increase the running

time. Using accurateImpute rather than fastImpute reduces the OOB error (from 20

to 6%). However, further tests should be performed as the proportion of missing

values is high and the risks of overlearning by accurately imputing missing values

here are also high as a consequence.
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Fig. 1 Variable importance in predicting the binary response LC vs not LC. (see the construction

of the predictors’ section for the meaning of variables names)

Important variables

We chose to keep the simplest model with the default parameters of the RUF algorithm

(Fast, ntree= 100, mtry= 69) and the full set of variables (69 in total). Figure. 1

lists the most influential variables for the prediction.

We observe that the variables that are the most influential areDELTA_YEAR_TPL

and RATIO_SYN as well as the collection year (min or max) or the number of herbar-

ium sheets stored at the herbarium (N_CB). Graphics showing the links between

these most influential variables and the response probability to be LC were drawn

(not shown here). For example, we observed that the larger DELTA_YEAR_TPL,

the larger the probability to be LC, meaning that plants with synonyms having very

different dates of publication in TPL tend to not be threatened. The important con-

clusion is that, as expected, the more specimens of a plant were collected, the greater

the probability to be of least concern, but this relationship is highly nonlinear as some

point rare plants tend to be specifically searched for while more frequent plants may

be ignored. These results will be further detailed and commented on in a publication

aiming at the botanists’ audience.
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Fig. 2 Threat map (main map) with enclosed richness map. The threat is calculated as the square

root of the mean probability to be “not LC” among plants within each polygon; the richness is the

number of plants per polygon in our database

Visualization of the results

For each of the 356,106 vascular plants of TPL, we can use this model to predict

whether the plant is LC or non-LC as well as the probability and associated confidence

interval, based on the distribution of the votes of the different trees of the forest. We

also trained the model with a three class response (LC-NT, CR-EN-VU, EX-EW),

yielding an OOB prediction error of 26.5% with the default tuning parameters (and

a running time of 2.9 min).

Globally, in the binary model, we find a mean probability to be of least concern

(LC) of 29.1%, ranging from 19.4% for Magnoliids to 39.8% for Monocots. In the

three class model, we find a mean probability to be LC/NT of 38.2%, ranging from

28.6% for Magnoliids to 50.1% for Gymnosperms. More detailed results will be

published soon at the family level or at the ANID level.

By aggregating the results at the level of the TDWG codes (based only on the

130,408 ANID for which the information was available), we obtain in Fig. 2 a threat

map (main map), the red zones containing the most endangered species, to be linked

to the map of the number of species per polygon (small map called richness map).
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4 Perspectives

The statistical learning approach presented in this paper is quite innovative in the

field of plant threat assessment. It gives interesting results which could help botanists

choose what plant they should assess in detail next. It is nevertheless only a first

attempt at tackling this difficult question and several research directions merit further

study. The initial matching step needs further validation and due to the way the

predictors are built, we should assess further the role of missing value imputation.

Although descriptive statistics were compared to rule out the representativeness bias

that could exist between the training data set and the full data set, this could definitely

be studied further. Overall, more than the representativeness itself it has to be checked

whether the relationship between the outcome and the covariates is still well estimated

even if the training set is not totally representative of the whole set. In addition,

other machine learning methods (e.g., deep learning) should be tested to confirm

the obtained results. An alternative approach would be a direct modeling of the

phenomenon as a spatiotemporal process, allowing to capture quantities such as the

area covered by the convex hull of the locations of the specimens of a plant or the

evolution of the density of points along time, which are some of the main determinants

of the IUCN classification. This type of approach would eliminate the aggregating

step in the data preparation.
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Monte Carlo Permutation Tests for
Assessing Spatial Dependence at
Different Scales

Craig Wang and Reinhard Furrer

Abstract Spatially dependent residuals arise as a result of missing or misspecified

spatial variables in a model. Such dependence is observed in different areas, includ-

ing environmental, epidemiological, social and economic studies. It is crucial to take

the dependence into modelling consideration to avoid spurious associations between

variables of interest or to avoid wrong inferential conclusions due to underestimated

uncertainties. An insight about the scales at which spatial dependence exist can help

to comprehend the underlying physical process and to select suitable spatial interpo-

lation methods. In this paper, we propose two Monte Carlo permutation tests to (1)

assess the existence of overall spatial dependence and (2) assess spatial dependence

at small scales, respectively. A p-value combination method is used to improve sta-

tistical power of the tests. We conduct a simulation study to reveal the advantages

of our proposed methods in terms of type I error rate and statistical power. The tests

are implemented in an open-source R package variosig.

Keywords Spatial data · Combining p-values · Empirical Brown’s method ·
Variogram · Nonparametric

1 Introduction

Independent and identically distributed residuals are a key assumption in many statis-

tical analysis models. When analyzing spatial, i.e. geolocated data, this assumption

is violated if one fails to account for the existence of spatial dependence in the

modelling components. Such violation can lead to biased parameter estimates and

spurious associations between the dependent variable and its covariates. Therefore, it
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is important to take spatial dependence into modelling consideration when it exists.

Spatially dependent data arise in many research domains, for example in spatial

epidemiology where researchers are interested in the relationship between disease

prevalence and risk factors [9, 23], in economics where it is of interest to identify

regions of housing externalities [15] or in ecological studies where species distri-

bution needs to be mapped [10, 17]. The scales of spatial dependence also play an

important role in understanding the underlying physical and biological processes

[10, 17].

The assessment of spatial dependence and its scales is often done by plotting

and modelling the empirical semi-variogram estimates, based on extracted residuals

after first-stage statistical modelling. If the empirical semi-variogram indicates spa-

tial dependence, then the model needs to be adjusted to account for the remaining

dependence. However, semi-variogram estimates can be sensitive to outliers, choice

of distance binning and sampling design. Several robust variogram estimators [4, 7]

and methods to quantify uncertainty of variogram estimates [3, 5, 12] are available.

One can use a maximum likelihood estimator and its uncertainty estimate to assess

the spatial dependence, or use parametric bootstrap [16] by firstly fitting a variogram

model and simulate new values based on the estimated model to obtain additional var-

iogram estimates hence an uncertainty estimate. However, both approaches require a

pre-defined variogram model and a sufficient sample size. An alternative approach to

assess the existence of spatial dependence is to use a Monte Carlo permutation test.

The permutation test is a nonparametric approach that does not make any assump-

tions on the distribution of residuals. Walker et al. [21] introduced a permutation test

to permute the residual values across spatial locations, in order to simulate under the

null hypothesis of complete spatial randomness. Diblasi and Bowman [5] compared

the performance of a permutation test on their proposed test statistics based on the

assumption of normally distributed residuals. Viladomat et al. [20] used a permu-

tation method in a two-step procedure to test the correlation of two variables when

they both exhibit spatial dependence.

In this paper, we propose two Monte Carlo permutation tests to assess the exis-

tence of overall spatial dependence and spatial dependence specifically at small

scales, respectively. We demonstrate that our proposed methods have more accurate

type I error rate compared to the standard permutation test in [21] and achieve good

statistical power at the same time.

2 Assessing Spatial Dependence at Different Scales

We assume that trend components have been taken out of data, so we work with

residuals. Let Y (s) : s ∈ D ⊆ R2 be a zero-mean second-order stationary spatial

process that is observed at coordinates s, then the semi-variogram is defined as

γ (h) =
1

2
Var (Y (s + h) − Y (s)) , (1)
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where h is the spatial lag, with an estimator as the empirical semi-variogram

γ̂ (h) =
1

2|N (h)|

∑

N (h)

(Y (si ) − Y (s j ))
2, (2)

where N (h) denotes the set of all pairs whose spatial locations are separated by

distance between [h − δ, h + δ]. In practice, different distance binnings h1, . . . , hk

are used to obtain empirical semi-variogram estimates γ̂ (hd) for d = 1, . . . , k.

2.1 Permutation Test for Overall Spatial Dependence

The permutation test for overall spatial dependence has been described in [21]. Under

the null hypothesis of complete spatial randomness, residuals are permuted randomly

over all locations. With such permutation, the spatial dependence at any scale is

destroyed. There are n! number of possible permutations for n locations, hence the

Monte Carlo method with a fixed number of permutations is often used to save

computation time. Pointwise p-values based on semi-variogram estimates can be

computed as

pd =
1

nmc

nmc∑

i=1

I{γ̂i (hd )≤γ̂ (hd )} (3)

for the dth distance binning, where nmc is the number of Monte Carlo iterations and

γ̂i (hd) is the dth semi-variogram estimates from the i th permuted samples. Walker et

al. [21] compared the p-values in Eq. (3) with a type I error rate α, and deemed that the

null hypothesis is rejected if any p-value is below α. This approach implicitly used

the p-value combination method proposed in [19], which takes the overall p-value

ΨT = min(pd) and compares it with α. When the evidence of spatial dependence is

relatively strong, the p-values tend to be small. In such cases, the null hypothesis

will be rejected as long as one of the p-values is smaller than α. However, when

none of the p-values are smaller than α under settings of weak spatial dependence,

the rejection region of using overall p-value ΨT is smaller than using other p-value

combination methods (e.g. [6, 11]). This will lead to smaller statistical power. In

addition, using the minimum p-value can inflate the type I error which leads to

spurious spatial dependence. To mitigate these problems, we propose a modified

permutation test for overall spatial dependence.
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2.2 Modified Permutation Test for Overall Spatial

Dependence

We describe a modified version of the permutation test, which still uses p-values

obtained via Monte Carlo permutations but combines them more appropriately. Under

the null hypothesis of no spatial dependence, p-values are uniformly distributed.

Fisher’s method [6] was proposed to combine p-values based on independent test

statistics into a single χ2-distributed test statistic. If we assume the test statistics

γ (hd) are mutually independent, then the Fisher’s method states

ΨF = −2

k∑

d=1

log(Pd) ∼ χ2
2k . (4)

However, the semi-variogram estimates are not mutually independent since each esti-

mate is based on an overlapping set of residual values from the same data. Failing to

account for positive correlation between test statistics tends to give under-estimated

combined p-value. Conversely, failing to account for negatively correlated test statis-

tics gives an over-estimated combined p-value.

We propose a modified version of the permutation test for overall spatial depen-

dence using the empirical Brown’s method [13], an extension of the Fisher’s method,

for combining dependent p-values from multivariate normal test statistics. Under

the null hypothesis of no spatial dependence, we assume that the residual value at

each location is normally distributed as Y (s) ∼ N (0, σ 2). For locations s1, . . . , sn ,

let Y = (Y (s1), . . . , Y (sn))
�. The dth semi-variogram then follows a scaled χ2-

distribution with rd degrees of freedom, i.e.

γ (hd) =
1

N (h)
Y�AdY ∼ χ2

rd
/N (h), (5)

if the matrix Ad is idempotent and has rank rd [1]. The matrix Ad is the spatial

design matrix of the data at lag d [7]. For non-gridded locations, the matrix is close

to idempotent if the number of semi-variogram estimate is not too small, which

yields Eq. (5) as a good approximation. For moderate to large ranks, χ2
rd

/N (h)
d
−→

N (rd/N (h), 2rd/N (h)2). Therefore, we can approximate the vector of test statistics

[γ (h1), γ (h2), . . . , γ (hk)]
� with a multivariate normal distribution. The Brown’s

method [2] allows us to derive a scaled χ2-distribution to replace χ2
2k from the

Fisher’s method. The overall test statistic stays as ΨF ; however, the distribution

under the null hypothesis becomes a scaled chi-squared distribution cχ2
2 f , with

f =
2k2

2k + s
, c = 1 +

s

2k
, where

s =
∑

i< j

cov(−2 log Pi ,−2 log Pj ). (6)
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The evaluation of the covariance terms in Eq. (6) requires numerical integration, and

can be approximated using either a polynomial regression based on the correlation

between test statistics [8] or the empirical Brown’s method to obtain approximated

samples of Pi and Pj [13]. The latter has been shown to be more robust compared

to polynomial approximation when there is deviation from normality in the test

statistics. In our modified permutation test, we use the empirical Brown’s method to

combine the p-values generated by Monte Carlo permutations into an overall test

statistic and compare it with cχ2
2 f .

2.3 Permutation Test for Spatial Dependence at Small Scales

Sometimes the existence of scale-specific spatial dependence is a more meaningful

hypothesis to test against. We propose a permutation test to permute the residuals in

a way such that only small-scale dependence is destroyed.

Instead of randomly permuting the residuals over all spatial locations, we first

apply a clustering algorithm on the locations to divide them into small clusters. The

clustering algorithm should not result in clusters that have a high variance in size.

Popular algorithms such as k-means or hierarchical clustering can be used, or simply

hex-binning when the locations are evenly distributed over the spatial domain. After

clusters are defined, the residuals are randomly permuted only within each cluster.

The null hypothesis then concerns only the first few semi-variogram estimates at

small scale. The clustering algorithm should be tuned depending on the scale of

interest. Since there are still correlations among the pointwise p-values, we use the

empirical Brown’s method to combine them to get an overall test statistic.

Figure 1 shows semi-variogram estimates based on a simulated set of residuals

in 200 locations in a unit square and an exponential covariance function γ (h) =

0.5 exp(−0.05h) + 0.5. In this case, spatial dependence only exists at small scales.

The 95% confidence band shown in light blue is based on random permutation where

all of the spatial dependence is destroyed. The 95% confidence band in red is based

on cluster permutation where only the small-scale spatial dependence is destroyed.

The latter allows more powerful hypothesis testing focusing only on a small scale,

as we will show in the simulation results.

3 Simulation Study

We conduct a simulation study to compare the permutation tests in terms of type I

error rate and statistical power of detecting spatial dependence. The null hypothesis of

random permutation is that there is no spatial dependence, while the null hypothesis

of cluster permutation is that there is no spatial dependence at small scales.
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Fig. 1 Semi-variogram estimates based on simulated residuals. Ribbons indicate 95% confidence

band of permutation samples. The original and modified permutation test for overall spatial depen-

dence provided p-values of 0.001 and 0.078, respectively, while the cluster permutation method

provided an overall p-value of 0.027

3.1 Simulation Setup

We simulate a Gaussian process on n uniformly distributed locations within a [0, 1] ×

[0, 1] domain. Without loss of generality, we assume the Gaussian process has an

exponential covariance function from the Matérn family, i.e. Cov(Y (si ), Y (s j )) =

σ 2 exp(||si − s j ||/φ) + τ 2, where ||si − s j || denotes the Euclidean distance between

locations si and s j . The magnitude of spatial covariance is represented by σ 2, the

magnitude of noise is τ 2. The spatial range φ controls the covariance decay over

distance, which corresponds to an effective range of 3φ for the exponential covariance

function. Hence, 95% of the spatial correlation disappears at distance 3φ.

We simulate a total of 10 different spatial dependence structures each with

5 different sample sizes, where n = {50, 100, 200, 300, 500}, φ = {0.05, 0.2} and

σ 2/τ 2 = {0/0.5, 0.25/1, 0.5/1, 0.5/0.5, 1/0.5}. Different σ 2/τ 2 represents differ-

ing strengths of spatial dependence. We choose nmc = 1000 and repeat each scenario

1000 times. For the cluster permutation, we use k-means clustering with 5 clusters

when n = 50, and with 10 clusters for all other sample sizes. The null hypothesis

is that the first two semi-variogram estimates are 0, which corresponds to no spatial

dependence at a distance smaller than approximately 0.1. All the simulation results

are obtained in R version 3.5 [14].
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Fig. 2 Simulation results showing type I error rate (first column) and statistical power (other

columns) of three different permutation tests for different scenarios. The horizontal red line in the

first column shows the nominal type I error rate at 5%

3.2 Simulation Results

Figure 2 shows the simulation results. The permutation test for overall spatial depen-

dence (denoted as random+min) using minimum p-value is shown in solid lines;

the modified permutation test for overall spatial dependence with empirical Brown’s

method (denoted as random+ebm) is shown in dotted lines; the permutation test

for spatial dependence at small scales with empirical Brown’s method (denoted as

cluster+ebm) is shown in dashed lines.

The first permutation test has the highest power, since it uses the minimum p-

value across semi-variogram estimates without any adjustment. This makes the null

hypothesis easy to reject. As a result of this, the type I error rate is inflated to

around 37% at a nominal level of 5%. After combining the individual p-values

using empirical Brown’s method, our proposed modified permutation test obtained

close-to-nominal type I error rate. This comes at a cost of losing some statistical

power. When the main interest is to test the existence of spatial dependence at small

scale, the clustering-based permutation test boosts the statistical power compared

to the modified permutation test while maintaining the correct type I error rate. It

can be observed from the first row, where spatial dependence exists at small scales

with φ = 0.05, the power of the clustering-based permutation test is higher than the

modified permutation test.
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4 Discussion and Outlook

This paper presents two new approaches of testing spatial dependence using Monte

Carlo permutation tests. The first is a modified version of the permutation test for over-

all spatial dependence. Instead of using the minimum p-values at different distance

binnings as the overall p-value, we propose a modified version that uses empirical

Brown’s method to combine the p-values into a new test statistic. The second is a

clustering-based permutation test for spatial dependence at small scales. Instead of

the null hypothesis of complete spatial randomness, sometimes it is of interest to

focus only on the existence of spatial dependence at small scales. In such a situa-

tion, our proposed approach can improve the statistical power compared to using an

overall permutation test. Both approaches are implemented in the open-source soft-

ware package variosig [20] available on the Comprehensive R Archive Network

(CRAN, https://cloud.r-project.org/).

Our simulation study shows that the type I error rate is maintained by the modified

permutation test for overall spatial dependence and the clustering-based permutation

test for spatial dependence at small scales. The clustering-based permutation test

has increased statistical power compared to the modified permutation test when the

sample size is not too small. When the interest is spatial dependence at small scales,

the clustering-based permutation test should be used.

In addition to permutation tests, our proposed clustering-based permutation

method can also be used in conjunction with a functional boxplot [18] to obtain

a visual inspection of the spatial dependence at small scales. The permutation tests

can also be applied to large spatial datasets, since it is computationally efficient and

can be tuned using the number of permutations. Finally, the result of our permutation

tests can help to inform about subsequent analysis such as spatial interpolation, scale

decomposition and regression modelling.
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Introduction to Independent
Counterfactuals

Marcin Wolski

Abstract The aim of this contribution is to introduce the idea of independent coun-

terfactuals. The technique allows to construct a counterfactual random variable which

is independent from a set of given covariates, but it follows the same distribution as

the original outcome. The framework is fully nonparametric, and under error exo-

geneity condition the counterfactuals have causal interpretation. On an example of a

stylized linear process, I demonstrate the main mechanisms behind the method. The

finite-sample properties are further tested in a simulation experiment.

Keywords Statistical independence · Probability theory · Random variable ·
Counterfactual

1 Introduction

Estimation of counterfactual designs has become a focal point for policymakers and

practitioners in the fields of policy evaluation and impact assessment. Counterfactual

distributions are an important landmark in the methodology, as they allow to measure

not only average effects but, under some regularity conditions, they also capture the

relationship for any point across the distribution of interest [1].

In the context of a counterfactual analysis, one is interested in approximating the

dynamics of an outcome variable Y under a new, possibly unobserved, scenario.

Typically, the construction of such a scenario assumes a shift of a set of covariates

from X to, say, X �. For instance, a policymaker may want to investigate the effects

of a tariff change on local food prices where the relevant covariates (taxes, fees or

other policy instruments) increase or decrease by some amount.

The vast majority of counterfactual scenarios are user-designed, suffering from

an over-simplification and potential model misspecification biases. Nevertheless, the

recent advances in counterfactual distributions aim at providing possibly assumption-

free inference techniques. [1] offers a complete toolbox to study counterfactual dis-
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tributions through a prism of regression methods. [5] extends the approach to a fully

nonparametric setup and demonstrates that nonparametric estimation has superior

Mean Squared Error (MSE) performance in the case of (functional) model misspeci-

fication. [6] further extends the nonparametric approach to cover partial distributional

effects.

Capitalizing on [8], I propose an alternative identification strategy which defines

the counterfactual scenario as independent from a given set of covariates. Using an

example from above, a policymaker may be interested in approximating the behaviour

of food prices under no policy intervention, exemplifying the overall distortions

created by relevant taxes or fees. In this simple case, one would consider independent

counterfactuals as dropping the entire policy instrument rather than estimating a

counterfactual distribution of food prices at a zero tax rate. Setting a covariate to zero

does not have to uniquely identify the independence criterion. If the taxation becomes

effective only above some minimum threshold, there may be multiple choices for

the counterfactual designs. Similarly, the true relation between the outcome and the

covariates may be actually undefined, or not directly interpretable, for zero-valued

arguments. In such cases, independent counterfactuals offer an attractive alternative

to a standard toolkit.

The framework requires to take a somehow broader perspective on the interpre-

tation of counterfactuals. More specifically, it asks what would be the realization

of an outcome variable for which there would be no evidence against the indepen-

dence condition given the realizations of the covariates. As such, the distribution

of the counterfactual coincides with the distribution of the observed variable, span-

ning over the same information set, but the dependence link versus the covariates is

removed.

The framework has desired asymptotic properties, allowing to apply standard

statistical inference techniques. It also advertises the use of nonparametric methods,

utilizing a smooth version of kernel density/distribution estimates. This, in fact, turns

out to generate substantial efficiency gains over the step-wise estimators [8].

The purpose of this contribution is to offer the basic concepts behind indepen-

dent counterfactual random variables. The extended description of the framework,

covering also an idea of conditionally independent counterfactuals, together with

an extensive numerical exercise and empirical study, is offered by [8]. Section 2

introduces the methodology, which is further illustrated numerically and compared

against the standard linear framework in Sect. 3. A brief numerical study is described

in Sect. 4. Finally, Sect. 5 concludes.

2 Framework

Assume two random variables Y ∈ R and X ∈ R
dX , where dX ≥ 1, with a joint

Cumulative Distribution Function (CDF) denoted by FY,X (y, x), which is r -times

differentiable and strictly monotonic.
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Filtering out the effects between X and Y means constructing a counterfactual

random variable Y � =D Y that is independent of X. (Clearly, in case, Y and X are

independent, Y � would be simply equal to Y .)

In terms of CDFs, one can write the independence condition as

FY �|X (y|x) = FY (y) (1)

for all y and x .

The random variable Y � can be obtained directly from Eq. (1) by assuming that,

for any point along the X marginal, there is an increasing functional φ, such that

Y � = φ(Y, X), which is invertible in Y for all x in the support of X , for which

Eq. (1) holds. The realizations of the counterfactual random variable Y � are given by

y� = φ(y, x). [8] shows that Eq. (1) is satisfied by

Y � = F−1
Y (FY |X (Y |x)), (2)

where F−1
Y (q) = inf{y : FY (y) ≥ q} is the quantile function of Y , under the assump-

tion that FY is invertible around the argument. The invertability assumption is satisfied

by the monotonicity of FY (y), which also guarantees that the relation is uniquely

identified for any y and x .1

The relation between Eqs. (2) and (1) follows from

FY �|X (y|x) = P(φ(Y, X) ≤ y|X = x) = P(Y ≤ φ−1(y, X)|X = x) = FY |X (φ−1(y, x)|x),

which makes φ−1(y, x) = F−1
Y |X (FY (y)|x), or equivalently φ(y, x)=F−1

Y (FY |X
(y|x)), under the assumptions outlined above.

For the moment, the setup is designed for real-valued Y . In principle, the frame-

work may be extended to multivariate outcome variables, under additional regularity

conditions on the corresponding CDF and conditional CDF. This topic is, however,

beyond the scope of this manuscript.

2.1 Estimation

A major challenge in estimating the function in Eq. (2) results from its nested struc-

ture. [8] provides a set of necessary conditions under which the kernel-based esti-

mator of Eq. (2) is asymptotically tight. In fact, the crucial condition is the Donsker

property of the quantile and conditional CDF estimators, respectively.

1One can define the independence condition in Eq. (1) in terms of PDFs. However, even though

Eq. (2) would still satisfy such a condition, it would not be a unique solution to the PDF condition

for some processes.
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In the setup below I take that Y is univariate and X is potentially multivariate with

dX ≥ 1. The kernel CDF and conditional CDF estimators are given by2

F̂Y (y) = n−1

n
∑

i=1

K̄HY
0
(y − Yi ) , (3)

and

F̂Y |X (y|x) =
∑n

i=1 K̄H
Y |X
0

(y − Yi )KHY |X (x − X i )
∑n

i=1 KHY |X (x − X i )
, (4)

where K̄H0
(w) =

∫ w

−∞ K (H
−1/2
0 u)du is an integrated kernel function. Matrices H

contain smoothing parameters, dubbed as bandwidths, with subscript 0 marking

the CDF marginal and superscripts determining the corresponding distribution of

interest. To simplify the presentation, I take HY
0 = h2

0Y , H
Y |X
0 = h2

0Y X and HY |X =
diag(h2

1Y X , ..., h2
dX Y X ). Expression

KH(w) = (det H)−1/2 K (H−1/2
w) (5)

is the scaled kernel with ‘det’ denoting the determinant and K being a generic

multiplicative dW -variate kernel function

K (w1, ..., wdW
) =

dW
∏

j=1

k(w j ), (6)

satisfying for each marginal j

∫

k(w j )dw j = 1,

∫

wc
j k(w j )dw j = 0 for c = 1, ..., r − 1,

∫

wc
j k(w j )dw j = κr < ∞ for c = r,

(7)

and k(w) being symmetric and r -times differentiable [4].

The convergence properties of estimators in Eqs. (3) and (4) can be tuned by the

rates of convergence of the smoothing parameters, i.e. h0Y and h jY X for j = 0, ..., dX .

Following [3], to guarantee that Eqs. (3) and (4) are uniformly tight, the sequences

of bandwidths h ≡ h(n) need to satisfy

2The quantiles of Y distribution can be directly extracted from the CDF estimates by solving for

the argument. Although asymptotic properties of the quantiles and CDF correspond, the extraction

of the quantiles through the CDF performs better in applied settings.
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lim
n→∞

n1/2hr
0Y = 0, lim

n→∞
nα1 h0Y = ∞,

lim
n→∞

n1/2hr
0Y X = 0, lim

n→∞
nα2 h0Y X = ∞,

(8)

for some α1, α2 > 0 and

lim
n→∞

n1/2 max
j∈1,...,dX

(h j XY )r = 0, lim
n→∞

log(n)

n1/2�
dX

j=1h j XY

= 0. (9)

If the support of Y is a compact set on R, the functionals in Eqs. (3) and (4) are

Donsker, and under an additional assumption that F−1
Y is Hadamard differentiable,

the fitted values of y� ≡ ŷ� are asymptotically tight [7].

If one represents the sequence of bandwidth as h = Cn−β , for some constant C >

0, Eq. (8) implies that β > 1/(2r) for h0Y and h0Y X , and from Eq. (9) it follows that

β ∈ (1/(2r), 1/(2dX )) for h jY X where j = 1, ..., dX . These conditions are satisfied

for the basic setup with the second-order kernels and dX = 1. In fact, if one extends

dimensionality of X to dX > 1, condition Eq. (9) requires a higher order kernel.

A plug-in estimator of Eq. (2) becomes

ŷ� = F̂−1
Y (F̂Y |X (y|x)), (10)

for fixed realizations (Y, X) = (y, x). By rearranging the terms and substituting the

kernel estimators from Eqs. (3) and (4), one may obtain ŷ� by solving

n−1

n
∑

i=1

K̄HY
0

(

ŷ� − Yi

)

=
∑n

i=1 K̄H
Y |X
0

(y − Yi )KHY |X (x − X i )
∑n

i=1 KHY |X (x − X i )
. (11)

[8] shows that under the data assumptions outlined above and if F̂Y and F̂Y |X are

Donsker then √
n

(

ŷ� − y�) d−→ N (0, σ 2), (12)

where σ 2 is given by

σ 2 = FY |X (y|x)(1 − FY |X (y|x))

fY

(

F−1
Y (FY |X (y|x))

) +
∫

K (u)2du/ fX (x)

�
dX

j=1h j XY

FY |X (y|x)(1 − FY |X (y|x))

fY

(

F−1
Y (FY |X (y|x))

) .

(13)

The first term in σ 2 is the variance of the standard quantile estimator evaluated at the

known quantity FY |X (y|x). The second term results from the fact that the quantity

FY |X (y|x) is, in fact, estimated.
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3 Interpretation

Removing the dependence between X and Y cannot be directly interpreted as a causal

relation from X to Y . Reverse causality effects are also present in the joint distribu-

tion of (Y, X), and so are in the conditional distribution of Y |X = x . Nevertheless,

the effects of X onto Y have causal interpretation under the so-called exogeneity

assumption, or selection on observables. The assumption requires that there is no

dependence between the covariates and the unobserved error component, X ⊥⊥ ε.

To introduce the concept formally, imagine that ε describes a (possibly discrete)

policy option assigned between different groups of individuals. With the aim to

study the causal effects of a policy e on the outcome Y , denote the set of potential

outcomes by (Y ∗
e : ε ∼ Fε(e)). The identification problems arise as Y is observed

only conditional on ε = e. If the error term e is not randomly assigned (for instance, a

policymaker discriminates between groups what policy e they receive), the observed

Y conditional on ε = e may not be equal to the true variable Y ∗
e . On the other

hand, if e is assigned randomly, variables Y ∗
e and Y |ε = e coincide. The exogeneity

assumption may be extended by a set of conditioning covariates X . Under conditional

exogeneity, the independent counterfactuals have also causal interpretation such that

if conditional on X , the error component e is randomly assigned to Y , variables Y ∗
e |X

and Y |X, ε = e agree. Since the observed conditional random variable has causal

interpretation, so has the independent counterfactual for which the X conditional

effects have been integrated out (for more discussion see [1]).

Exogeneity assumption allows also to relate independent counterfactuals to the

distribution of the error term. Consider a general nonseparable model

Y = m(X, ε), (14)

where m is the general functional model and ε is an unobserved continuous error

term. For identification purposes, let us assume that m(x, .) is strictly increasing in e

and continuous for all x ∈ supp(X), so that its inverse exists and is strictly increasing

and continuous.

Under exogeneity, one finds that after removing the effects of X onto Y , the

counterfactual random variable Y � is identified at the Fε(ε) quantiles of Y . Note that

Y � = F−1
Y (P(m(X, ε) ≤ Y |X = x))

= F−1
Y (P(ε ≤ m−1(X, Y )|X = x))

= F−1
Y (Fε|X (ε|x))

= F−1
Y (Fε(ε)).

(15)

By the inverse transformation method, one can also readily observe that the distri-

bution of Y � coincides with the distribution of Y , i.e. FY �(y) = FY (y) for all y. This

is not surprising as a sample from a null hypothesis of independence can be often
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constructed by permutation methods [2].3 Permutations are, however, not uniquely

defined, as for a sample {Yi , X i }n
i=1, for any fixed point X = X i any outcome Yi

may be assigned in the permutation process. Therefore, although permutations are a

powerful tool in hypothesis testing, they cannot be applied as an identification strat-

egy. Independent counterfactuals offer an alternative in this respect, for which the

counterfactual realization is identified at the quantiles determined by the realization

of the error term. It follows that

FY �(y�) = FY (y�) = FY |X (y|x) = FY (y)δ(y, x), (16)

where I substituted δ(y, x) ≡ FY,X (y, x)/(FY (y)FX (x)).

With endogenous error terms, the counterfactual Y � is still identified by the data

but the dependence filtering is contaminated by the relation between X and ε. In

such a case, the independent counterfactual removes the causal relation from X onto

Y , but also from Y onto X , such that the random variables Y � and F−1
Y (Fε(ε)) do

not necessarily agree. To illustrate it analytically, let us consider a simple linear

framework.

3.1 Exogenous Linear Model

Consider a stylized process with the first-moment dependence between X and Y

x = eX ,

y = ax +
√

1 − a2eY ,
(17)

where a ∈ (0, 1) is a tuning parameter. Error terms εX and εY follow standard nor-

mal distributions and are mutually independent. (Note that the setup ensures that

the marginal of Y follows also a standard normal distribution.) The closed form

expression for transformation in Eq. (2) can be derived as

F−1
Y (q) = �−1(q) q ∈ (0, 1),

FY |X (y|x) = �

(

y − ax√
1 − a2

)

,
(18)

where � is the standard normal CDF. Putting the expressions together, for the linear

mean-dependent process in Eq. (17) I arrive at

3For an i.i.d sample from a dependent process, one may permute the data along each marginal to

construct a sample from an independent process. In this context, permutation preserves the marginal

distributions but breaks the dependence structure between covariates.
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y� ≡ φ(y, x) = F−1
Y (FY |X (y|x))

= �−1

(

�

(

y − ax√
1 − a2

))

= y − ax√
1 − a2

= eY .
(19)

Equation (19) confirms Eq. (15). In the proposed stylized setup, the distribution of

Y � corresponds to the distribution of errors so that the independent counterfactuals

are asymptotically equal to the residuals from the standard Ordinary Least Squares

(OLS) regression applied to the process from Eq. (17). In more general nonseparable

models, the distribution of the error component would be scaled, by the inverse

transformation method, to match the scale of the dependent variable.

3.2 Endogenous Linear Model

Consider now a similar process as in Eq. (17) but with inverse causality structure

y = eY ,

x = ay +
√

1 − a2eX ,
(20)

with similar stationarity conditions as before. Clearly, the exogeneity condition is

violated as X |εY = eY ∼ N (aeY , 1 − a2). Having pointed this out, the identification

in independent counterfactuals removes the entire dependence structure between the

variables, which is exactly the same as in Eq. (17), such that

y� = y − ax√
1 − a2

=
√

1 − a2eY − aeX . (21)

In this extreme example, because of reverse causality, the counterfactual variable Y �

does not correspond to the potential outcome variable, which in this case is given

by εY . Nevertheless, the independence condition between Y � and X is satisfied as

both variables are transformations of independent random variables and, since the

distributions of Y � and Y coincide, FY �|X (y|x) = FY �(y) = FY (y).

4 Illustration

To present the setup graphically, I choose the linear model given in Eq. (17), with

additive and exogenous errors. For transparency, I fix the X marginal at x = 1, and I

set the dependence parameter at a = 0.75, such that Y |X = 1 ∼ N (0.75, 1 − 0.752).

The unconditional distribution of Y and the distribution of ε follow standard normal

distributions.
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Table 1 Average MSE and number of fails of fitted independent counterfactuals from Eq. (17).

The numbers are aggregated over 1000 runs

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

MSE(Ŷ �) 0.116 0.08 0.056 0.035 0.024 0.017

Fails 0.001 0.001 0.001 0.001 0.002 0.002

The strategy is as follows. I randomly draw samples from the joint distribution

(Y, X) and from the conditional distribution Y |X = 1 for different sample lengths

n. Each realization from the conditional distribution sample is then transformed

by Eq. (10), estimated over the joint distribution. The bandwidth parameters are

set by the rule of thumb at h0Y = 1.59σ̂Y n−1/3, h0XY = 1.59σ̂Y n−1/3 and h1XY =
1.06σ̂X n−1/3, where σ̂Y and σ̂X correspond to standard deviation of samples {Yi } and

{X i }, respectively. Quantiles of Y are evaluated over the support [−3.7, 3.7] to meet

the compactness condition. If the value falls beyond that interval, I record it as a fail,

and set Ŷ �
i = Yi .

The results are presented in two ways. Firstly, for different sample sizes, I plot the

histograms of random realizations of independent counterfactuals against the true

densities of Y and Y |X = 1. The outcomes are depicted in Fig. 1.

Secondly, I calculate the MSE of the fitted independent counterfactuals as

MSE(φ(Y, 1)) = n−1

n
∑

i=1

(

F̂−1
Y (F̂−i

Y |X (Yi |X = 1)) − F−1
Y (FY |X (Yi |X = 1))

)2

,

(22)

where the superscript −i stands for the leave-one-out kernel aggregate. The numbers

are aggregated over 1000 runs of process in Eq. (17). The MSE results, together with

the average estimation fails, are given in Table 1.

The simulation results suggest that as the sample size increases the independent

counterfactuals converge to the true unconditional realizations of ε. The number of

estimation fails appears to be contained at negligible levels, and clearly would be

even lower for wider quantile support.

5 Conclusions

The purpose of this study is to familiarize the Reader with a novel dependence filtering

framework. Under mild regularity conditions, and without assuming any specific

parametric structure, the method allows to construct a counterfactual random variable

which is independent from the effects of given covariates. Under error exogeneity

assumption such a counterfactual has causal interpretation, and moreover, one can

directly relate the counterfactuals with the distribution of the error component through

the probability integral transform.
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Fig. 1 Independent counterfactuals. The plots show the true densities of random variables Y and

Y |X = 1 under process from Eq. (17), together with a histogram of a counterfactual sample {Y �
i }

of an independent counterfactual random variable Y �. Vertical lines correspond to the expectations

of Y and Y |X = 1

In settings where a no-dependence scenario can be expressed by specific values

of the covariates, for instance, X = 0, independent counterfactuals can be related

to the literature on counterfactual distributions [1, 5, 6]. Whenever X = 0 is not

directly interpretable as independence, the proposed framework offers an attractive

alternative to a standard toolkit.

I demonstrate how independent counterfactuals perform in a simple linear model

with exogenous and endogenous error terms. In a simulation study, I also show the

finite-sample consistency of the method.
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The framework offers an easy extension to conditionally independent counterfac-

tuals, along the lines proposed by [8]. It can be also applied to support identification

in nonseparable models, statistical tests of independence between the variables or

tests of error exogeneity.
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The Potential for Nonparametric Joint
Latent Class Modeling of Longitudinal
and Time-to-Event Data

Ningshan Zhang and Jeffrey S. Simonoff

Abstract Joint latent class modeling (JLCM) of longitudinal and time-to-event data

is a parametric approach of particular interest in clinical studies. JLCM has the flexi-

bility to uncover complex data-dependent latent classes, but it suffers high computa-

tional cost, and it does not use time-varying covariates in modeling time-to-event and

latent class membership. In this work, we explore in more detail both the strengths

and weaknesses of JLCM. We then discuss the sort of nonparametric joint modeling

approach that could address some of JLCM’s weaknesses. In particular, a tree-based

approach is fast to fit, and can use any type of covariates in modeling both the time-

to-event and the latent class membership, thus serving as an alternative method for

JLCM with great potential.

Keywords Biomarker · Recursive partitioning · Survival data

1 Introduction

Clinical studies often collect three types of data on each patient: the time to the

event of interest (possibly censored), the longitudinal measurements on a continuous

response (for example, some sort of biomarker viewed as clinically important), and

an additional set of covariates (possibly time-varying) about the patient. The clinical

studies then focus on analyzing the relationship between the time-to-event and the

longitudinal responses, using the additional covariates. A common approach is the

shared random effects model, which jointly models the time-to-event by a survival

model while modeling the longitudinal responses using a linear mixed-effects model,

with the two models sharing random effects, with both the survival and the linear

mixed-effects models potentially making use of the additional covariates [16].
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A different interesting line of work in this area assumes that the heterogeneous

population consists of several homogeneous “latent classes,” within which subjects

follow the same time-to-event and longitudinal relationships, and uses parametric

approaches to model the latent class membership together with time-to-event and

longitudinal outcomes. This method is called the joint latent class model (JLCM) [12,

14, 15]. The idea of latent class membership in JLCM is of particular interest in

clinical studies, since the latent class can be used to describe disease progression [7,

12, 14]. It is well known that many diseases have different stages; examples include

dementia, AIDS, cancer, and chronic obstructive pulmonary disease (COPD) [6].

From a clinical point of view, it is important to identify those stages, since treatment

could change with those different stages [8]. Currently the clinical definitions of

stages of a disease consists of using diagnostic findings (such as biomarkers) to

produce clusters of patients. However, it is possible that by jointly studying biomarker

trajectories and survival experiences, one can find data-dependent latent classes that

uncover new, meaningful stages.

Like most frequentist parametric approaches, JLCM uses maximum likelihood

estimation to estimate the parameters, which comes with high computational cost.

In addition, JLCM enforces certain restrictions in its model, which could limit its

performance. In this work, we first give a brief introduction to JLCM in Sect. 2, and

review its strengths and weaknesses in Sects. 3 to 5. In particular, we use simulations

to examine JLCM’s modeling flexibility and running time. In Sect. 6 we discuss why

a nonparametric approach could address some of those weaknesses, and conclude

that such a nonparametric approach is an alternative method for joint latent class

modeling with great potential.

2 The JLCM Setup

In this section, we give a brief description of JLCM. Assume there are N subjects in

the sample. For each subject i , we observe ni repeated measurements of a longitudinal

outcome at times ti = (ti1, . . . , tini
)�. We denote the vector of longitudinal outcomes

by Yi =
�
yi ti1 , . . . , yi tini

��
. In addition, for each subject i we observe a vector of p

covariates at each measurement time t ∈ ti : Xi t = (xi t1, . . . , xi tp). These covariates

can be either time-invariant or time-varying. We will introduce four subsets of Xi t for

modeling the three components of JLCM: Xf
i t ( Xr

i t ) for the fixed (random) effects in

modeling longitudinal outcomes, Xs
i t for modeling the (survival) time-to-event, and

X
g

i t for modeling the latent class membership. The four subsets can either be identical,

or share common covariates, or share no covariates at all. In addition, JLCM enforces

the restriction that Xs and Xg do not contain any time-varying covariates. This is a

major drawback of JLCM, which we will discuss in more detail in Sect. 5. Finally,

each subject i is associated with a time-to-event tuple (Ti , δi ), where Ti is the time

of the event, and δi is the censoring indicator with δi = 0 if subject i is censored at

Ti , and δi = 1 otherwise.
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Time-to-event (Ti, δi)

Latent Class (gi)

Longitudinal Outcomes (Yi)

Fig. 1 Causal graph describing how JCLM assumes that time-to-event and longitudinal outcomes

are independent conditioning on the latent class membership

For each subject i , we assume the latent class membership gi ∈ {1, . . . , G} for

subject i is determined by the set of covariates X
g

i (since X
g

i t must be time-invariant,

we drop the time indicator t), through the following probabilistic model:

πig = Pr(gi = g|X
g

i ) =
exp{ξ0g + X

g

i ξ1g}�G
l=1 exp{ξ0l + X

g

i ξ1l}
,

where ξ0g, ξ1g are class-specific intercept and slope parameters for class g =

1, · · · , G.

Figure 1 uses a causal graph to describe the key assumption made by JLCM:

a subject’s time-to-event (Ti , δi ) and longitudinal outcomes (Yi ) are independent

conditioning on his or her latent class membership (gi ). Without controlling the

latent class membership gi , time-to-event and longitudinal outcomes may appear

to be correlated because each is related to the latent class, but given gi the two

are independent of each other, and therefore the longitudinal outcomes have no

prognostic value for time-to-event given the latent class. The modeling of (Ti , δi )

and Yi are therefore separated conditioning on gi .

The longitudinal outcomes are described by the following linear mixed-effects

model [11]:

yi t |gi =g = Xf
i t ug + Xr

i t vig + εi t ,

vig = vi |gi =g ∼ N (µg, Bg), εi t ∼ N (0, σ 2).

Here we assume the longitudinal outcomes depend on two subsets of Xi t , where Xf
i t is

the set of covariates associated with a class-specific fixed effect vector ug , and Xr
i t is

the set of covariates associated with a class and subject-specific random effect vector

vig . The random effect vector vig is independent across latent classes and subjects,

and normally distributed with mean µg and variance-covariance matrix Bg . Finally,

the errors varepsiloni t are assumed to be independent and normally distributed with

mean 0 and variance σ 2, and independent of all of the random effects as well. Let
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f (Yi |gi = g) denote the likelihood of longitudinal outcomes Yi given that subject

i belongs to latent class g.

The time-to-event Ti is considered to follow the proportional hazards model:

hi (t |gi = g) = h0g(t; ζg)e
Xs

i ηg ,

where ζg parameterizes the class-specific baseline hazard h0g , and ηg is associated

with the set of covariates Xs
i (we drop the time indicator t from Xs

i t since it must be

time-invariant). Let Si (t |gi = g) denote the survival probability at time t if subject

i belongs to latent class g.

Let θG =
�
ξ0g, ξ1g, ug, vig, µg, Bg, σ, ζg, ηg : g = 1, · · · , G, i = 1, · · · , N

�
be

the entire vector of parameters of JLCM. These parameters are estimated together

via maximizing the log-likelihood function

L(θG) =

N�

i=1

log

⎛
¿

G�

g=1

πig f (Yi |gi = g; θG)hi (Ti |gi = g; θG)δi Si (Ti |gi = g; θG)

À
⎠ .

(1)

The log-likelihood function above uses the assumption that conditioning on the latent

class (gi ), longitudinal outcomes (Yi ) and time-to-event (Ti , δi ) are independent.

3 Latent Class Membership of JLCM

JLCM uses a multinomial logistic regression to model latent classes. To study the

modeling flexibility of multinomial logistic regression, we simulate various scenar-

ios of true latent class membership, and then use multinomial logistic regression to

predict the membership. Simulation results indicate that multinomial logistic regres-

sion is, in fact, quite flexible in modeling latent class membership, and thus JLCM

has the potential of uncovering complex clustering of the population. We give more

details below.

We consider four underlying structures of latent class membership: partition by

a tree, linear separation, nonlinear separation, and partition by an asymmetric tree,

which are demonstrated in Fig. 2. The class membership is determined by the val-

ues of X1, X2. For each latent class membership structure, we generate samples of

various sizes (100, 1000, 10000), where X1, X2 are drawn i.i.d. from uniform [0, 1].

In addition, three superfluous covariates X3, X4, X5 are drawn i.i.d. from uniform

[0, 1] as well. We fit multinomial logistic regression to predict the true latent class

membership using X1, · · · , X5. For observation i , we denote by gi and �gi the true

and predicted class membership, respectively. We use the proportion of incorrect

predictions to measure the prediction error: 1
N

�N
i=1 1gi �=�gi

.

The above procedure is repeated 20 times, and we summarize the out of sample

prediction error in Table 1. Multinomial logistic regression gives very accurate pre-

dictions when the underlying partitions are trees or linear separations, and the error
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(c) Nonlinear

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1

X
2 g=1

g=2

g=3

g=4

(d) Asymmetric

Fig. 2 Four structures of latent class membership based on X1 and X2: a Tree partition, b Linear

partition, c Nonlinear partition, d Asymmetric tree partition

Table 1 The out of sample prediction error (standard deviation in parentheses) of multinomial

logistic model predicting latent class membership

Sample size Tree Linear Nonlinear Asymmetric

100 0.0810 (0.0404) 0.0780 (0.0311) 0.0885 (0.0344) 0.1240 (0.0472)

1000 0.0060 (0.0052) 0.0082 (0.0033) 0.0403 (0.0069) 0.0188 (0.0065)

10000 0.0000 (0.0000) 0.0012 (0.0004) 0.0374 (0.0021) 0.0002 (0.0003)

decreases as the sample size increases. When the underlying partition is nonlinear,

multinomial logistic regression can still give reasonably good approximations, but it

is not working as effectively as it does for other partition structures.

Among the four structures, only the linear partition (Fig. 2b) is consistent with the

multinomial logistic regression model, while the tree partitions (Figs. 2a and d) are

consistent with the model only in limits, as certain slope parameters in the regres-

sion model approach 0 or ∞. The fact that the multinomial logistic regression can

accurately predict membership under the tree partitions demonstrates its flexibility

and robustness in modeling unknown latent class membership.

4 Running Time of JLCM

The log-likelihood function of JCLM (1) is a complicated and non-convex function

of all the parameters θG , and it therefore can take a significant amount of time to find

an optimal solution. In this section, we run simulations to examine JCLM’s running

time, in particular the relationship between the running time and sample size, number

of covariates, and number of latent classes.

We use the Jointlcmm function contained in the R package lcmm to fit JLCM.

Since the objective function contains many local optima, careful initialization is

required to ensure a meaningful maximum likelihood estimate [15]. We adopt the

initialization techniques used in [15], which involves first fitting a JLCM model with
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Fig. 3 JLCM running time (in seconds) on log10 scale versus number of subjects. The sub-panels

correspond to three different numbers of covariates: 5, 10, 20. Each sub-panel contains six curves

corresponding to number of latent classes G = 1, 2, 3, 4, 5, 6

only one class, and then using the one class result to initialize fitting JLCM with

more classes. Thus, the initialization time is the same as fitting a JLCM with G = 1.

The data generation scheme in our simulation matches the JLCM model setup

described in Sect. 2. In particular, we use one set of covariates to generate latent

classes (Xg), and use another set of covariates for the remaining purposes (Xf =

Xr = Xs). We consider scenarios in which there are 5, 10, and 20 covariates, and in

which Xg contains 3, 6, and 12 covariates, respectively. We also consider various num-

bers of subjects: N = {125, 250, 500, 1000}, and each subject has a random number

of observations, with two observations per subject on average. For each simulated

dataset, we fit JLCM with various numbers of latent classes: G = 1, 2, 3, 4, 5, 6.

We use a proportional hazards model with class-specific Weibull baselines to sim-

ulate survival times, and use a linear mixed-effects model to simulate longitudinal

outcomes.

We report the running time of JLCM under various simulation settings in Fig. 3.

The simulations are performed on high performance computing nodes with 3.0 GHz

CPU and 62 GB memory. The log10 running time increases linearly as a function of

sample size, showing that the actual running time grows exponentially fast. Similarly,

we observe that the running time grows exponentially fast as a function of number

of covariates and number of assumed latent classes.

The study of running time shows that fitting JLCM can be computationally expen-

sive. In practice, one would fit JLCM with various numbers of classes and choose the

best number via a model selection criterion such as BIC. In our simulation, it takes

JLCM about 3 h to fit all the values of G ∈ {1, 2, 3, 4, 5, 6} on a sample of 1000 sub-

jects with 10 covariates. For an even larger dataset, such as one based on electronic

health records (which can number in the millions), JLCM can be prohibitively slow

and impractical to use.
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5 Limitation to Time-Invariant Covariates

In addition to its unscalable running time, the software implementation of JLCM

has another limitation in that the modeling of both time-to-event and latent class

membership are restricted to the use of time-invariant covariates. In this section, we

discuss why it is helpful to relax both restrictions to allow the use of time-varying

covariates.

Time-varying covariates are especially helpful in modeling time-to-event when

treatment or important covariates change during the study; for instance, the patient

receives a heart transplant [4], the longitudinal CD4 counts change during the study

of AIDS [17], or the antibiotics exposure changes during an antibiotic resistance

study [13]. Research shows that using time-varying covariates can uncover short-term

associations between time-to-event and covariates [5, 10], and ignoring the time-

varying nature of the covariates will lead to time-dependent bias [9, 13]. There exist

several well-studied methods for dealing with time-varying covariates in survival

analysis, and the most commonly used approach is the extended Cox model [3],

which naturally extends the Cox model to use time-varying covariates. An alternative

approach is landmarking [1], in which the sample of subjects is examined at an

arbitrary future landmark time s, and the values of variables at time s are used as

time-invariant covariates.

The other restriction of JLCM is that the latent class membership model only uses

time-invariant covariates, and as a result the latent class membership of a subject is

assumed to be fixed throughout the time. However, the stage of a disease of a patient

is very likely to change during the course of clinical study; for instance, the disease

would move from its early stages to its peak, and then move to its resolution. When the

goal of joint modeling is to uncover meaningful clustering of the population that leads

to definitions of disease stages, it is necessary to allow time-varying covariates in the

latent class membership model, so that the model reflects the real-world situation.

6 Nonparametric Approach for Joint Modeling

JLCM is designed to give parametric descriptions of subjects’ tendency of belonging

to each latent class, and therefore, JLCM is a suitable model when the true latent class

is indeed a random outcome with unknown probabilities for each class. However,

fitting parametric models is in general computationally expensive.

In the situation where each observation deterministically belongs to a single latent

class, in other words, where the population admits a deterministic (but potentially

changing over time) partition, then a nonparametric approach would be more appli-

cable. A tree-based approach [2] is the natural choice for this task, since it is very

efficient to fit a tree, and the terminal nodes of a tree naturally represent a partition

of the population. Observe that the deterministic partition is a special case of the

probabilistic tendency model, where the probabilities of any latent class is either 0
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or 1. Therefore, when the latent class membership is not entirely deterministic but

the probabilities for each class are close to 0 or 1, a tree-based approach still serves

as a good alternative to JLCM.

A tree-based approach for joint latent class modeling also addresses the time-

invariant limitation of JLCM. In particular, with a carefully designed splitting cri-

terion, one can easily use time-varying covariates to construct the tree. In addition,

once a tree is constructed, it is up to the user to decide which type of survival models

and which covariates to use within each terminal node.

In view of this, we have commenced investigation of a joint latent class tree (JLCT)

model. The JLCT model, like JLCM, is based on the key assumption that condition-

ing on the latent class, time-to-event and longitudinal responses are independent.

The JLCT model therefore looks for a tree-based partitioning such that within each

estimated latent class defined by a terminal node, the time-to-event and longitudinal

responses display a lack of association. Further details can be found in [18].
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To Rank or to Permute When Comparing
an Ordinal Outcome Between Two
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Abstract The classical parametric analysis of covariance (ANCOVA) is frequently

used when comparing an ordinal outcome variable between two groups, while adjust-

ing for a continuous covariate. However, the normality assumption might be crucial

and assuming an underlying additive model might be questionable. Therefore, in the

present manuscript, we consider the outcome as truly ordinal and dichotomize the

covariate by a median split, in order to transform the testing problem to a nonpara-

metric factorial setting. We propose using either a permutation-based Anderson–

Darling type approach in conjunction with the nonparametric combination method

or the pseudo-rank version of a nonparametric ANOVA-type test. The results of our

extensive simulation study show that both methods maintain the type I error level

well, but that the ANOVA-type approach is superior in terms of power for location-

shift alternatives. We also discuss some further aspects, which should be taken into

account when deciding for the one or the other method. The application of both

approaches is illustrated by the analysis of real-life data from a randomized clinical

trial with stroke patients.
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1 Introduction

In many clinical studies, the main research interest is focused on the comparison of

two groups with respect to a certain outcome variable of interest. Examples include

the classical parallel-group design (e.g., verum vs. placebo) in randomized clinical

trials, but also observational studies, which are aimed at studying the association

between a particular factor (e.g., two different pathologies) and a health-related

variable (e.g., a laboratory measurement or a quality of life score). Frequently, the

two-sample t-test is used for analyzing data from such studies. If the comparison

is adjusted for one or several covariates, the analysis of covariance (ANCOVA) is

regarded as the method of choice. A comprehensive overview about the classical

ANCOVA and some of its alternatives is given by [11]. However, most methods

require that the outcome is continuous, or at least that the effects are additive. There-

fore, applying these approaches in settings where the outcome is ordinal might be

inappropriate. However, ordinal outcomes are quite frequently encountered in applied

research: One example, among others, is the modified Rankin Scale (mRS), which

is used to quantify the functional outcome of stroke patients by assigning a rating on

a scale from 0 (no symptoms) to 6 (dead) [9, 21, 27]. Although some evidence sug-

gests that converting the ordinal factor levels to scores and subsequently applying the

standard parametric ANCOVA does not affect the performance of the test substan-

tially [25], there are two crucial issues with this approach. Firstly, with respect to the

normality assumption, a highly discrete variable might be particularly challenging to

deal with. Secondly, careful thoughts concerning whether or not the resulting effect

measure (e.g., the difference of the adjusted means) can be interpreted in a sensible

way are required. Therefore, analyzing the outcome as a truly ordinal variable might

be an attractive option. Again, however, classical approaches such as proportional

odds models (for an introduction, see [1]) require assumptions which might be too

restrictive.

Nonparametric rank-based methods may serve as a remedy in order to overcome

the aforementioned difficulties. In particular, approaches where the so-called relative

effect is used as the effect measure are also applicable to ordinal outcomes. One

well-known example is the Wilcoxon-Mann-Whitney test [14, 28], which is the

classical nonparametric counterpart of the two-sample t-test. Several extensions to

general factorial designs have been proposed (e.g., [2, 4, 6, 8]). However, only a few

approaches allow for adjustment for a continuous covariate [3, 26].

Alternatively, using permutation methods might be an appealing option, mainly

due to their finite-sample properties (e.g., exactness) under relatively mild assump-

tions. For an overview of the underlying theory, we refer, for example, to [18]. Like

with the rank-based methods that have been mentioned previously, there is a broad

variety of permutation approaches, which cover various practically relevant settings

(see, for example, [16, 19]). Again, however, the present setting, that is, the compari-

son of an the comparison of an ordinal outcome between two groups while adjusting

for a continuous covariate, seems to be a somewhat difficult problem. The reason is

that many permutation tests (e.g., the so-called synchronized permutation approach,
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see [10, 22]), implicitly assume an additive model, and hence, are only applicable

if the outcome variable is metric. However, using the so-called using the so-called

“nonparametric combination method” might be a promising alternative to a classical

parametric approach: For the purpose of the present manuscript, the comparison of

two samples with respect to an ordered categorical outcome, which was studied in

[17], is of interest. Nevertheless, like with other approaches, continuous covariates

cannot be directly accounted for. One straightforward solution might be to cate-

gorize the covariate, because an additional adjustment for a categorical covariate

could be done by another application of the nonparametric combination method,

then. Indeed, in applied research, a continuous covariate is often transformed into a

binary variable by, for example, applying a median split. Alternatively, there might

be some well-established cutoffs available, or subject-matter expertise could help

to define appropriate categories. Therefore, it might be of interest especially for

biostatisticians to have some empirical guidance at hand concerning which of the

two approaches— permutation tests and the nonparametric combination method, or

rank-based tests—should be used in practice.

The manuscript is organized as follows: In Sect. 2, we introduce the pseudo-rank

version of the nonparametric ANOVA-type test for general factorial designs [4] and

the Anderson–Darling type permutation test [17], as well as some fundamental pieces

of the respective theory. Section 3 contains the results of an extensive simulation

study, covering balanced and unbalanced settings, as well as different distributional

assumptions. The application of the two methods under investigation is illustrated

by the analysis of a real-life data example in Sect. 4. Finally, Sect. 5, contains some

concluding remarks and a brief synopsis of the respective advantages and drawbacks.

This hopefully helps applied researches to choose an appropriate statistical analysis

approach. All tables and figures are provided in the Online Supplement.

2 The Nonparametric Combination Method and a

Pseudo-rank-based Approach

Let (X11, Y11), . . . , (X1n1
, Y1n1

)
i id
∼ F1 and (X21, Y21), . . . , (X2n2

, Y2n2
)

i id
∼ F2 denote

two independent bivariate samples. Thereby, the first and second components are the

continuous covariate and the ordinal outcome, respectively. Let RY := {C1 ≤ . . . ≤

CK } denote the support of the outcome Y , which consists of the ordered categories

C1, . . . , CK . For example, in medical research, but also in psychology and other

fields, the outcome is frequently assessed by a rating on some scale (e.g., modified

Rankin Scale, Glasgow Coma Scale, Visual Analog Scale, or Functional Gait Assess-

ment, just to name a few). We have the impression that quite frequently, such a sort

of outcome is analyzed by using classical methods for metric variables (e.g., t-test,

ANOVA). This might indeed be appropriate in case that the interpretation as a metric

variable is sensible from the respective subject matter point of view. Nevertheless, we

would like to emphasize that this issue requires careful case-by-case considerations.
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Moreover, especially in case of a highly discrete variable (i.e., the cardinality of the

support of Y is quite “small”), assuming a normal distribution might not be justified.

Regarding the covariate, the continuous random variables X11, . . . , X2n2
are cate-

gorized by applying a measurable function g : RX → {1, 2}, where RX denotes the

range of the covariate. The choice of g is either guided by subject-matter expertise or

relies on statistical considerations (e.g., median split). Hence, in the sequel, we shall

partition the outcomes Y11, . . . , Y2n2
according to the transformed covariate values

Z11 := g(X11), . . . , Z2n2
:= g(X2n2

). Doing so, and after some re-indexing, we get

Y111, . . . , Y11n11

i id
∼ F1|Z=1, Y121, . . . , Y12n12

i id
∼ F1|Z=2,

Y211, . . . , Y21n21

i id
∼ F2|Z=1, Y221, . . . , Y22n22

i id
∼ F2|Z=2.

It should be noted that actually, ni j is a random variable, i, j ∈ {1, 2}, since the

covariate and its categorized version are random quantities. Nevertheless, for ease

of presentation, we consider the cell sizes as fixed in the sequel, which means that

everything has to be understood conditionally on a fixed set of covariate values

z11, . . . , z2n2
. This does not restrict the generality of the two approaches proposed

in Sects. 2.1 and 2.2, because the formal procedures work completely analogously

in case of random covariates. However, caution is needed concerning the simulation

setup. Therefore, in all settings discussed in Sect. 3, the covariate will be considered

as random again.

For the sake of notational simplicity, let Fi j := Fi |Z= j , i, j ∈ {1, 2}. Recall that

our main aim is to compare the outcome Y between the two treatment groups (i.e.,

i = 1 and i = 2). In the following section, we propose two different approaches.

2.1 The Nonparametric Combination Method, Applied to an

Anderson–Darling type Permutation Test

The basic idea underlying the nonparametric combination (NPC) method is quite

simple: The hypothesis is split up into a finite set of partial hypotheses, and subse-

quently, a hypothesis test is constructed for each of these partial testing problems.

In a second step, the resulting test statistics or p values are combined by using an

appropriate combination function (e.g., Fisher’s combination function). It follows

immediately from the underlying theory that the basic properties of the separate

tests (e.g., consistency, exactness) are carried over to the combined test, then. For an

overview, we refer to [18, 19].

We consider the hypothesis H0,N PC : {F11 = F21} ∩ {F12 = F22} vs. H1,N PC :

{F11 "= F21} ∪ {F12 "= F22} and construct a corresponding test by a suitable non-

parametric combination of two partial permutation statistics T1 and T2. Let n. j =

n1 j + n2 j denote the number of observations with transformed covariate value j ,
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j ∈ {1, 2}. For even total sample size N , dichotomizing the covariate by applying

a median split yields n.1 = n.2 = N/2. For a permutation s ∈ Sn. j
, we define the

corresponding permutation of the pooled observations Y j = {Y1, . . . , Yn. j
} within

covariate subgroup Z = j by Y∗
j := {Ys(1), . . . , Ys(n. j )}, j ∈ {1, 2}. Now, we use an

Anderson–Darling type test statistic for each of the two partial tests, that is

T (Y∗
j ) :=

K−1
∑

k=1

(F̂∗
1 j (Ck) − F̂∗

2 j (Ck))
2(F̂. j (Ck)(1 − F̂. j (Ck)))

−1, j ∈ {1, 2}. (1)

Thereby, F̂∗
i j and F̂. j denote the permutation version of the empirical CDF within

treatment group i , given Z = j , and the marginal empirical CDF, given Z = j ,

respectively. This Anderson–Darling type permutation test has already been con-

sidered for the two-group comparison setting without adjustment for covariates by

[17]. The main idea in the present setting is to just apply that test to the observations

within each of the two covariate subgroups separately. For the subsequent nonpara-

metric combination of T (Y∗
1) and T (Y∗

2), there are several choices available (see, for

example, [18]). We would like to mention two of them: On the one hand, the direct

combination can be used, that is,

TAD,dir (Y
∗
1, Y∗

2) := T (Y∗
1) + T (Y∗

2),

and subsequently, the permutation p value is calculated by

pAD,dir =
1

n p

n p
∑

m=1

1{TAD,dir (Y
∗(m)
1 , Y

∗(m)
2 ) ≥ TAD,dir (Y1, Y2)}, (2)

where n p denotes the number of Monte Carlo replications (e.g., n p = 2000), and

Y
∗(m)
j denotes the m-th permuted dataset, j ∈ {1, 2}. Alternatively, one may calculate

the respective p values first and combine them by using the Fisher combination

function, then. Hence, if we let p j := 1
n p

∑n p

m=1 1{T (Y
∗(m)
j ) ≥ T (Y j )}, j ∈ {1, 2},

the Fisher combination p value is obtained by

pAD,F = 1 − H(−2log(p1 p2)), (3)

where H denotes the CDF of a central Chi-square distribution with 4 degrees of

freedom.

Observe that each summand in (1), might be regarded as a separate test statistic,

which essentially compares the cumulative frequencies up to category Ck between

the two treatment groups, conditionally on Z = j , k ∈ {1, 2, . . . , K − 1}, j ∈ {1, 2}.

Hence, the two Anderson–Darling type test statistics are again direct combinations

of partial tests, thus representing another application of the NPC method.
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2.2 A Nonparametric (Pseudo-)Rank-based Method for

Factorial Designs

As an alternative to the permutation approach, the nonparametric rank-based ANOVA-

type test proposed by [4], might be used. Analogously to the parametric linear

model, the hypothesis corresponding to the main effect of the binary treatment factor

is stated as H0 : F11 − F21 + F12 − F22 = 0 vs. H1 : F11 − F21 + F12 − F22 "= 0.

Let Ri jl denote the rank of Yi jl (i.e., the outcome of subject l in treatment group

i with dichotomized covariate value Z = j , for l ∈ {1, 2, . . . , ni j }, i, j ∈ {1, 2})

within all N =
∑

i, j ni j observations. Let R̄i j. = n−1
i j

∑ni j

l=1 Ri jl and S2
i j = (ni j −

1)−1
∑ni j

l=1(Ri jl − R̄i j.)
2 denote the empirical mean and variance of the ranks,

i, j ∈ {1, 2}. We consider the test statistic

TA(Y) =
(R̄11. − R̄21. + R̄12. − R̄22.)

2

S2
0

, (4)

where S2
0 :=

∑2
i=1

∑2
j=1 S2

i j/ni j . Under H0, this test statistic has, asymptotically, a

central Chi-square distribution with 1 degree of freedom. For small samples, how-

ever, the distribution of TA can be approximated by a F-distribution with numerator

degrees of freedom equal to 1 and denominator degrees of freedom

f̂0 =
S4

0
∑

i, j (ni j − 1)−1(S2
i j/ni j )2

.

We would like to add some important remarks. Firstly, in order to allow for

establishing a unified framework regardless of whether ties are present or not, the

normalized CDF F := (F+ + F−)/2 should be used. Thereby, F+ and F− denote

the right and left continuous versions of the CDF, respectively. Accordingly, the so-

called mid-ranks are used in (4). For the sake of notational simplicity, however, we

have not explicitly used the normalized CDF (mid-ranks) in the formal considera-

tions above. Secondly, it has been noticed recently that using ranks might lead to

paradoxical results [5]. Replacing the ranks by the so-called pseudo-ranks has been

shown to serve as a remedy [6]. Operationally, one just uses pseudo-ranks instead

of ranks when calculating TA(Y). This corresponds to replacing the weighted mean

distribution function W := N−1
∑2

i=1

∑2
j=1 ni j Fi j by the unweighted mean CDF

U := 1/4
∑2

i=1

∑2
j=1 Fi j , as proposed by [8]. For the reasons discussed in [5], we

recommend using pseudo-ranks and denote the corresponding test statistic by T
ψ

A (Y)

in the sequel. Finally, since the numerator degrees of freedom of the distribution of

TA are equal to 1, one could also consider the linear (pseudo-)rank statistic

√

T
ψ

A (Y),

which has a large-sample standard normal distribution. For small samples, the same

approximation idea as outlined above may be used (see [7] for details). In particular,

using the linear rank statistic would allow for testing one-sided hypotheses. Likewise,
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it is straightforward to construct the one-sided counterparts of the Anderson–Darling

type permutation tests that have been discussed in the previous section [17].

3 Simulations

The simulation scenarios are based on the data from the SIESTA (Sedation vs Intuba-

tion for Endovascular Stroke Treatment) trial, where conscious sedation and general

anesthesia were compared with respect to early neurological improvement in patients

undergoing stroke thrombectomy [23, 24]. We considered the functional outcome,

which was assessed at the end of the study (i.e., 3 months after the intervention)

by using the modified Rankin Scale (mRS). Since this was one of the secondary

outcomes in the original study, no covariate-adjusted analysis had been conducted.

Nevertheless, for the present purpose, we compared the mRS at 3 months between

the two treatment groups, while adjusting for “door-to-arterial-puncture time” as a

covariate. The respective group-specific empirical means and variances for both vari-

ables were extracted from Table 3 in [24], and subsequently averaged over the two

treatment groups, yielding µỸ = 3.6 (σ 2

Ỹ
= 3.425) for the continuous variable Ỹ ,

which was assumed to underlie the outcome, and µX = 70.6 (σ 2
X = 627.25) for the

covariate X (time), respectively. Observe that for the sake of simplicity, we assumed

that the distribution of the covariate was the same in both groups. This assumption is

met in (well-designed) randomized clinical trials (note that we refer to the equality of

the distributions at the population level, so, empirical imbalance especially in small

samples is not an issue). With these specifications, and assuming a correlation of 0.5,

the realizations of Ỹ and X were simulated from a bivariate normal distribution. Note

that for power simulations, the means of the outcome in the first and in the second

group were set to µỸ and µỸ − δ, where δ ∈ {0.5, 1.0, 1.5}, respectively. Secondly,

independent and identically distributed error terms ξ̃i j , i ∈ {1, 2}, j ∈ {1, 2, . . . , ni },

were drawn from one out of several different distributions (standard normal, standard

lognormal, exp(1), t (3), Cauchy and Pareto(1)) and standardized by

εi j =
ξ̃i j − E[ξ̃i j ]

(Var[ξ̃i j ])1/2
,

for i ∈ {1, 2}, j ∈ {1, 2, . . . , ni } (of course, provided that the second moments were

finite). Then, we calculated the sum of the realizations of the variable underlying the

outcome and the errors, that is, Ỹi j + εi j , and rounded the resulting values. Finally,

in order to obtain outcomes Yi j within the range of the mRS (0 − 6), we set negative

values to 0 and values ≥7 to 6, respectively. Since doing so yielded relatively large

proportions of 0 and 6 values, we reduced the variance σ 2

Ỹ
of the underlying continu-

ous variable by 1 (it should be noted that this might resemble the real-life data more

closely, because adding the error terms increases the variance by 1). So, summing

up, we at first, generated samples from a bivariate normal distribution, subsequently
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added the error terms to the first coordinates (i.e., the outcomes) and manipulated

the resulting values accordingly, in order to eventually obtain integer values between

0 and 6. Furthermore, due to construction, shift effects were considered for power

simulations.

Our main aim was to examine the empirical type I error rates and power of the

direct and the Fisher combination of the Anderson–Darling type permutation tests—

the corresponding formulas for calculating the p values are given in (2) and (3)—as

well as the performance of the pseudo-rank-based nonparametric ANOVA-type test

T
ψ

A (Y). The latter method is implemented in the rankFD package [13], in R [20].

The code that was used for the simulations and the real-life data analysis (Sect. 4), is

available upon request. As a competitor for benchmarking the results, we also tested

for a significant group effect by employing a probabilistic index model (PIM; see

[26]). It should be noted that analogously to the aforementioned setup, the median

split version of the covariate (i.e., door-to-arterial-puncture time) was included, in

order to ensure comparability of the results. Furthermore, preliminary simulations

revealed that including the covariate as a metric variable in the PIM might lead to

considerable power loss (results not shown). For carrying out the PIM simulations,

we used the pim package [15]. For all scenarios and tests, we considered three

balanced and three unbalanced group size configurations, namely n1 = (20, 20),

n2 = (40, 40), n3 = (80, 80), n4 = (20, 40), n5 = (20, 60), and n6 = (20, 80). For

each combination of the simulation parameters, we conducted nsim = 10, 000 sim-

ulations. The number of permutations within each run was set to n p = 2, 000. The

significance level was specified as α = 5%.

Both NPC- and rank-based tests maintained the target type I error level very well

(Table S1). However, the PIM test tended to be slightly liberal, especially in small

samples, as well as in case of severe group size imbalance. With respect to power,

the ANOVA-type approach showed either a similar or a better performance com-

pared to the two permutation-based tests, which were almost empirically equivalent.

Depending on the scenario, the difference in power was up to about 13% points. The

power of the PIM approach was lower compared to our proposed methods, especially

for moderate to large effect sizes. The results were very similar across most error

distributions, as obvious from Figs. S1 and S2, except for some power loss in case

of errors from a Cauchy or a Pareto(1) distribution (Fig. S3). For the latter settings,

the simulation study also revealed that there might be some computational prob-

lems when conducting the permutation-based tests for small balanced group sizes,

and when using the ANOVA-type test with substantially unbalanced groups, due to

degenerated empirical variances in one of the subgroups. However, this problem was

only present in very few simulation runs (permutation-based tests: 13 runs for type

I error simulations, 7 and 1 runs for δ = 0.5 and δ = 1.0, respectively; ATS: 1 run

for each δ ∈ {0, 0.5, 1.0, 1.5}). The PIM test was not affected by these problems, yet

being inferior to the other approaches in terms of power again. However, for unbal-

anced Pareto(1) scenarios, the PIM approach outperformed the NPC-based tests.

Apart from that, for unbalanced settings, interestingly, the empirical power values

of all tests under consideration did not change substantially as the group allocation
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ratios were becoming more extreme, despite the fact the total sample sizes were thus

increased (Fig. S2).

Moreover, in order to explore whether the aforementioned findings may depend on

the particular choices of the test statistics and the alternatives, respectively, we con-

ducted a number of further sensitivity analyses. Firstly, all simulations were repeated

using the Fisher combination method, but with the Anderson–Darling type test being

replaced by the Wilcoxon-Mann-Whitney (WMW) test [14, 28]. To this end, we used

the corresponding function rank.two.samples in the rankFD package [12].

The underlying rationale for using the WMW test was to examine whether or not

the aforementioned power discrepancies between the rank- and permutation-based

approaches may be at least partially explained by the different structures of the respec-

tive test statistics and effect measures. Overall, the results were very similar to the

Anderson–Darling-based combination tests, with small gains in power in some sce-

narios (Table S1, Figs. S1–S3). However, it should be mentioned that computational

problems were present in up to 5–10

Secondly, in order to compare the methods under consideration for other alterna-

tives than location shifts, we modified the data generation process in the following

way: Both group means were set to µỸ = 3.6, but the variances of the outcome

in group 1 and 2 were specified as σ 2
1 = σ 2

Ỹ
− 1 = 2.425 and σ2 = dσ 2

1 , where

d ∈ {4, 8, 12, 16, 20}. All other simulation parameters that have been described at

the beginning of this section were left unchanged. For ease of presentation, only

sample size scenarios n1 and n5 with normal and lognormal errors were considered.

The results are summarized in Fig. S4. The Anderson–Darling combination tests

clearly outperformed the PIM approach, which, in turn, was more powerful than

the rank-based test. Hence, the latter method should not be used in settings where

scale alternatives are of interest. Observe that the Fisher combination of WMW-tests

would have been a suboptimal choice either, because like the ATS approach, the

WMW test is based on the so-called relative effect and, therefore, lacks power for

scale alternatives.

Finally, we conducted a small simulation study that was aimed at investigating

the performance of our proposed approaches in comparison to a classical parametric

proportional odds (PO) model (see, for example, [1]). Analogously to the notations in

the previous sections, let Y , Z , and G denote the outcome (i.e., 3-months mRS), the

covariate (i.e., door-to-arterial-puncture time), and a dummy variable representing

the group indicator (i.e., G = i − 1 for i = 1, 2), respectively. We considered the

PO model

logi t (P(Y ≤ Ck)) = αk + β1G + β2 Z + β3(G Z),

where Ck denotes the k-th mRS category, so, Ck = k − 1, k ∈ {1, 2, . . . , 6}. Observe

that P(Y ≤ 6) = 1, so, this probability does not have to be modeled. Moreover,

(G Z) denotes the covariate representing the group-covariate interaction. Data were

simulated from this model as follows:
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1. Simulate covariates Z i j

i id
∼ N (µX , σ 2

X ), where µX and σ 2
X denote the (group-

averaged) empirical mean and variance of “door-to-arterial-puncture time”,

respectively (as defined at the beginning of Sect. 3).

2. Calculate P(Yi j ≤ Ck) = logi t−1(αk + β1G i j + β2 Z i j + β3(G Z)i j ), where the

parameters were specified as follows: β1 ∈ {0, 2, 4}, β2 = −0.1, β3 = 0, and

αk = k + 1, k ∈ {1, . . . , 6}.

3. Finally, the realization of Yi j was sampled from the corresponding probability

distribution {P(Yi j = C1), . . . , P(Yi j = C7)}.

It should be noted that the probability distribution in step 3 depends on the covariate,

which nevertheless has not been stated explicitly for the sake of notational simplic-

ity. The resulting empirical type I error and power rates of the PO-based test for

H0 : β1 = 0 and the aforementioned competitors are reported in Table S2. Note that

for the PIM and PO tests, the original covariate instead of its categorized coun-

terpart was included in the model, because using the latter led to computational

errors. Obviously, the permutation approaches, as well as the rank-based ANOVA-

type test outperformed their competitors in terms of power, while maintaining the

prespecified 5% level. It has to be mentioned, however, that computational problems

due to degenerated variances were present in a considerable number of simulation

runs (2–5%).

4 Real-Life Data Example

In order to illustrate the different approaches under consideration, we analyzed the

data from the SIESTA trial that has been mentioned in Sect. 3. The outcome vari-

able was the modified Rankin Scale (mRS) at 3 months post intervention, and the

age at baseline was considered as the (continuous) covariate. Each patient had been

randomly assigned to either conscious sedation or general anesthesia. Firstly, the

direct combination method yielded the combined Anderson–Darling type statistic

TAD,dir = 0.53126, with the corresponding permutation p value pAD,dir = 0.556.

The Fisher combination p value was very similar (pAD,Fi = 0.570). However, the

pseudo-rank-based ANOVA-type approach yielded a somewhat smaller p value

(pAT S = 0.374, T
ψ

A = 0.79539, f̂0 = 139.69). Summing up, the results might point

to some gain in power when using the ANOVA-type statistic. For the sake of com-

pleteness, we also conducted a test for the group indicator in a PIM model with the

dichotomized covariate age, as well as the covariate-group interaction as additional

explanatory variables. The resulting p value was 0.5513, which is also in line with

the findings from our simulation study (see Sect. 3).
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5 Discussion

In the present manuscript, we have considered two different nonparametric

approaches for comparing an ordinal outcome variable between two groups while

adjusting for a continuous covariate. By contrast to existing methods, we did not

incorporate the covariate directly, but dichotomized it by applying a median split.

In applied research, covariates are frequently categorized, where the choice of the

categories is either guided by subject matter expertise or based on certain empirical

quantiles. Hence, our proposed method can be regarded as a representative of what

is frequently done in practice. The simulation results showed that type I error rates

were neither inflated nor deflated. With respect to power, the pseudo-rank-based

ANOVA-type statistic outperformed the permutation-based approaches for location-

shift alternatives. However, since multiple aspects should be considered when decid-

ing for or against a particular statistical method, we would like to briefly discuss

further advantages and drawbacks now.

Firstly, in addition to the gain in power at least for location-shift alternatives,

another argument in favor of the ANOVA-type approach is that it provides a corre-

sponding effect measure, the so-called relative effect, which can be estimated from

the data. In fact, the ANOVA-type statistic is based on these estimated relative effects

[4]. By contrast, the permutation-based methods are designed for testing hypotheses

rather than for the purpose of estimation. Of course, one could calculate the esti-

mated relative effects in addition to the permutation p value, yet with the drawback

of introducing some discrepancy between what is tested and what is considered as

the effect measure.

Secondly, on the other hand, although the relative effects are straightforward to

interpret, the ANOVA-type approach might be somewhat more difficult to apply in

so far, as there are several options for specifying the hypotheses, the test statistics

and the ranks that are used. Although the rankFD package is a very convenient

implementation in R, it might be easier to understand what is going on exactly when

using the permutation-based approaches. Apart from that, we have to acknowledge

that our empirical results, like any simulation study, only provide evidence for some

specific settings. Although the range of sample size scenarios and distributional

assumptions is quite broad, we would like to emphasize that we only considered

shift effects. But, we have demonstrated in Sect. 3, that, for example, considering

scale alternatives might yield very different results in terms of power. Hence, we

recommend conducting further simulations that appropriately reflect the particular

setting of interest, including various types of alternatives, before actually applying the

one or the other method. Moreover, especially in case of very small sample sizes, we

conjecture that the permutation-based approaches might be superior to the pseudo-

rank-based method, because the former is finitely exact. Apart from that, despite

the somewhat suboptimal performance of the PIM-based tests in our simulations, it

should be emphasized that the PIM model clearly warrants further examination in

future research on analysis methods for ordinal outcomes, due to its attractiveness in

terms of the broad range of potential applications. Likewise, it might be worthwhile
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to consider employing a proportional odds model at least in particular settings where

the underlying assumptions are tenable, due to the straightforward interpretation of

the results.

Finally, we would like to emphasize that the approaches under consideration can

be easily applied to settings with multiple (categorical or categorized) covariates,

too. Moreover, we would like to briefly sketch how the permutation methods that

have been proposed in the present manuscript can be extended to the case of mul-

tivariate outcomes. For example, in the SIESTA trial (see Sect. 4), it would be of

interest to compare the mRS, as well as the National Institute of Health Stroke Scale

(NIHSS), between the two treatment groups. Note that standard parametric tests

(e.g., Wilks’ Lambda) rely, in particular, on the assumption of multivariate normal-

ity, which might be restrictive and is even more difficult to justify than univariate

normality. Therefore, using the nonparametric combination (NPC) method could be

an appealing alternative. However, as the number of subgroups and/or dimensions

increases, the permutation-based method is getting more and more demanding with

respect to computational resources. In addition to that, a thorough empirical exami-

nation of the properties of the resulting tests has to be done in future work, in order

to ensure that this approach can be safely used in applied research.
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