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Symmetrizing k-nn and Mutual k-nn
Smoothers

P.-A. Cornillon, A. Gribinski, N. Hengartner, T. Kerdreux,

and E. Matzner-Løber

Abstract In light of Cohen (Ann Math Stat 37:458–463, 1966) and Rao (Ann

Stat 4:1023–1037, 1976), who provide necessary and sufficient conditions for

admissibility of linear smoothers, one realizes that many of the well-known

linear nonparametric regression smoothers are inadmissible because either the

smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies

outside the unit interval [0, 1]. The question answered in this chapter is how can

an inadmissible smoother transformed into an admissible one? Specifically, this

contribution investigates the spectrum of various matrix symmetrization schemes for

k-nearest neighbor-type smoothers. This is not an easy task, as the spectrum of many

traditional symmetrization schemes fails to lie in the unit interval. The contribution

of this study is to present a symmetrization scheme for smoothing matrices that

make the associated estimator admissible. For k-nearest neighbor smoothers, the

result of the transformation has a natural interpretation in terms of graph theory.
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1 Introduction

1.1 The Statistical Background

Consider the nonparametric regression model

Yi = m(Xi)+ ·i (1)

that relates the response Yi ∈ R to predictors Xi ∈ Rd through the regression

function m(x) = E(Y |X = x). The disturbances ·i are mean zero and con-

stant finite variance Ã 2 random variables that are independent of the explanatory

variables X1, . . . , Xn. The vector of predicted values �Y = (�Y1, . . . ,�Yn)ᵀ for

m = (m(X1), . . . ,m(Xn))
ᵀ is called a regression smoother, or simply a smoother

as these are less variable than the original observations. Linear smoothers, which are

linear in the response variable, have been extensively studied in the literature. See

[9, 10] for recent expositions on common linear smoothers. These smoothers can be

written as:

�m = S»Y, (2)

where S» is the n × n smoothing matrix. That matrix depends on the observed

response variables, and typically on a tuning parameter, which we will denote by

», that governs the trade-off between the variance and the bias of the smoother. For

simplicity reason from now on, we will write the smoothing matrix S.

Classical smoothers include smoothing splines where S is symmetric and positive

define where » is the coefficient associated to the penalty term, kernel smoothers

which could be written as S = D−1
K where » is the bandwidth. Usually, K is

symmetric but not always positive definite (see, for example, [6]) and D is diagonal

with Dii equal to the row sum of K so S is row-stochastic. A similar representation

holds for k-nearest neighbor (k-nn)-type smoother such as the classical k-nn and the

mutual k-nn.

1.2 k-nn and Mutual k-nn Smoothers

K-nn smoother [11] estimates the regression function m(Xi) by averaging the

responses Yj associated to the k nearest observations Xj to Xi .

Let (X1, Y1), . . . , (Xn, Yn) be independent identically distributed copies of

(X, Y ) ∈ Rd × R. Given x ∈ Rd , and a distance dist () (the choice of the distance

is beyond the scope of this chapter), reorder the data in a manner such that the

distances di(x) = dist (X(1,i)(x), x) are nondecreasing and denote the reordering

as:

(X(1,n)(x), Y(1,n)(x)), · · · , (X(n,n)(x), Y(n,n)(x)).
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The k-nearest neighbor (k-nn) smoother is defined as:

ÆmKnn
n (x) = 1

k

k�

i=1

Y(i,n)(x). (3)

Conditional on the observed covariates X1, . . . , Xn, the k-nn smoother is linear

in vector of responses Y = (Y1, . . . , Yn). Let us denote Nk(Xi) the set of the k

nearest neighbors of Xi in the design points {X1, . . . , Xn}, the (i, j)th entry of the

smoothing matrix Sknn is

(Sknn)ij =
�

1
k

if Xj ∈ Nk(Xi)

0 otherwise
.

We refer to [1, 7, 15] for in-depth treatment of consistency and statistical properties

of k-nn smoothers in the context of regression or classification.

It is instructive to interpret the matrix A = kSknn as the adjacency matrix

of a directed graph on {X1, . . . , Xn}, in which a directed edge from Xi to Xj

exists if Xj belongs to Nk(Xi). While
�n

j=1 Aij = k for all i,
�n

i=1 Aij

depends on the configuration of the covariates X1, . . . , Xn and counts the number

of k-nn neighborhoods that Xj belongs too. When that number is larger than k,

we say that Xj is a hub. While generally speaking, there are always hubs, the

emergence of highly connected hub in higher dimensions is associated to the curse

of dimensionality (see [24]).

Mutual k-nearest neighbors (mk-nn) have been introduced by Gowda and

Krishna [13] in an attempt to build a symmetric adjacency matrix. Xi and Xj are

mutual k-nearest neighbors if both Xj belongs to the k-nn of Xi and Xi belongs to

the k-nn of Xj . The adjacency matrix Am, defined as:

Am
ij = min(Aij , Aji) = AijAji .

The number of mutual k-nn of each covariate Xi , Ki =
�n

j=1 A
m
ij is a random

variable bounded from above by k. In principle, it is possible that Ki = 0. Guyader

and Hengartner [14] provide conditions on the distribution of the covariates to

ensure that as the sample size n and the size of the neighborhood k both tend to

infinity, we have that Ki = O(k). Define the set Mk(x) = {Xi ∈ Nk(x), x ∈
Nk(Xi)} the closed form is

ÆmmKnn
n (x) = 1

|Mk(x)|
�

i,Xi∈Mk(x)

Yi . (4)

The (i, j)th entry of the smoothing matrix Smknn is

(Smknn)ij =
�

1
Ki

if Xj ∈ Mk(Xi) and Ki > 0

0 otherwise
,
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or simply Smknn = D−1Am where D is a diagonal matrix with entry Ki so that the

smoother is row-stochastic. The matrix Am is symmetric and could be viewed as an

adjacency matrix of an undirected graph.

Many papers were devoted to k-nearest neighbor graph see, for example, [8, 21]

among others or mutual k-nearest neighbor graph see, for example, [2].

Going back to Eq. (2), we could mostly write the smoothing matrix as a matrix

product S = D−1A. Generally, the smoothing matrix is row-stochastic (so the eigen

values are in [−1, 1]) but not always symmetric and as pointed out by Cohen [5] this

leads to non-admissible estimator.

1.3 Admissibility

In this contribution, we are concerned with the mean-squared error admissibility of

k-nn smoothers within the class of all linear smoothers. Recall that a linear smoother

�m is inadmissible in mean-square error if there exists another linear smoother m�

such that

E[�m� −m�2] ≤ E[��m −m�2],

for all regression functions m, and with strict inequality for at least one regression

function m. That is, there exists a better smoother in terms of mean-squared

error, and thus being inadmissible is an undesirable property. If a smoother is not

inadmissible, it is admissible. Unless stated otherwise in this work, we will overload

the term admissible to mean admissible in the class of all linear smoothers.

Rao [25] showed that the following two conditions were sufficient and necessary

for a linear smoother to be admissible within the class of all linear smoothers:

(1) The smoothing matrix S» is symmetric and (2) the spectrum of S» lies in

the unit interval [0, 1]. We note that Rao’s was preceded by Cohen [5] who

showed that admissible linear smoothers in the class of all smoothers need to have

symmetric smoothing matrix and spectrum in the unit interval [0, 1], with at most

two eigenvalues being equal to one.

From that characterization, smoothing splines of any order are admissible,

whereas all local polynomial smoothers, see [10] including the Nadaraya-Watson

smoother [23], and k-nn-type smoothers are inadmissible because they have asym-

metric smoothing matrices.

We may point out here that admissibility does not affect minimax rate of con-

vergence, for example. In general, the difference between an estimator inadmissible

with optimal rate and it admissible pendant one is in the analysis of the constant

of the second-order term development. Such developments are beyond the scope of

this chapter.
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1.4 Symmetrization

The proof in [5] is particularly interesting, as it shows constructively how, starting

with a smoother with asymmetric smoothing matrix, one can symmetrize the

smoothing matrix to produce a smoother with smaller mean-square error. The

resulting smoother has a closed form:

Scohen = I − [(I − S)ᵀ(I − S)]1/2. (5)

Other symmetrization schemes have been proposed by modifying Cohen’s estimator

[28]:

Szhao = I − Ã[(I − S)ᵀ(I − S)]1/2 (6)

or [19] (who are averaging the smoothing matrix and its transpose) in the context of

nonparametric regression.

Symmetrization is of real importance in image analysis and in particular in

image denoising. Milanfar [22] advocates for symmetrization which is not only a

“mathematical nicety but can have interesting practical advantages.” Among them

are:

1. Performance improvement,

2. Stability of iterative filtering,

3. Eigen decomposition.

Milanfar [22] studied smoothers of the form S = D−1
K where K is symmetric and

positive define and D is a diagonal matrix that makes S row-stochastic. Applying

the Sinkhorn algorithm (see [26]), he constructs a doubly stochastic estimator ÆS and

controls the behavior of ÆS because the change of the eigenvalues due to Sinkhorn

normalization is upper bounded by the Frobenius norm �S − ÆS�.

More recently, Haque et al. [16] again starting with a smoother of the form

S = D−1
K and working with the Laplacian L = D − K proposed the following

estimator C = (I + »L�L)−1 where the value of » is chosen by optimization. This

estimator could be applied to any type of smoother, it does not need a symmetric K

or positive eigen values for S but the interpretation in terms of S is almost impossible

to understand. Moreover, it is impossible to apply that smoother at a new observation

(the same will be true for [28]). Furthermore, the eigen values of C are bounded

away from zero and the resulting variance is much bigger than the initial smoother.

More recently, [3, 4] interpreted Sinkhorn algorithm (in order to obtain a doubly

stochastic smoother) as an expectation-maximization algorithm learning a Gaussian

mixture model of the image patches.

Stability of the iterative filtering as pointed out by Milanfar [22] was already

advocated by Cornillon et al. [6] in the context of L2 boosting. Friedman et al. [12]

showed that L2 boosted smoother at iteration j is given by:

m̃j = [I − (I − ¿S)j ]Y.
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The 0 < ¿ ≤ 1 could be seen as the step factor since boosting could be viewed as a

functional gradient descent algorithm. For simplicity, let us consider the case ¿ = 1.

In the context of kernel boosting, Cornillon et al. [6] proposed the following:

m̃j = [I − (D−1/2D1/2 −D−1/2D−1/2SD−1/2D1/2)j ]Y

= [I − D−1/2(I − D−1/2SD−1/2)jD1/2]Y.

While symmetrization of the smoothing matrix is necessary, it is not sufficient for

a linear smoother to be admissible. Specifically, the spectrum of the symmetrized

smoothing matrix needs to belong to the unit interval. As indicated above, most of

the literature dedicated to symmetrization of smoother assume that S is of the form

D−1
K where K is symmetric and positive definite which is not true for k-nn-based

smoothers.

In the next section, we prove mainly negative results for row-stochastic matrices

(so the results are directly applicable to k-nn-type smoothers). We show that the

arithmetic and the geometric averages of a row-stochastic matrix and its transpose,

and even the symmetrization scheme proposed by Cohen, have eigenvalues outside

the unit interval. In Sect. 3, we propose an alternative approach to symmetrize k-

nn-type smoother that results in a smoothing matrix whose spectrum lies in the unit

interval. The new estimators can be evaluated at any arbitrary points and have their

own interpretation.

2 Symmetrization Procedures for Row-Stochastic Smoothers

In this section, we relate the spectrum of various symmetrized smoothing matrices

to the spectrum of their original smoothing matrix. We assume that the smoothing

matrix S is row-stochastic, that is, all of its elements are nonzero and S1 = 1, where

1 = (1, 1, . . . , 1)ᵀ ∈ Rn is the vector of ones.

2.1 Geometric and Arithmetic Mean

Geometric Mean Given a smoothing matrix S, define the symmetric matrix �S =
(SᵀS)1/2. The square-root is well defined as SᵀS is symmetric and positive definite.

The variance of the resulting smoother is the same as the variance of the initial

smoother, but the biases are different. No comparison can be made between the

biases of the original smoother and the symmetrized one. While �S is symmetric

and nonnegative definite, it is possible for the largest eigenvalue »max to be strictly

larger than one. In those cases, the symmetrized smoother S̃ remains inadmissible.

Lemma 1 Let S be a row-stochastic matrix. Then, »max(S
ᵀS) g 1, with equality if

and only if S is a doubly stochastic matrix.
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Proof Consider the Rayleigh quotient Q(x) = xᵀSᵀSx/(xᵀx) and denote by

1n = ( 1:
n
, 1:

n
, . . . ., 1:

n
) the vector of length one. Note that Q(1n) = 1

ᵀ

nS
ᵀS1n =

(S1n)
ᵀ(S1n) = 1 since S is row-stochastic. Hence, »max(S

ᵀS) g 1. Furthermore,

if »max(S
ᵀS) = 1, then 1n belongs to the eigenspace associated to the largest

eigenvalue of SᵀS. This implies that SᵀS1n = 1n. Since S is row-stochastic,

we also have that SᵀS1n = Sᵀ1n. Combining these identities, we conclude that

»max(S
ᵀS) = 1 is and only if Sᵀ1n = 1n, which is equivalent to S being doubly

stochastic (since S is assumed to be row-stochastic).

The conclusion of the lemma also holds for SSᵀ which has the same spectrum

as SᵀS. It follows from the above lemma that the geometric mean smoother S̃ =
(SᵀS)1/2 is inadmissible whenever S is not a doubly stochastic matrix.

Arithmetic Mean Given a smoothing matrix S, define the symmetric smoothing

matrix �S = (S + Sᵀ)/2 considered by Linton and Jacho-Chavez [19]. For the

arithmetic mean smoother S̃, we can show

V (SY )− V (�SY ) = Ã 2

�
trace(SᵀS)− 1

2
trace(S2)− 1

2
trace(SᵀS)

�

= Ã 2

2

�
trace(SᵀS)− trace(S2)

�
g 0.

The last inequality is justified by Lemma 6 in the Appendix. This shows that the

arithmetic average smoother has a smaller variance than the original smoother, a

result that first was proven for kernel smoothers by Linton and Jacho-Chavez [19].

As for the geometric mean smoother, nothing can be said of the biases.

Even though the variance of the average smoother is smaller than that of the

original smoother, the following theorem proves that the largest eigenvalue of �S is

larger than one, unless S is doubly stochastic. As a result, the average smoother is

not admissible.

Lemma 2 Let S be a row-stochastic matrix, then »max((S
ᵀ + S)/2) g 1, with

equality if and only if S is a doubly stochastic matrix.

Proof Consider the Rayleigh quotient Q(x) = xᵀ(Sᵀ + S)x/(2(xᵀx)) and denote

by 1n = ( 1:
n
, 1:

n
, . . . ., 1:

n
) the vector of length one. It is easy to verify that

Q(1n) = 1 since S is row-stochastic. Hence, »max((S
ᵀ +S)/2) g 1. If »max((S

ᵀ +
S)/2) = 1, then 1n is in the eigenspace associated to the largest eigenvalue, and

Sᵀ1n + S1n = 21n.

Since S is row-stochastic, we have that S1n = 1n, and thus Sᵀ1n = 1n, which occurs

if and only if S is doubly stochastic (since S is assumed to be row-stochastic).
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2.2 Cohen’s and Zhao’s Symmetrization

Given a smoothing matrix S, Cohen [5] proposed the symmetrized smoothing matrix

which has the same bias and smaller variance than the original smoother S. That is,

Scohen dominates S. While this shows that S is not admissible, it does not imply that

Scohen is itself admissible. The following Lemma gives conditions for Scohen to have

an eigenvalue larger than one.

Lemma 3 If the smoother S admits negative eigenvalues, then Cohen symmetrized

smoother Scohen has an eigenvalue larger than one and hence is inadmissible.

Proof of Lemma 3 Consider the right eigenvectorx associated to the eigenvalue» <

0. With that vector x, develop the quadratic form:

xᵀ(I − S)ᵀ(I − S)x = xᵀx − xᵀSᵀx − xᵀSx + xᵀSᵀSx

= xᵀx − (Sx)ᵀx − xᵀ(Sx)+ (Sx)ᵀ(Sx)

= xᵀx − 2»xᵀx + »2xᵀx

= (1 − »)2xᵀx

> xᵀx.

This shows that »max((I − S)ᵀ(I − S)) > 1, which completes the proof.

Zhao [28] recognizes, without proof, that the Cohen estimator may have eigenvalues

larger than 1 and proposes a stepped version of the Cohen smoother. When Ã−2 >

»max((I − S)ᵀ(I − S)), the resulting smoother has spectrum in [0, 1), and hence

is admissible. But, the construction of this smoother requires the knowledge of the

largest eigenvalue of (I −S)ᵀ(I −S), or at least an upper bound for that eigenvalue.

Also, this smoother cannot be extended out of the initial design.

In order to close that section, we note that Sinkhorn algorithm was derived to

obtain from a positive matrix a doubly stochastic one. Here, the authors need a

doubly stochastic matrix, positive definite and symmetric. In order to reach their

goal, they need to start with a positive symmetric definite matrix [18] which is not

the case for k-nn-type smoother as we will see in the next section.

3 Symmetrization of k-nn-Type Smoothers

Let us recall that Sknn = k−1A and Smknn = D−1Am where A (resp., Am) is the

adjacency matrix associated to the direct graph (resp. of the indirect graph), and Am

is symmetric. We first state some results concerning the eigenvalues of A and Am.



Symmetrizing k-nn and Mutual k-nn Smoothers 9

Lemma 4 Let S be the smoothing matrix of the k-nearest neighbor smoother with

k g 3. Denote for each i, the set of indices Ni of k-nearest neighbors of i. Assume

that the set of covariates {X1, . . . , Xn} contain three points E, F, G such that

E ∈ NF and F ∈ NE F ∈ NG and G ∈ NF E �∈ NG or G �∈ NE .

Then, at least one eigen value of (I − S)�(I − S) is bigger than 1.

And, similarly for the mutual k-nn smoother:

Lemma 5 If the graph related to the adjacency matrix Am admits a path of length

bigger than one, then the mutual k-nn initial smoother has a negative eigenvalue.

The proofs are given in the Appendix.

Remark 1 If the graph is not connected, the conclusions of Lemma 5 remain true,

provided that for at least one of the connected components, the conditions of the

lemma hold. Brito et al. [2] showed under technical condition that with probability

one, when k is of order of log(n) the graph is almost surely connected.

3.1 Construction of the Symmetrized Estimator

The previous section demonstrates that most attempts to symmetrize k-nn or

mutual k-nn smoothers do not result in an admissible smoother because the

considered symmetrizations do not control the spectrum. In this section, we propose

a construction specialized to k-nn smoothers and mutual k-nn. These two smoothers

could be written as S = D−1A where A is the adjacency matrix and D is a diagonal

matrix. We propose the following symmetrization of k-nn-type smoothers:

Snew = W−1/2AAᵀW−1/2, (7)

where W is the diagonal matrix of the row sum of AAᵀ. It is easy to see why the

spectrum of this symmetric smoother lies in the unit interval: The matrix Snew is

similar to the row-stochastic matrix W−1AAᵀ, which has eigenvalue in [−1, 1], and

is positive definite which implies that all the eigenvalues are nonnegative. Hence, all

the eigenvalues are in [0, 1].
Another strategy could have been to propose V −1/2AᵀAV −1/2. These new

estimators (for k-nn and k-mnn) have the advantage of producing an admissible

estimator that can be evaluated at any point. Furthermore, the resulting smoother has

a compelling interpretation in terms of neighbors. However, such an interpretation

is not new. Dealing with AAᵀ was named bibliographic coupling by Kessler [17]

and AᵀA was named co-citation by Small [27].
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3.2 Interpretation, Estimation at Any Point x

Our new estimator (7) can be interpreted as a k-nn-type estimator. The general term

of the adjacency matrix Aij says if Xj belongs to the k-nn (or mutual) of Xi . The

general term (i, j) of AAᵀ is the scalar product of lines i and j of A so it counts the

number of points in common from the k-nn (or mutual) of Xi and Xj . Let us write

(AAᵀ) = nij (for neighbor) and (AmAmᵀ) = mij .

In the case AAᵀ, nij is the number of points in the intersection of Nk(Xi) and

Nk(Xj ) and on the diagonal obviously there is k.

AAᵀ =

»
¿¿¿¿¿¿¿¿¿¿

k · · · · · · n1,j · · · · · ·
. . . · · · · · · · · · · · ·

k ni,j · · · · · ·
. . . · · · · · ·

. . . · · ·
nn,j · · · k

¿
¿¿¿¿¿¿¿¿¿£

AmAm
ᵀ =

»
¿¿¿¿¿¿¿¿¿¿

K1 · · · · · · m1,j · · · · · ·
. . . · · · · · · · · · · · ·

Ki mi,j · · · · · ·
. . . · · · · · ·

. . . · · ·
mn,j · · · Kn

¿
¿¿¿¿¿¿¿¿¿£

Obviously, this quantity nij (respectively,mij ) is large whenXi has a lot of common

k-nn (or mutual) with Xj but will always be smaller than k. We further note that the

quantity mij arises as a similarity measure in graph theory, see [20].

The quantity W
1/2
ii is equal (

�n
l=1 nil)

−1/2 (or (
�n

l=1 mil)
−1/2), that is, one

divided by the square-root of the sum of the numbers of common k-nn (or mutual)

of Xi and the sample. This transformation looks like a weighted k-nearest neighbor,

though each weight depends on the considered point of the design.

The transformed k-nn smoother can be evaluated at the design point Xi as:

Æm(Xl) =
n�

i=1

1��
j nlj

nli
Yi��
j nij

=
n�

i=1

Wni(Xl)Yi .

The quantities nli are of course dependent on k. That expression can be extended to

be evaluated at arbitrary points x as follows:

Æm(x) =
n�

i=1

1��
j nxj

nxi
Yi��
j nij

=
n�

i=1

Wni (x)Yi .

where nxj is the number of points in common from the k-nn of x and Xj . The new

estimator is a weighted nearest neighbor estimator with random weights. The proof

of the consistency (which is not immediate) is beyond the scope of this contribution.

Being able to predict gives us the possibility to estimate for which k the strategy

should be carried on (using data-splitting, for instance).
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4 Conclusion

In summary, this chapter makes several contributions to the theory of k-nearest

neighbor-type smoothers (mutual and symmetric). First, we show that the sym-

metrization strategies proposed by Cohen [5] and Linton and Jacho-Chavez [19]

can produce smoothing matrices whose spectrum lies outside the unit interval for

general row-stochastic smoothers.

Second, we show that the spectrum of k-nearest neighbor smoothers has negative

eigenvalues.

Third, we propose an alternative construction of a symmetric smoothing matrix

whose eigenvalues are provably in the unit interval. Applying that construction to

k-nearest neighbor smoothers results in a novel k-nn smoother. This estimator could

be applied by itself as a weighted k-nn one by selecting the parameter k or, by

extension, it could be used in L2 boosting procedures.

Appendix

Lemma 6 Let A be an n× n matrix. Then,

trace(A2) ≤ trace(AᵀA).

Proof Given A, the matrix (A− Aᵀ)ᵀ(A− Aᵀ) is positive definite. Thus,

0 ≤ trace((A− Aᵀ)ᵀ(A− Aᵀ)) = trace((Aᵀ − A)(A− Aᵀ))

= trace(AᵀA− AᵀAᵀ + AAᵀ − AA) = 2 trace(AᵀA)− 2 trace(A2).

The conclusion follows.

Proof of Lemma 5 Recall that Smknn = DAm, where D is a diagonal matrix with

nonzero diagonal. The matrices Smknn and D1/2AmD1/2 have the same spectrum.

We need only to show that the matrixAm has a negative eigenvalue. Having a path of

length two, then there exist two vertices i1 and i2 such that the shortest path between

these two vertices is two. As a result, there exists a 3 × 3 sub-matrix of the form:

B =

»
¿

1 1 0

1 1 1

0 1 1

¿
£

The smallest eigenvalue of that matrix is negative and thus, by the interweaving

theorem

»min(A
m) ≤ »min(B) < 0.
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As a result, there exists a vector u ∈ Rn, �u�2 = 1, such that the Rayleigh quotient

uᵀAu < 0. If we set w = D−1/2u, we have wᵀD1/2AD1/2w < 0. This strict

inequality remains for the normalized vectorw7 = w
�w� . Thus, the symmetric matrix

D1/2AD1/2 has also a strictly negative eigenvalue. Finally, since D1/2AD1/2 and

S = DA have the same spectrum, the conclusion of the lemma follows.

Proof of Lemma 4 Let us consider the k-nn smoother the matrix S is of general term

Sij = 1

k
if Xj ∈ Nk(Xi).

Consider the eigen values of (I−S)(I−S)�, since A = (I−S)(I−S)� is symmetric,

we have for any vector u that

»n ≤ u�Au

u�u
≤ »1. (8)

Let us find a vector u such that u�Au > u�u. First notice that A = I − S− S� + SS�.
Thus, we have that

Aii = 1 − 1

k
.

Second, to bound Aij , we need to consider three cases:

1. If Xi ∈ Nk(Xj ) and Xj ∈ Nk(Xi), then Sij = Sji = 1/k. This does not

mean that all the k-nn neighbors of Xi are the same as those of Xj , but if it is

the case, then (SS�)ij ≤ k/k2 and otherwise in the pessimistic case, we bound

(SS�)ij g 2/k2. It therefore follows that

2/k2 − 2

k
≤ Ai,j ≤ k

k2
− 2

k
= −1

k
.

2. If Xi ∈ Nk(Xj ) and Xj �∈ Nk(Xi), then Sij = 1/k and Sji = 0. There is at

a maximum of k − 1 points that are in the k-nn of Xi and in the k-nn of Xj so

(SS�)ij ≤ (k−1)/k2. In the pessimistic case, there is only one point, which leads

to the bound

1

k2
− 1

k
≤ Ai,j ≤ k − 1

k2
− 1

k
≤ − 1

k2
.

3. If Xi �∈ Nk(Xj ) and Xj �∈ Nk(Xi), then Sij = 0 and Sji = 0. However, there

are potentially as many as k − 2 points that are in the k-nn of Xi and in the k-nn

of Xj . In that case

0 ≤ Aij ≤ k − 2

k2
.
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Choose three points E, F , and G in the sample X such that

E ∈ Nk(F ) and F ∈ Nk(E)

F ∈ Nk(G) and G ∈ Nk(F )

E �∈ Nk(G) or G �∈ Nk(E).

Next, consider the vector u of R
n that is zero everywhere except at position e

corresponding at point E (respectively, f and g) where its value is −1 (respectively,

2 and −1). For this choice, we expand u�Au to get

u�Au = Ae,e + 4Af,f + Ag,g − 4Ae,f − 4Af,g + 2Ae,g

= 6 − 6

k
− 4Ae,f − 4Af,g + 2Ae,g.

With the choice of E, F , and G, we have

u�Au g 6 + 2

k
+ 2Ae,g.

The latter shows that u�Au > u�u whenever

Ae,g > −1

k
,

which is always true with the choice of points E and G.
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Nonparametric PU Learning of State
Estimation in Markov Switching Model

A. Dobrovidov and V. Vasilyev

Abstract In this contribution, we develop methods of nonlinear filtering and

prediction of an unobservable Markov chain which controls the states of observable

stochastic process. This process is a mixture of two subsidiary stochastic processes,

the switching of which is controlled by the Markov chain. Each of this subsidiary

processes is described by conditional distribution density (cdd). The feature of the

problem is that cdd’s and transition probability matrix of the Markov chain are

unknown, but a training sample (positive labeled) from one of the two subsidiary

processes and training sample (unlabeled) from the mixture process are available.

Construction of process binary classifier using positive and unlabeled samples

in machine learning is called PU learning. To solve this problem for stochastic

processes, nonparametric kernel estimators based on weakly dependent observations

are applied. We examine the novel method performance on simulated data and

compare it with the same performance of the optimal Bayesian solution with known

cdd’s and the transition matrix of the Markov chain. The modeling shows close

results for the optimal task and the PU learning problem even in the case of a strong

overlapping of the conditional densities of subsidiary processes.

1 Introduction

The hidden Markov chain (HMC) model is widely used in different problems,

including signal and image processing, economical filtering and prediction, biolog-

ical and medical sciences, and so on. In this model, the unobservable or “hidden”

signal sn is assumed to be a realization of a Markov chain Sn, n ∈ {1, 2, . . . , N}
with a finite number M of states. The observed signal xn is assumed to be a

realization of a stochastic process Xn, n ∈ {1, 2, . . . , N}. The links between
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them are described by the conditional density f (xn | Sn = sn,X
n−1
1 = xn−1

1 ).

One way of generating processes with statistically dependent values is to use the

conditional distribution of observations if the multidimensional distribution of the

process is known. This case is considered in an example 2 with the multidimensional

Rayleigh distribution. Another more simple way to obtain conditional density is

the recurrent equation for representation of random sequences. Such equations are

convenient for generating processes with dependent observations. These models

could be autoregressive models, GARCH models, and others (see [6, 11, 12, 16, 17]).

Especially often there are works devoted to the construction of volatility models

[2, 8] and many of them use Markov switching to describe the well-known

phenomenon of the volatility clusterization. Similar models are obtained as mixed

types like a Markov-switching ARMA-GARCH model [10] and MSGARH [7].

In the vast majority of articles, conditional distribution densities are specified

parametrically up to unknown parameters. In this case, the parameters of the mixed

model can be estimated using the well-known EM-method based on the observation

of the mixed sample.

In this chapter, we propose an algorithm for estimating the Markov chain state

under conditions when

1. the number of Markov chain states M = 2;

2. the conditional distribution densities of the subsidiary processes, corresponding

to each mixed process states, are completely unknown;

3. the a priori probabilities and transition probability matrix of Markov chain are

unknown;

4. for the restoration of unknown densities, a realization of mixed process (unla-

beled) and a training realization from one of the subsidiary processes (labeled)

are available.

The availability of sampling from only one class (or process) is very common

in applications. It is enough to cite such well-known problems as useful signal

detection in sonar or estimating volatility in econometrics. A main feature of these

problems is that the useful signal or volatility is never observed in pure form and

there is no information to restore signal distribution or generate corresponding

sample. On the other hand, the noise process is always observed while the devices

that measure the signal against the background of noise are operating. It is this noise

that is the source of the positive sample.

For the reconstruction of unknown densities, nonparametric kernel estimation

procedures generalized on weakly dependent random variables are used [5].

Two examples demonstrate the algorithm quality. The first one is dedicated to

the distinction between two autoregressive processes with different coefficients

and the conditional distributions of these processes. Herewith these conditional

distributions and the transition probability matrix of the Markov chain are unknown

to the experimenter. In the second example, the model of one of the processes does

not exist in the form of an equation, and the second process is defined only by its

observations (in the language of modern learning theory—positive learning).
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2 Problem Statement

Let (Sn,Xn) be a two-component stationary process with strong mixing, where

(Sn) is unobservable component and (Xn) is observable one, n ∈ {1, 2, . . . , N},
N ∈ N. Let (Sn) be a stationary Markov chain with 2 states {0, 1} and transition

probability matrix �pi,j�, pi,j = P{Sn = j | Sn−1 = i}. Process (Sn) “controls”

coefficients of equations, which describe the observable process (Xn):

if Sn = 0, then

Xn > f (xn | Sn = 0, xn−1
1 ) = f0(xn | xn−1

1 ), (1)

if Sn = 1, then

Xn > f (xn | Sn = 1, xn−1
1 ) = f1(xn | xn−1

1 ). (2)

For example, in case of Sn = 0, the process (Xn) may be described by the

autoregressive model (AR) of order p:

Xn = μ+
p�

i=1

ai(Xn−i − μ)+ b¿n, (3)

where {¿n} are i.i.d. random variables with the standard normal distribution,

parameters μ, ai ∈ R, b ∈ R+, p ∈ N. Therefore, the conditional pdf (1) equals

f0(xn | xn−1
1 ) = f0(xn | xn−1

n−p) = 1:
2Ãb

exp

»
¿¿¿¿−

�
xn − μ−

p�
i=1

ai(xn−i − μ)

�2

2b2

¿
¿¿¿£ .

As a performance of the proposed methods we use mean risk R = EL(Sn, ÆSn) with

a simple loss function

L(Sn, ÆSn) =
�

1 Sn �= ÆSn
0 Sn = ÆSn.

(4)

An optimal estimator of Sn (the Bayes decision function) is

S7
n =
�

0 if P(Sn = 0 |Xn
1 = xn1 ) g 1/2

1 otherwise,
(5)
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where P(Sn = 0 |Xn
1 = xn1 ) is a realization of the posterior probability P{Sn =

0 |Xn
1} with respect to a Ã -algebra generated by r.v. Xn

1 . For brevity, we write xn1
and xn instead of events {Xn

1 = xn1 } and {Xn = xn}. For instance,

P(Sn = m |Xn
1 = xn1 ) = P(Sn = m | xn1 ). (6)

In this work we solve a problem of estimation Sn using testing sample xn1 (generated

from the marginal distribution of the process (Xn)) and two training samples:

positive xp (drawn from the conditional distribution of the process (Xn) given

Sn = 0) and mixed unlabeled xu (drawn from the distribution of the mixed process

(Xn))

xp = (xp,i)
np
i=1, (7)

xu = (xu,i)
nu
i=1, (8)

where their sizes np, nu ∈ N. The last two samples are used to learn a nonlinear

filter and the first for testing it.

3 Optimal Filtering

The optimal filtering may be applied, when the conditional densities f0(xn | xn−1
1 )

and f1(xn | xn−1
1 ) and transition probability matrix �pi,j� are known. In this case

the posterior probability of the Markov state (6) is related to the predictive posterior

probability of the state by the formula

P(Sn = m | xn1 ) =
fm(xn | xn−1

1 )

f (xn | xn−1
1 )

P(Sn = m | xn−1
1 ), m ∈ {0, 1} (9)

f (xn | xn−1
1 ) =

1�

m=0

fm(xn | xn−1
1 )P(Sn = m | xn−1

1 ). (10)

Since transition probability matrix �pi,j � is known, then for predictive posterior

probability P(Sn = m | xn−1
1 ) an equation

P(Sn = m | xn−1
1 ) =

1�

i=0

pi,mP(Sn−1 = i | xn−1
1 ) (11)
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is correct. Then Eq. (9) can be transformed to the well-known evaluation equa-

tion [5]

P(Sn = m | xn1 ) =
fm(xn | xn−1

1 )
1�

i=0

pi,mP(Sn−1 = i | xn−1
1 )

1�
j=0

fj (xn | xn−1
1 )

1�
i=0

pi,jP(Sn−1 = i | xn−1
1 )

.

Substituting this posterior distribution in (5), we obtain the optimal Bayes

estimator S7
n for the nonlinear filtering. This optimal method will be considered

as a standard and compared with the proposed method, where f0(xn), f1(xn), and

�pi,j� are not available.

4 Nonparametric Filtering

4.1 Main Idea

Let us consider the following estimator of Sn

S̃n =
�

0 if P(Sn = 0 |Xn
n−Ç = xnn−Ç ) g 1/2

1 otherwise,
(12)

where Ç ∈ {0, 1, . . . , n − 1}. Here, only last Ç + 1 observations are used in the

condition of the posterior probability. If Ç = n − 1, then S̃n = S7
n . We assume

that the process (Sn,Xn) is ³-mixing. Then "� > 0, #Ç (³) : |P(Sn = 0 |Xn
n−Ç =

xnn−Ç )−P(Sn = 0 |Xn
1 = xn1 )| < �. It means that S̃n j S7

n for some Ç . Using simple

relation

P(Sn = 0 |Xn
n−Ç = xnn−Ç ) = f0(xn | xn−1

n−Ç )

f (xn | xn−1
n−Ç )

P(Sn = 0 | xn−1
n−Ç ),

where denominator is equal to

f (xn | xn−1
n−Ç ) = f0(xn | xn−1

n−Ç )P(Sn = 0 | xn−1
n−Ç )+ f1(xn | xn−1

n−Ç )P(Sn = 1 | xn−1
n−Ç ),

(13)

and normalization condition

P(Sn = 0 | xn−1
n−Ç )+ P(Sn = 1 | xn−1

n−Ç ) = 1,
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one can rewrite (12) as

S̃n =
�

0 if 2f0(xn | xn−1
n−Ç )P(Sn = 0 | xn−1

n−Ç )− f (xn | xn−1
n−Ç ) > 0

1 otherwise.
(14)

This estimator will be the base of proposed method. In the next sections nonpara-

metric kernel estimation of the conditional densities f0(xn | xn−1
n−Ç ), f (xn | xn−1

n−Ç ) and

probability P(Sn = 0 | xn−1
n−Ç ) will be considered.

4.2 Estimators of f0(xn | xn−1
n−τ ), f (xn | xn−1

n−τ )

In this section estimators of f0(xn | xn−1
n−Ç ), f (xn | xn−1

n−Ç ) are proposed. Firstly, let us

transform positive sample xp of univariate elements to sample xp = (xp,i)
np−Ç
i=1 with

(Ç + 1)-dimensional elements

xp,i = (xp,i, xp,i+1, . . . , xp,i+Ç ).

Analogous to xp, construct new sample xu = (xu,i)
nu−Ç
i=1 from unlabeled sample xu:

xu,i = (xu,i, xu,i+1, . . . , xu,i+Ç ).

Secondly, let us rewrite conditional densities f0(xn | xn−1
n−Ç ), f (xn | xn−1

n−Ç ) in the

following form

f0(xn | xn−1
n−Ç ) = f0(x

n
n−Ç )

f0(x
n−1
n−Ç )

= f0(x
n
n−Ç )

>�
−>

f0(x
n
n−Ç )dxn

,

f (xn | xn−1
n−Ç ) = f (xnn−Ç )

f (xn−1
n−Ç )

= f (xnn−Ç )
>�

−>
f (xnn−Ç )dxn

.

Finally, for unknown densities f0(x
n
n−Ç ) and f (xnn−Ç ) estimators

f0(x
n
n−Ç ) j f ((xn−Ç , . . . , xn) | (xp,i)

np−Ç
i=1 ),

f (xnn−Ç ) j f ((xn−Ç , . . . , xn) | (xu,i)nu−Çi=1 )

are proposed, where notation f (x | (xi)ni=1) is the multivariate kernel density

estimator (MKDE) in the point vector x constructed by training set (xi)
n
i=1. The

next section is devoted to MKDE.
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4.3 Estimator of f (x | (xi)
n
i=1

)

There are a lot of kernel density estimators and approaches to configure them. In this

section is a one of the possible combinations of them, which includes two steps: pilot

and subtle estimators. Firstly, for density f (x | (xi)ni=1) next fixed kernel estimator

f̃ (x) = f̃ (x | (xi)ni=1) = 1

n

n�

i=1

1

hd
K

�
x − xi

h

�
(15)

is applied, where K(·) is the kernel function, usually some probability density

function with zero mean; h is the bandwidth (tuning parameter), h > 0; x, xi ∈
R1×d , d ∈ N. Probability density function of multivariate normal distribution with

zero mean and identity covariance matrix

Ç(x) = 1

(2Ã)d/2
exp

�
−xx�

2

�

is used as the kernel functionK(·). One of the methods for calculating the bandwidth

h is the unbiased cross-validation (UCV)(see [3, 14]). Procedure UCV leads to an

estimator

Æh = argmin
h>0

UCV(h),

with minimization function

UCV(h) = 1

n(n− 1)hd

n�

i=1

n�

j=1,
j �=i

1

2d/2
Ç

�
xi − xj:

2h

�
− 2Ç

�
xi − xj

h

�
+ 1

nhd
.

Computing minima analytically is a challenge, so a numerical calculation is popular.

The function UCV(h) often has multiple local minima, therefore more correct way

is to use brute-force search to find Æh, however it is a very slow algorithm. In [9] it

was shown that spurious local minima are more likely at too small values of h, so

we propose to use golden section search between 0 and h+, where

h+ =
�

4

n(d + 2)

� 1
d+4

max
i,j∈{1,...,d}

�
| ÆSi,j |,
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and ÆS is the sample covariance matrix of vector sequence (xi)
n
i=1. To improve

accuracy of estimator (15) in the second step using more flexible approach is consid-

ered. Constructing estimator with fixed kernel is the first step in the methods with

“adaptive” kernel like balloon estimators (see [13]) and sample point estimators

(see [1, 4]). Silverman in [15] explored Abramson’s implementation and proposed

the following estimator

f (x | (xi)ni=1) = 1

n

n�

i=1

1

(h»i)d
K

�
x − xi

h»i

�
(16)

with local bandwidth factors

»i =
�
f̃ (xi)

g

�−1/2

,

where g is the geometric mean of the f̃ (xi)

g =
�

n�

i=1

f̃ (xi)

�1/n

.

Silverman noted that using similar bandwidth h for (15) and (16) gives good results.

4.4 Estimator of P(Sn = 0 | xn−1
n−τ )

In this section an estimator of probability P(Sn = 0 | xn−1
n−Ç ) from (14) is explored.

Rewrite (13) as

f (xn | xn−1
n−Ç )

f0(xn | xn−1
n−Ç )

= P(Sn = 0 | xn−1
n−Ç )+

f1(xn | xn−1
n−Ç )(1 − P(Sn = 0 | xn−1

n−Ç ))

f0(xn | xn−1
n−Ç )

. (17)

Note that P(Sn = 0 | xn−1
n−Ç ) does not depend on xn. It means that "xn ∈ R the

last equation is true. If densities f (xn | xn−1
n−Ç ) and f0(xn | xn−1

n−Ç ) were known, then

simple estimator

P̃(Sn = 0 | xn−1
n−Ç ) = min

x∈1R

f (x | xn−1
n−Ç )

f0(x | xn−1
n−Ç )

(18)
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would give good results, if there is some x ∈ R, such that

f1(xn | xn−1
n−Ç )(1 − P(Sn = 0 | xn−1

n−Ç ))

f0(xn | xn−1
n−Ç )

j 0.

Then the estimator P̃(Sn = 0 | xn−1
n−Ç ) will be close to P(Sn = 0 | xn−1

n−Ç ). Since

in fact densities f (xn | xn−1
n−Ç ) and f0(xn | xn−1

n−Ç ) are unknown, their estimators

are substituted in (18). However, in this case estimator P̃(Sn = 0 | xn−1
n−Ç ) is

unreasonable, because if only for one point x0 ∈ R the value of
f (x0 | xn−1

n−Ç )

f0(x0 | xn−1
n−Ç )

j 0,

then the estimator P̃(Sn = 0 | xn−1
n−Ç ) will be too undervalued in comparison with

the true value of P(Sn = 0 | xn−1
n−Ç ). Therefore, it is necessary to introduce some

cumulative characteristics which will have less influence of particular x. As such

characteristics, we propose

Q(p) =
�
(f0(x | xn−1

n−Ç )p − f (x | xn−1
n−Ç ))

+dx,

ÆQ(p) =
�
( Æf0(x | xn−1

n−Ç )p − Æf (x | xn−1
n−Ç ))

+dx,

where (a)+ = max(0, a) and p ∈ [0, 1] is a variable parameter. The meaning of

the function Q(p) is an area between two functions pf0(x | xn−1
n−Ç ) and f (x | xn−1

n−Ç ),
where the first one exceeds the second one. The meaning of the estimator ÆQ(p) is

the same. It is easy to show that Q(p) = 0 for p ∈ [0, P̃(Sn = 0 | xn−1
n−Ç )] and

0 < Q(p) < 1 for p ∈ (P̃(Sn = 0 | xn−1
n−Ç ), 1]. So Q(p) changes its first and

second derivatives in the point P̃(Sn = 0 | xn−1
n−Ç ). We expect the similar changes in

derivatives of the estimator ÆQ(p). Therefore, we propose to use point p, where the

curvature of the function ÆQ(p)

»(p) = | ÆQ��(p)|
(1 + ( ÆQ�(p))2)3/2

reaches maximum, i.e. a final estimator of P(Sn = 0 | xn−1
n−Ç ) is

ÆP(Sn = 0 | xn−1
n−Ç ) = argmax

0≤p≤1

»(p). (19)

Due to the analytical complexity of the estimator ÆP(Sn = 0 | xn−1
n−Ç ), its properties

are investigated by computer simulation.
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5 One-Step Ahead Prediction

Let us consider one-step ahead prediction. Like for filtering we minimize mean risk

EL(Sn, ÆSn) with simple loss function (4). Therefore an optimal predictive estimator

of Sn is

S+
n =

�
0 if P(Sn = 0 |Xn−1

1 = xn−1
1 ) g 1/2

1 otherwise.

Note that probability P(Sn = 0 |Xn−1
1 = xn−1

1 ) is already obtained in the

considered approaches to filtering: for optimal method it is written in (11) and for

nonparametric method accordingly in (19). It means that we primarily solve problem

of one-step ahead prediction and then filtering problem.

6 Examples

6.1 Example 1 (AR(1) + AR(2))

Let the process Xn for each state of Sn be given by the autoregressive model:

if Sn = 0 : Xn = 1 + 0.2Xn−1 + ¿n,

if Sn = 1 : Xn = 4 + 0.3Xn−1 + 0.2Xn−2 + 0.8¿n

and transition probability matrix equals

�pi,j� =
�

0.92 0.08

0.05 0.95

�
.

Parameters Ç = 1, n ∈ {0, 1, . . . , 201}, np = 2000, nu = 2000. One may see

illustration of densities and their estimators for some point xn in Fig. 1. It follows

that the estimator ÆP(Sn = 0 | xn−1
n−Ç ) = 0.04 is very close to real value of the

probability P(Sn = 0 | xn−1
n−Ç ) = 0.05 from Fig. 2. This experiment shows good

quality of the proposed method (see Table 1 and Fig. 3).

6.2 Example 2 (AR(2) + Rayleigh)

Let the process Xn be described as

if Sn = 0 : Xn = 4 + 0.1Xn−1 + 0.5Xn−2 + ¿n;
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Fig. 1 Left plot: black line is f (xn | xn−1
n−Ç ); gray line is P(Sn = 0 | xn−1

n−Ç )f0(xn | xn−1
n−Ç ); dashed

line is P(Sn = 1 | xn−1
n−Ç )f1(xn | xn−1

n−Ç ). Right plot: black line is estimator Æf (xn | xn−1
n−Ç ); gray line

is estimator Æf0(xn | xn−1
n−Ç ); gray area between two densities Æf0(xn | xn−1

n−Ç ) and Æf (xn | xn−1
n−Ç ), where

Æf0(xn | xn−1
n−Ç ) exceeds Æf (xn | xn−1

n−Ç )
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Fig. 2 Left plot: black line is ÆQ(p); grey line shows that estimator ÆP(Sn = 0 | xn−1
n−Ç ) = 0.04;

dashed line represents true P(Sn = 0 | xn−1
n−Ç ) = 0.05. Right plot: black line is function »(p); grey

line shows that estimator ÆP(Sn = 0 | xn−1
n−Ç ) = 0.04
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Table 1 Simulation results in example 1 after 50 launches

np nu Optimal error (%) Nonparametric error (%) Difference (%)

2000 2000 7.96 13.93 5.97

n

s
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x
n
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n
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s
n

0

1

Fig. 3 First plot: unobservable sn. Second plot: observable xn. Third plot: optimal estimator s7n .

Fourth plot: nonparametric s̃n

if Sn = 1, the conditional density is the Rayleigh density

f1(xn|xn−1) = xn

Ã 2(1 − Ã)
exp

�
−
Ãx2

n−1 + x2
n

2Ã 2(1 − Ã)

�
I0

�:
Ãxn−1xn

Ã 2(1 − Ã)

�

with Ã = 0.2, Ã = 1, I0(x) is modified Bessel function, and transition probability

matrix equals

�pi,j� =
�

0.87 0.13

0.10 0.90

�
.

Parameters Ç = 2, n ∈ {0, 1, . . . , 201}, np = 2000, nu = 2000. In Fig. 4 one may

see illustration of densities and their estimators for some point xn. From Fig. 5 it

follows that estimator ÆP(Sn = 0 | xn−1
n−Ç ) = 0.95 is close to real value of a probability
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Fig. 4 Left plot: black line is f (xn | xn−1
n−Ç ); gray line is P(Sn = 0 | xn−1

n−Ç )f0(xn | xn−1
n−Ç ); dashed

line is P(Sn = 1 | xn−1
n−Ç )f1(xn | xn−1

n−Ç ). Right plot: black line is estimator Æf (xn | xn−1
n−Ç ); gray line

is estimator Æf0(xn | xn−1
n−Ç ); gray area between two densities Æf0(xn | xn−1

n−Ç ) and Æf (xn | xn−1
n−Ç ), where

Æf0(xn | xn−1
n−Ç ) exceeds Æf (xn | xn−1

n−Ç )
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Fig. 5 Left plot: black line is ÆQ(p); grey line shows that estimator ÆP(Sn = 0 | xn−1
n−Ç ) = 0.95;

dashed line represents true P(Sn = 0 | xn−1
n−Ç ) = 0.87. Right plot: black line is function »(p); grey

line shows that estimator ÆP(Sn = 0 | xn−1
n−Ç ) = 0.95
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Table 2 Simulation results in example 2 after 50 launches

np nu Optimal error (%) Nonparametric error (%) Difference (%)

2000 2000 9.87 19.24 9.37
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Fig. 6 First plot: unobservable sn. Second plot: observable xn. Third plot: optimal estimator s7n .

Fourth plot: nonparametric s̃n

P(Sn = 0 | xn−1
n−Ç ) = 0.87. This experiment shows good quality of the proposed

method in this case (see Table 2 and Fig. 6).

7 Conclusion

This chapter presents a solution of the nonlinear problem of states estimating of a

homogeneous Markov chain that controls the switching of random processes defined

by their conditional distribution densities under conditions when these densities are

completely unknown to the operator. In addition, the transition probability matrix

of the Markov chain is also unknown. Only a sample of one of the processes and

a mixed sample are available and used to evaluate the state. A novelty of this

work is the nonparametric algorithm for estimating the probability of forecasting

the state of Markov chain by one step ahead, which makes it possible to construct
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an estimator of nonlinear filtration. At the same time, in well-known works on PU

learning it was repeatedly noted that it is not possible to construct an estimator of

the probability of a forecast without additional information. Two examples given

in this chapter show the sufficiently high accuracy of the proposed nonparametric

estimator, even in the case of a strong overlapping of the conditional densities of

the two subsidiary processes. To our knowledge, the a priori conditions adopted in

this work are minimal for solving the problem of estimating the states of the mixing

process. In what follows we intend to find conditions for the convergence of the

proposed state estimates.
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Multiplicative Bias Corrected
Nonparametric Smoothers

N. Hengartner, E. Matzner-Løber, L. Rouvière, and T. Burr

Abstract This contribution presents a general multiplicative bias reduction strategy

for nonparametric regression. The approach is most effective when applied to an

oversmooth pilot estimator, for which the bias dominates the standard error. The

practical usefulness of the method was demonstrated in Burr et al. (IEEE Trans

Nucl Sci 57:2831–2840, 2010) in the context of estimating energy spectra. For such

data sets, it was observed that the method could decrease significantly the bias with

only negligible increase in variance. This chapter presents the theoretical analysis of

that estimator. In particular, we study the asymptotic properties of the bias corrected

local linear regression smoother, and prove that it has zero asymptotic bias and

the same asymptotic variance as the local linear smoother with a suitably adjusted

bandwidth. Simulations show that our asymptotic results are available for modest

sample sizes.

1 Introduction

In nonparametric regression, the bias-variance tradeoff of linear smoothers such as

kernel-based regression smoothers, wavelet based smoother, or spline smoothers, is

generally governed by a user-supplied parameter. This parameter is often called the

bandwidth, which we will denote by h. As an example, assuming that the regression

function m is locally twice continuously differentiable at a point x, the local linear
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smoother with bandwidth h and kernel K has conditional bias at that point

h2

2
m��(x)

�
u2K(u) du+ op(h

2)

and conditional variance

1

nh

Ã 2(x)

f (x)

�
K2(u) du+ op

�
1

nh

�

where f stands for the density of the (one-dimensional) explanatory variable X and

Ã 2(x) is the conditional variance of the response variable given X = x. See, for

example, the book of [7]. Since the bias increases with the second order derivative

of the regression function, the local linear smoother tends to under-estimate in the

peaks and over-estimate in the valleys of the regression function. See, for example,

[25–27].

The resulting bias in the estimated peaks and valleys is troublesome in some

applications, such as the estimation of energy spectrum from nuclear decay.

That example motivates the development of our multiplicative bias correction

methodology. The interested reader is referred to [2] for a more detailed description

and analysis.

All nonparametric smoothing methods are generally biased. There are a large

number of methods to reduce the bias, but most of them do so at the cost of

an increase in the variance of the estimator. For example, one may choose to

undersmooth the energy spectrum. Undersmoothing will reduce the bias but will

have a tendency of generating spurious peaks. One can also use higher order

smoothers, such as local polynomial smoother with a polynomial of order larger

than one. While again this will lead to a smaller bias, the smoother will have a

larger variance. Another approach is to start with a pilot smoother and to estimate

its bias by smoothing the residuals [3, 4, 6]. Subtracting the estimated bias from the

smoother produces a regression smoother with smaller bias and larger variance. For

the estimation of an energy spectrum, the additive bias correction and the higher

order smoothers have the unfortunate side effect of possibly generating a non-

positive estimate.

An attractive alternative to the linear bias correction is the multiplicative bias

correction pioneered by [19]. Because the multiplicative correction does not alter the

sign of the regression function, this type of correction is particularly well suited for

adjusting non-negative regression functions. [20] showed that if the true regression

function has four continuous derivatives, then the multiplicative bias reduction is

operationally equivalent to using an order four kernel. And while this does remove

the bias, it also increases the variance because of the roughness of such a kernel.

Many authors have extended the work of [20]. Glad [9, 10] propose to use a

parametrically guided local linear smoother and Nadaraya-Watson smoother by

starting with a parametric pilot. This approach is extended to a more general

framework which includes both multiplicative and additive bias correction by [21]
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(see also [16, 22, 28] for an extension to time series conditional variance estimation

and spectral estimation). For multiplicative bias correction in density estimation and

hazard estimation, we refer the reader to the works of [11, 12, 17, 23, 24].

Although the bias-variance tradeoff for nonparametric smoothers is always

present in finite samples, it is possible to construct smoothers whose asymptotic

bias converges to zero while keeping the same asymptotic variance. Hengartner

and Matzner-Løber [13] has exhibited a nonparametric density estimator based on

multiplicative bias correction with that property, and has shown in simulations that

his estimator also enjoys good finite sample properties. Burr et al. [2] adapts the

estimator from [13] to nonparametric regression with aim to estimate energy spectra.

They illustrate the benefits of their approach on real and simulated spectra. The goal

of this chapter is to study the asymptotic properties of that estimator. It is worth

pointing out that these properties have already been studied by [19] for fixed design

and further by [20]. We emphasize that there are two major differences between our

work and that of [20].

• First, we do not add regularity assumptions on the target regression function. In

particular, we do not assume that the regression function has four continuous

derivatives as in [20].

• Second, we show that the multiplicative bias reduction procedure performs a bias

reduction with no cost to the asymptotic variance. It is exactly the same as the

asymptotic variance of the local linear estimate.

Finally, we note that we show a different asymptotic behavior under less restrictive

assumptions than those found in [20]. Moreover our results and proofs are different

from the above referenced works.

This contribution is organized as follows. Section 2 introduces the notation and

defines the estimator. Section 3 gives the asymptotic behavior of the proposed

estimator. A brief simulation study on finite sample comparison is presented in

Sect. 4. The interested reader is referred to Sect. 6 where we have gathered the

technical proofs.

2 Preliminaries

2.1 Notations

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of the pair of random variables

(X, Y ) with values in R × R. We suppose that the explanatory variable X has

probability density f and model the dependence of the response variable Y to the

explanatory variable X through the nonparametric regression model

Y = m(X)+ ·. (1)
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We assume that the regression function m(·) is smooth and that the disturbance ·

is a mean zero random variable with finite variance Ã 2 that is independent of the

covariate X. Consider the linear smoothers for the regression function m(x) which

we write as

Æm(x) =
n�

j=1

Ëj (x; h)Yj ,

where the weight functions Ëj (x; h) depend on a bandwidth h. If the weight

functions are such that
�n

j=1 Ëj (x; h) = 1 and
�n

j=1 Ëj (x; h)2 = (nh)−1Ç 2, and

if the disturbances satisfy the Lindeberg’s condition, then the linear smoother obeys

the central limit theorem

:
nh

»
¿ Æm(x)−

n�

j=1

wj (x; h)m(Xj )

¿
£ d−³ N (0, Ç 2) as n ³ >. (2)

We can use (2) to construct asymptotic pointwise confidence intervals for the

unknown regression function m(x). But unless the limit of the scaled bias

b(x) = lim
n−³>

:
nh

»
¿

n�

j=1

wj (x; h)m(Xj )−m(x)

¿
£ ,

which we call the asymptotic bias, is zero, the confidence interval

�
Æm(x)− Z1−³/2

:
nhÇ, Æm(x)+ Z1−³/2

:
nhÇ
�

will not cover asymptotically the true regression functionm(x) at the nominal 1−³

level (Z1−³/2 stands for the (1 − ³/2)-quantile of the N (0, 1) distribution). The

construction of valid pointwise 1 − ³ confidence intervals for regression smoothers

is another motivation for developing estimators with zero asymptotic bias.

2.2 Multiplicative Bias Reduction

Given a pilot smoother with bandwidth h0 for the regression function m(x),

m̃n(x) =
n�

j=1

Ëj (x; h0)Yj ,
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consider the ratio Vj = Yj
m̃n(Xj )

. That ratio is a noisy estimate of the inverse relative

estimation error of the smoother m̃n at each of the observations, m(Xj )/m̃n(Xj ).

Smoothing Vj using a second linear smoother, say

�³n(x) =
n�

j=1

Ëj (x; h1)Vj ,

produces an estimate for the inverse of the relative estimation error that can be used

as a multiplicative correction of the pilot smoother. This leads to the (nonlinear)

smoother

�mn(x) =�³n(x)m̃n(x). (3)

The estimator (3) was first studied for fixed design by [19] and extended to the

random design by [20]. In both cases, they assumed that the regression function had

four continuous derivatives, and show an improvement in the convergence rate of

the bias corrected Nadaraya-Watson kernel smoother. The idea of multiplicative bias

reduction can be traced back to [9, 10], who proposed a parametrically guided local

linear smoother that extended a parametric pilot regression estimate with a local

polynomial smoother. It is showed that the resulting regression estimate improves

on the naïve local polynomial estimate as soon as the pilot captures some of the

features of the regression function.

3 Theoretical Analysis of Multiplicative Bias Reduction

In this section, we show that the multiplicative smoother has smaller bias with

essentially no cost to the variance, assuming only two derivatives of the regression

function. While the derivation of our results is for local linear smoothers, the

technique used in the proofs can be easily adapted for other linear smoothers, and

the conclusions remain essentially unchanged.

3.1 Assumptions

We make the following assumptions:

1. The regression function is bounded and strictly positive, that is, b g m(x) g a >

0 for all x.

2. The regression function is twice continuously differentiable everywhere.
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3. The density of the covariate is strictly positive on the interior of its support in the

sense that f (x) g b(K ) > 0 over every compact K contained in the support

of f .

4. · has finite fourth moments and has a symmetric distribution around zero.

5. Given a bounded symmetric probability density K(·), consider the weights

Ëj (x; h) associated to the local linear smoother. That is, denote by Kh(·) =
K(·/h)/h the scaled kernel by the bandwidth h and define for k = 0, 1, 2, 3 the

sums

Sk(x) c Sk(x; h) =
n�

j=1

(Xj − x)kKh(Xj − x).

Then

Ëj (x; h) = S2(x; h)− (Xj − x)S1(x; h)
S2(x; h)S0(x; h)− S2

1 (x; h)
Kh(Xj − x).

We set

Ë0j (x) = Ëj (x; h0) and Ë1j (x) = Ëj (x; h1).

6. The bandwidths h0 and h1 are such that

h0 ³ 0, h1 ³ 0, nh0 ³ >, nh3
1 ³ >,

h1

h0
³ 0 as n ³ >.

The positivity assumption (assumption 1) on m(x) is classical when we perform

a multiplicative bias correction. It allows to avoid that the terms Yj /m̃n(Xj ) blow

up. Of course, the regression function might cross the x-axis. For such a situation,

[10] proposes to shift all response data Yi a distance a, so that the new regression

function m(x)+ a does not any more intersect with the x-axis. Such a method can

also be performed here. Assumptions 2–4 are standard to obtain rate of convergence

for nonparametric estimators. Assumption 5 means that we conduct the theory for

the local linear estimate. The results can be generalized to other linear smoothers.

Assumption 6 is not restrictive since it is satisfied for a wide range of values of h0

and h1.

3.2 A Technical Aside

The proof of the main results rests on establishing a stochastic approximation of

estimator (3) in which each term can be directly analyzed.



Multiplicative Bias Corrected Nonparametric Smoothers 37

Proposition 1 We have

�mn(x) = μn(x)+
n�

j=1

Ë1j (x)Aj (x)+
n�

j=1

Ë1j (x)Bj (x)+
n�

j=1

Ë1j (x)¿j ,

where μn(x), conditionally on X1, . . . , Xn is a deterministic function, Aj , Bj , and

¿j are random variables. Under condition nh0 ³ >, the remainder ¿j converges

to 0 in probability and we have

�mn(x) = μn(x)+
n�

j=1

Ë1j (x)Aj (x)+
n�

j=1

Ë1j (x)Bj (x)+ OP

�
1

nh0

�
.

Remark 1 A technical difficulty arises because even though ¿j may be small in

probability, its expectation may not be small. We resolve this problem by showing

that we only need to modify ¿j on a set of vanishingly small probability to guarantee

that its expectation is also small.

Definition 1 Given a sequence of real numbers an, we say that a sequence of

random variables ¿n = op(an) if for all fixed t > 0,

lim sup
n−³>

P[|¿n| > tan] = 0.

We will need the following Lemma.

Lemma 1 If ¿n = op(an), then there exists a sequence of random variables ¿�n such

that

lim sup
n−³>

P[¿�n �= ¿n] = 0 and E[¿�n ] = o(an).

We shall use the following notation:

E[¿n] = E[¿�n ].

3.3 Asymptotic Behavior

We deduce from Proposition 1 and Lemma 1 the following theorem.

Theorem 1 Under the assumptions (1)-(6), the estimator �mn satisfies:

E (�mn(x)|X1, . . . , Xn) = μn(x)+ Op

�
1

n
:
h0h1

�
+ Op

�
1

nh0

�
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and

V�(�mn(x)|X1, . . . , Xn) = Ã 2
n�

j=1

w2
1j (x)+ Op

�
1

nh0

�
+ op

�
1

nh1

�
.

We deduce from Theorem 1 that if the bandwidth h0 of the pilot estimator

converges to zero much slower than h1, then �mn has exactly the same asymptotic

variance as the local linear smoother of the original data with bandwidth h1.

However, for finite samples, the two step local linear smoother can have a slightly

larger variance depending on the choice of h0. For the bias term, a limited Taylor

expansion of μn(x) leads to the following result.

Theorem 2 Under the assumptions (1)-(6), the estimator �mn satisfies:

E (�mn(x)|X1, . . . , Xn) = m(x)+ op(h
2
1).

Remark 2 Note that we only assume that the regression function is twice con-

tinuously differentiable. We do not add smoothness assumptions to improve the

convergence rate from Op(h
2
1) to op(h

2
1). In that manner, our analysis differs from

that of [20] who assumed m to be four times continuously differentiable to conclude

that the bias corrected smoother converged at the Op(h
4
1) rate. For a study of the

local linear estimate in the presence of jumps in the derivative, we refer the reader

to [5].

Remark 3 Under similar smoothness assumptions, [8, 10, 21] have provided a

comprehensive asymptotic behavior for the multiplicative bias corrected estimator

with a parametric guide. They obtain the same asymtptotic variance as the local

linear estimate and a bias reduction provided the parametric guide captures some of

the features of the regression function. We obtain a similar result when the rate of

decay of the bandwidth of the pilot estimate is carefully chosen.

Combining Theorems 1 and 2, we conclude that the multiplicative adjustment

performs a bias reduction on the pilot estimator without increasing the asymptotic

variance. The asymptotic behavior of the bandwidths h0 and h1 is constrained by

assumption 6. However, it is easily seen that this assumption is satisfied for a large

set of values of h0 and h1. For example, the choice h1 = c1n
−1/5 and h0 = c0n

−³

for 0 < ³ < 1/5 leads to

E� (�mn(x)|X1, . . . , Xn)−m(x) = op(n
−2/5)

and

V�(�mn(x)|X1, . . . , Xn) = Op

�
n−4/5

�
.
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Remark 4 Estimators with bandwidths of order O(n−³) for 0 < ³ < 1/5 are

oversmoothing the true regression function, and as a result, the magnitude of their

biases is of larger than the magnitude of their standard deviations. We conclude that

the multiplicative adjustment performs a bias reduction on the pilot estimator.

4 Numerical Examples

Results presented in the previous sections show that our procedure allows to reduce

the bias of nonparametric smoothers at no cost for the asymptotic variance. The

simulation study in this section shows that the practical benefits of this asymptotic

behavior already emerge at modest sample sizes.

4.1 Local Study

To illustrate numerically the reduction in the bias and associate (limited) increase of

the variance achieved by the multiplicative bias correction, consider estimating the

regression function

m(x) = 5 + 3|x|5/2 + x2 + 4 cos(10x)

at x = 0 (see Fig. 1). The local linear smoother is known to under-estimate the

regression function at local maxima and over-estimate local minima, and hence,

this example provides a good example to explore bias-reduction variance-increase

trade-off. Furthermore, because the second derivative of this regression function is

2.5

5.0

7.5

10.0

−1.0 −0.5 0.0 0.5 1.0

Fig. 1 The regression function to be estimated
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continuous but not differentiable at the origin, the results previously obtained by

[19] do not apply.

For our Monte-Carlo simulation, the data are generated according to the model

Yi = m(Xi)+ ·i, i = 1, . . . , 100,

where ·i are independent N (0, 1) variables, and the covariates Xi are independent

uniform random variables on the interval [−1, 1].
We first consider the local linear estimate and we study its performances over a

grid of bandwidths H = [0.005, 0.1]. For the new estimate, the theory recommends

to start with an oversmooth pilot estimate. In this regard, we take h0 = 0.1 and

study the performance of the multiplicative bias corrected estimate for h1 ∈ H1 =
[0.005, 0.12]. To explore the stability of our two-stage estimator with respect to h0,

we also consider the choice h0 = 0.02. For such a choice, the pilot estimate clearly

undersmoothes the regression function. For both estimates, we take the Gaussian

kernel K(x) = exp(−x2/2)/
:

2Ã .

We conduct a Monte Carlo study to estimate bias and variance of each estimate at

x = 0. To this end, we compute the estimate at x = 0 for 1000 samples (Xi, Yi), i =
1, . . . , 100. The same design Xi, i = 1, . . . , 100 is used for all the sample. The bias

at point x = 0 is estimated by subtracting m(0) at the mean value of the estimate

at x = 0 (the mean value is computed over the 1000 replications). Similarly we

estimate the variance at x = 0 by the variance of the values of the estimate at

this point. Figure 2 presents squared bias, variance and mean square error of each

estimate for different values of bandwidths h for the local linear smoother and h1

for our estimate.

Comparing panel (a) and (c) in Fig. 2, we see that if the pilot smoother under-

estimates the regression function, then the bias is small but the variance is large. For

such a pilot smoother, applying a bias correction does not provide any benefit, and

the resulting estimator can be worse than a good local linear smoother. Intuitively,

the bias of the pilot smoother is already small at the cost of a larger variance, and

operating a bias reduction provides little benefit to the bias and can only make the

variance worse, leading to a suboptimal smoother.

Comparing panel (a) and (b) in Fig. 2, we note that the squared bias is smaller

for the bias corrected smoother over the standard local linear smoother, while the

variance of both smoothers is essentially the same. As a result, the mean squared

error for the bias corrected smoother is smaller than that of the local linear smoother.

This shows that the asymptotic properties outlined in Theorems 1 and 2 emerge for

moderate sample sizes. Table 1 quantifies the benefits of the bias corrected smoother

over the classical local linear smoother.

We conclude our local study by comparing the multiplicative bias correction

smoother starting from a nonparametric pilot with the multiplicative bias correction

smoother starting from a parametric model, as suggested by Glad [10]. Specifically,

we compare our smoother to multiplicative bias smoothers starting with the

following three parametric models:
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Fig. 2 Mean square error (dotted line), squared bias (solid line), and variance (dashed line) of the

local linear estimate (a) and multiplicative bias corrected estimate with h0 = 0.1 (b) and h0 = 0.02

(c) at point x = 0

Table 1 Optimal mean square error (MSE) for the local linear estimate (LLE) and the multiplica-

tive bias corrected estimate (MBCE) with h0 = 0.1 at point x = 0

MSE Bias2 Variance

LLE 0.130 0.031 0.098

MBCE 0.068 0.003 0.065

• first, the guide is chosen correctly and belong to the true parametric family:

m̃1
n(x) = Æ³0 + Æ³1|x|5/2 + Æ³2x

2 + Æ³3 cos(10x);

• second, we consider a linear parametric guide (which is obviously wrong):

m̃2
n(x) = Æ³0 + Æ³1x;

• finally, we use a more reasonable guide, not correct, but that can reflect some a

priori idea on the regression function

m̃3
n(x) = Æ³0 + Æ³1x + Æ³2x

2 + . . .+ Æ³8x
8.

All the estimates Æ³j stand for the classical least square estimates.



42 N. Hengartner et al.

Table 2 Pointwise optimal mean square error at x = 0 for the multiplicative bias corrected

estimates with parametric starts m̃
j
n, j = 1, 2, 3, compared to a multiplicative bias corrected

smoother starting with initial bandwidth h0 = 0.1

MSE Bias2 Variance

Start m̃1
n 0.052 0.000 0.052

Start m̃2
n 0.129 0.031 0.098

Start m̃3
n 0.090 0.019 0.071

MBCE 0.068 0.003 0.065

The multiplicative bias correction is performed on these parametric starts using

the local linear estimate. The performance of the resulting estimates is measured

over a grid of bandwidths H2 = [0.005; 0.4]. Bias and variance of each estimate

are still estimated at x = 0. We keep the same setting as above and all the results are

averaged over the same 1000 replications. We display in Table 2 the optimal MSE

calculated over the grid H2.

As expected, the performance depends on the choice of the parametric start.

Unsurprisingly, the performance of the smoother starting with the parametric guide

m̃1
n (which belongs to the true model) is best. Table 2 shows that (in terms of

MSE) the estimate studied in this work is better than the corrected estimated

with parametric start m̃2
n and m̃3

n. This suggests that in practice, when little priori

information on the target regression function is available, the method proposed in

the present contribution is preferable.

4.2 Global Study

The theory in Sect. 3 does not address the practical issue of bandwidths selection for

both the pilot smoother and the multiplicative adjustment. Burr et al. [2] suggests

adapting existing automatic bandwidth selection procedures to this problem. There

is a large literature on automatic bandwidth selection, including [14, 15]. In this

section, we present a numerical investigation of the leave-one-out cross-validation

method to select both bandwidths h0 and h1 as to minimize the integrated square

error of the estimator. The resulting bias smoother is compared with a local

polynomial smoother, whose bandwidth is selected in a similar manner.

Our selection of test functions for our investigation relies on the comprehensive

numerical study of [18]. We will only compare our multiplicative bias corrected

smoother with the classical local linear smoother. In all our examples, we use a

Gaussian kernel to construct nonparametric smoothers to estimate the following
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Fig. 3 Regression functions to be estimated

regression functions (see Fig. 3):

(1) m1(x) = sin(5Ãx)

(2) m2(x) = sin(15Ãx)

(3) m3(x) = 1 − 48x + 218x2 − 315x3 + 145x4

(4) m4(x) = 0.3 exp [−64(x − .25)2] + 0.7 exp [−256(x − .75)2].

from data Yji = mj (Xi) + ·ji , with disturbances ·j1, . . . , ·jn i.i.d. Normal with

mean zero and standard deviation Ãj = 0.25�mj�2, j = 1, . . . , 4, and X1, . . . , Xn

i.i.d. Uniform on [−0.2, 1.2].
We use a cross validation device to select both h0 and h1 by minimizing

simultaneously over a finite grid H of bandwidths h0 and h1 the leave-one-out

prediction error. That is, given a grid H , we choose the pair ( Æh0, Æh1) defined by

( Æh0, Æh1) = argmin
(h0,h1)∈H ×H

1

n

n�

i=1

(Yi − �mi
n(Xi))

2.
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Table 3 Median over 1000 replications of the selected bandwidths and of the integrated square

error of the selected estimates

LLE MBCE

h ISE (×100) h0 h1 ISE (×100) RISE

m1 0.023 0.957 0.050 0.032 0.735 1.316

m2 0.011 6.094 0.028 0.012 4.771 1.286

m3 0.028 2.022 0.071 0.054 1.281 1.591

m4 0.018 0.087 0.034 0.024 0.074 1.187

LLE and MBCE stands for local linear estimate and multiplicative bias corrected estimate

Here �mi
n stands for the prediction of the bias corrected smoother at Xi , estimated

without the observation (Xi, Yi). We use the Integrated Square Error (ISE)

ISE(�m) =
� 1

0

(m(x)− �m(x))2 dx,

to measure the performance of an estimator �m. Note that even though our estimators

are defined on the interval [−0.2, 1.2] (the support of the explanatory variable), we

evaluate the integral on the interval [0, 1] to avoid boundary effects.

Table 3 compares the median ISE over 1000 replication, of a standard local linear

smoother and our bias corrected smoother from a samples of size n = 100. This

table further presents the median selected bandwidth, and the ratio of the ISE.

First, in all four cases, the ISE for the MBCE is smaller than that of the LLE.

Second, we note that both bandwidths for the multiplicative bias corrected are larger

than the optimal bandwidth of the classical local linear smoother. That h0 is larger

is supported by the theory, as the pilot smoother needs to oversmooth. We surmise

that larger bandwidth h1 reflects the fact that the pilot is reasonably close to the

true regression function, and hence the multiplicative correction is quite smooth and

thus can accommodate a larger bandwidth. Figure 4 displays the boxplots of the

integrated square error for each estimate.

Figure 5 presents, for the regression function m1 with n = 100 and 1000

iterations, different estimators on a grid of points. In lines is the true regression

function which is unknown. For every point on a fixed grid, we plot, side by side, the

mean over 1000 replications of our estimator at that point (left side) and on the right

side of that point the mean over 1000 replications of the local polynomial estimator.

Leave-one-out cross validation is applied to select the bandwidths h0 and h1 for our

estimator and the bandwidth h for the local polynomial estimator. We add also the

interquartile interval in order to see the fluctuations of the different estimators. In

this example, our estimator reduces the bias by increasing the peak and decreasing

the valleys. Moreover, the interquartile intervals look similar for both estimator, as

predicted by the theory.
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Fig. 5 The solid curve represents the true regression function, our estimator is in dashed line and

local linear smoother is dotted

5 Conclusion

This chapter revisits the idea of multiplicative bias reduction under minimal

conditions and shows that it is possible to reduce the bias with little effect to the

variance. Our theory proves that our proposed estimator has zero asymptotic bias

while maintaining the same asymptotic variance than the original smoother. The

simulation study in this work shows that this desirable property emerges for even

modest sample sizes. The one downside of our estimator is that the computation of

data driven “optimal” bandwidths is computationally expensive.

6 Proofs

6.1 Proof of Proposition 1

Write the bias corrected estimator

�mn(x) =
n�

j=1

Ë1j (x)
m̃n(x)

m̃n(Xj )
Yj =

n�

j=1

Ë1j (x)Rj (x)Yj ,

and let us approximate the quantity Rj (x). Define

m̄n(x) =
n�

j=1

Ë0j (x)m(Xj ) = E (m̃n(x)|X1, . . . , Xn) ,
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and observe that

Rj (x) = m̃n(x)

m̃n(Xj )

= m̄n(x)

m̄n(Xj )
×
�

1 + m̃n(x)− m̄n(x)

m̄n(x)

�
×
�

1 + m̃n(Xj )− m̄n(Xj )

m̄n(Xj )

�−1

= m̄n(x)

m̄n(Xj )
× [1 +�n(x)] ×

1

1 +�n(Xj )
,

where

�n(x) = m̃n(x)− m̄n(x)

m̄n(x)
=

�
l≤n Ë0l(x)·l�

l≤n Ë0l(x)m(Xl)
.

Write now Rj (x) as

Rj (x) = m̄n(x)

m̄n(Xj )

�
1 +�n(x)−�n(Xj )+ rj (x,Xj )

�

where rj (x,Xj ) is a random variable converging to 0 to be defined later on. Given

the last expression and model (1), estimator (3) could be written as

�mn(x) =
n�

j=1

Ë1j (x)Rj (x)Yj

=
n�

j=1

Ë1j (x)
m̄n(x)

m̄n(Xj )
m(Xj )+

n�

j=1

Ë1j (x)
m̄n(x)

m̄n(Xj )

�
·j +m(Xj )

�
�n(x)−�n(Xj )

��

+
n�

j=1

Ë1j (x)
m̄n(x)

m̄n(Xj )

�
�n(x)−�n(Xj )

�
·j +

n�

j=1

Ë1j (x)
m̄n(x)

m̄n(Xj )
rj (x,Xj )Yj

=μn(x)+
n�

j=1

Ë1j (x)Aj (x)+
n�

j=1

Ë1j (x)Bj (x)+
n�

j=1

Ë1j (x)¿j .

which is the first part of the proposition. Under assumption set forth in Sect. 3.1,

the pilot smoother m̃n converges to the true regression function m(x). Bickel

and Rosenblatt [1] shows that this convergence is uniform over compact sets K

contained in the support of the density of the covariate X. As a result, for n large

enough supx∈K |m̃n(x)− m̄n(x)| ≤ 1
2

with probability 1. So a limited expansion of

(1 + u)−1 yields for x ∈ K

Rj (x) = m̄n(x)

m̄n(Xj )

�
1 +�n(x)−�n(Xj )+ Op

�
|�n(x)�n(Xj )| +�2

n(Xj )
��

,
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thus

¿j = Op

�
|�n(x)�n(Xj )| +�2

n(Xj )
�
.

Under the stated regularity assumptions, we deduce that ¿j = Op

�
1
nh0

�
, leading to

the announced result. Proposition 1 is proved.

6.2 Proof of Lemma 1

By definition lim supn−³> P[|¿n| > tan] = 0 for all t > 0, so that a triangular

array argument shows that there exists an increasing sequence m = m(k) such that

P
�
|¿n| >

an

k

�
≤ 1

k
for all n g m(k).

For m(k) ≤ n ≤ m(k + 1)− 1, define

¿�n =
�
¿n if |¿n| < k−1an

0 otherwise.

It follows from the construction of ¿�n that for n ∈ (m(k),m(k + 1)− 1),

P[¿n �= ¿7
n ] = P[|¿n| > k−1an] ≤ 1

k
,

which converges to zero as n goes to infinity. Finally set k(n) = sup{k : m(k) ≤ n},
we obtain

E[|¿�n |] ≤ an

k(n)
= o(an).

6.3 Proof of Theorem 1

Recall that �mn(x) = μn(x)+
�n

j=1 Ë1j (x)Aj (x)+
�n

j=1 Ë1j (x)Bj (x)+OP

�
1
nh0

�
.

Focus on the conditional bias, we get

E(μn(x)|X1, . . . , Xn) = μn(x), E(Aj (x)|X1, . . . , Xn) = 0
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and

E(Bj (x)|X1, . . . , Xn) = m̄n(x)

m̄n(Xj )
Ã 2
�Ë0j (x)

m̄n(x)
− Ë0j (Xj )

m̄n(Xj )

�
.

Since

������

n�

j=1

Ë1j (x)Ë0j (x)

������
≤

����
n�

j=1

Ë1j (x)2

����
n�

j=1

Ë0j (x)2 = Op

�
1

n
:
h0h1

�
,

we deduce that

E

»
¿

n�

j=1

Ë1j (x)Bj (x)

���X1, . . . , Xn

¿
£ = Op

�
1

n
:
h0h1

�
.

This proves the first part of the theorem. For the conditional variance, we use the

following expansion of the two-stage estimator

�mn(x) =
n�

j=1

Ë1j (x)
m̄n(x)

m̄n(Xj )
Yj
�
1 +
�
�n(x)−�n(Xj )

��
+ Op

�
1

nh0

�
.

Using the fact that the residuals have four finite moments and have a symmetric

distribution around 0, a moment’s thought shows that

V(Yj
�
�n(x)−�n(Xj )

�
|X1, . . . , Xn) = Op

�
1

nh0

�

and

Cov(Yj , Yj
�
�n(x)− �n(Xj )

�
|X1, . . . , Xn) = Op

�
1

nh0

�
.

Hence

V�(�mn(x)|X1, . . . , Xn) = V

»
¿

n�

j=1

Ë1j (x)
m̄n(x)

m̄n(Xj )
Yj

���X1, . . . , Xn

¿
£+Op

�
1

nh0

�
.

Observe that the first term on the right-hand side of this equality can be seen as the

variance of the two-stage estimator with a deterministic pilot estimator. It follows
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from [10] that

V

»
¿

n�

j=1

Ë1j (x)
m̄n(x)

m̄n(Xj )
Yj

���X1, . . . , Xn

¿
£ = Ã 2

n�

j=1

Ë2
1j (x)+ op

�
1

nh1

�
,

which proves the theorem.

6.4 Proof of Theorem 2

Recall that

μn(x) =
�

j≤n
Ë1j (x)

m̄n(x)

m̄n(Xj )
m(Xj ).

We consider the limited Taylor expansion of the ratio

m(Xj )

m̄n(Xj )
= m(x)

m̄n(x)
+ (Xj − x)

�
m(x)

m̄n(x)

��
+ 1

2
(Xj − x)2

�
m(x)

m̄n(x)

���
(1 + op(1)),

then

μn(x) = m̄n(x)

§
«
«

m(x)

m̄n(x)

n�

j=1

Ë1j (x)+
�
m(x)

m̄n(x)

�� n�

j=1

(Xj − x)Ë1j (x)

+1

2

�
m(x)

m̄n(x)

��� n�

j=1

(Xj − x)2Ë1j (x)(1 + op(1))

«
¯
¯ .

It is easy to verify that
�n

j=1 Ë1j (x) = 1,
�n

j=1(Xj − x)Ë1j (x) = 0, and

£2(x; h1) =
n�

j=1

(Xj − x)2Ë1j (x) = S2
2 (x; h1)− S3(x; h1)S1(x; h1)

S2(x; h1)S0(x; h1)− S2
1 (x; h1)

.

For random designs, we can further approximate (see, e.g., [27])

Sk(x, h1) =
�
hkÃ kKf (x)+ op(h

k) for k even

hk+1Ã k+1
K f �(x)+ op(h

k+1) for k odd,
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where Ã kK =
�
ukK(u) du. Therefore

£2(x; h1) = h2
1

�
u2K(u) du+ op(h

2
1)

= Ã 2
Kh

2
1 + op(h

2
1),

so that we can write μn(x) as

μn(x) =m̄n(x)

�
m(x)

m̄n(x)
+

Ã 2
Kh

2
1

2

�
m(x)

m̄n(x)

���
+ op(h

2
1)

�

=m(x)+ Ã 2
Kh

2
1

2
m̄n(x)

�
m(x)

m̄n(x)

���
+ op(h

2
1).

Moreover

�
m(x)

m̄n(x)

���
= m̄2

n(x)m
��(x)

m̄3
n(x)

− 2
m̄n(x)m̄

�
n(x)m

�(x)

m̄3
n(x)

−m(x)m̄n(x)m̄
��
n(x)

m̄3
n(x)

+ 2
m(x)(m̄�

n(x))
2

m̄3
n(x)

and applying the usual approximations, we conclude that

�
m(x)

m̄n(x)

���
= op(1).

Putting all pieces together, we obtain

E(�mn(x)|X1, . . . , Xn)−m(x) = op(h
2
1)+ Op

�
1

n
:
h0h1

�
+ Op

�
1

nh0

�
.

Since nh3
1 −³ > and h1

h0
−³ 0, we conclude that the bias is of order op(h

2
1).
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Efficiency of the V -Fold Model Selection
for Localized Bases

F. Navarro and A. Saumard

Abstract Many interesting functional bases, such as piecewise polynomials or

wavelets, are examples of localized bases. We investigate the optimality of V -fold

cross-validation and a variant called V -fold penalization in the context of the selec-

tion of linear models generated by localized bases in a heteroscedastic framework.

It appears that while V -fold cross-validation is not asymptotically optimal when V

is fixed, the V -fold penalization procedure is optimal. Simulation studies are also

presented.

1 Introduction

V -fold cross-validation type procedures are extremely used in statistics and machine

learning, with however a rather small set of theoretical results on it [3]. This

chapter aims at investigating from the theoretical point of view and on simulations,

the efficiency of two V -fold strategies for model selection in a heteroscedastic

regression setting, with random design. On the one hand, we investigate the

behaviour of the classical V -fold cross-validation to select, among other examples,

linear models of wavelets. As pointed out in the case of histogram selection in [2],

this procedure is not asymptotically optimal when V is fixed, as it is the case in

practice where V is usually taken to be equal to 5 or 10. On the other hand, we

study the V -fold penalization proposed by Arlot [2] and show its efficiency in our

general context.

More precisely, the present contribution is devoted to an extension of some

results obtained in [16] related to efficiency of cross-validation type procedures.

Indeed, as remarked in [16] (see Remark 5.1 therein) our results obtained for the

selection of linear models endowed with a strongly localized basis (see Definition

(Aslb), Section 2.1 of [16]) can be extended to more general and more classical

F. Navarro (�) · A. Saumard

CREST-ENSAI-UBL, Bruz, France

e-mail: fabien.navarro@ensai.fr; adrien.saumard@ensai.fr

© Springer Nature Switzerland AG 2018

P. Bertail et al. (eds.), Nonparametric Statistics, Springer Proceedings

in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96941-1_4&domain=pdf
mailto:fabien.navarro@ensai.fr
mailto:adrien.saumard@ensai.fr
https://doi.org/10.1007/978-3-319-96941-1_4


54 F. Navarro and A. Saumard

localized bases, at the price of considering only models with sufficiently small

dimensions. Rigorous proofs are given here and further simulation studies are

explored.

This chapter is organized as follows. In Sect. 2, we describe our model selection

setting. Then V -fold cross-validation is considered in Sect. 3, while the efficiency of

V -fold penalization is tackled in Sect. 4. A simulation study is reported in Sect. 5.

The proofs are exposed in Sect. 6.

2 Model Selection Setting

Assume that we observe n independent pairs of random variables ¿i = (Xi, Yi) ∈
X ×R with common distribution P . For convenience, we also denote by ¿ =
(X, Y ) a random pair, independent of the sample (¿1, . . . , ¿n), following the same

distribution P . The set X is called the feature space and we assume X ¢ Rd ,

d g 1. We denote by PX the marginal distribution of the design X. We assume that

the following regression relation is valid,

Y = s7 (X)+ Ã (X) · ,

with s7 ∈ L2

�
PX
�

the regression function that we aim at estimating. Conditionally

to X, the residual · is normalized, i.e. it has mean zero and variance one. The

function Ã : X ³R+ is a heteroscedastic noise level, assumed to be unknown.

To produce an estimator of s7, we are given a finite collection of models Mn,

with cardinality depending on the amount n of data. Each model m ∈ Mn is taken

to be a finite-dimensional vector space, of linear dimension Dm. We will further

detail in a few lines the analytical structure of the models.

We set �s�2 =
��

X
s2dPX

�1/2
the quadratic norm in L2

�
PX
�

and sm the

orthogonal—with respect to the quadratic norm—projection of s7 onto m. For a

function f ∈ L1 (P ), we write P(f ) = Pf = E [f (¿)]. We call the least squares

contrast a functional ³ : L2

�
PX
�
³ L1 (P ), defined by

³ (s) : (x, y) �³ (y − s (x))2 , s ∈ L2

�
PX
�

.

Using these notations, the regression function s7 is the unique minimizer of the risk,

s7 = arg min
s∈L2(PX)

P (³ (s)) .

The projections sm are also characterized by

sm = arg min
s∈m

P (³ (s)) .



Efficiency of the V -Fold Model Selection for Localized Bases 55

To each model m ∈ Mn, we associate a least squares estimator Æsm, defined by

Æsm ∈ arg min
s∈m

{Pn (³ (s))}

= arg min
s∈m

�
1

n

n�

i=1

(Yi − s (Xi))
2

�
,

where Pn = n−1
�n

i=1 ·¿i is the empirical measure associated to the sample.

The accuracy of estimation is tackled through the excess loss of the estimators,

�
�
s7, Æsm

�
:= P

�
³
�
Æsm
�
− ³ (s7)

�
=
��Æsm − s7

��2

2
.

The following “bias-variance” decomposition holds,

�
�
s7, Æsm

�
= � (s7, sm)+ �

�
sm, Æsm

�
,

where

� (s7, sm) := P (³ (sm)− ³ (s7)) = �sm − s7�2
2

�
�
sm, Æsm

�
:= P

�
³
�
Æsm
�
− ³ (sm)

�
g 0 .

The deterministic quantity � (s7, sm) is called the bias of the model m, while the

random variable �
�
sm, Æsm

�
is called the excess loss of the least squares estimator Æsm

on the model m. By the Pythagorean Theorem, we have

�
�
sm, Æsm

�
=
��Æsm − sm

��2

2
.

From the collection of models Mn, we aim at proposing an estimator that is as

close as possible in terms of excess loss to an oracle model m7, defined by

m7 ∈ arg min
m∈Mn

�
�
�
s7, Æsm

��
.

We choose to select an estimator from the collection
�
Æsm ; m ∈ Mn

�
. Hence, the

selected model is denoted by Æm. The goal is to ensure that the selected estimator

achieves an oracle inequality of the form

�
�
s7, Æs�m

�
≤ C × inf

m∈Mn

�
�
s7, Æsm

�
,

for a constant C g 1 as close as possible to one and on an event of probability close

to one.
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3 V-Fold Cross-Validation

For convenience, let us denote in the following�sm (Pn) the least squares estimator

built from the empirical distribution Pn = 1/n
�n

i=1 ·(Xi ,Yi). To perform the V -fold

cross-validation (VFCV) procedure, we consider a partition
�
Bj

�
1≤j≤V of the index

set {1, . . . , n} and set

P
(j)
n = 1

Card
�
Bj

�
�

i∈Bj
·(Xi ,Yi) and P

(−j)
n = 1

n− Card
�
Bj

�
�

i /∈Bj
·(Xi ,Yi) .

We assume that the partition
�
Bj

�
1≤j≤V is regular: for all j ∈ {1, . . . , V },

Card
�
Bj

�
= n/V . It is worth noting that it is always possible to define our partition

such supj
��Card

�
Bj

�
− n/V

�� < 1 so that the assumption of regular partition is

only a slight approximation of the general case. Let us write�s(−j)m = �sm
�
P
(−j)
n

�

the estimators built from the data in the block Bj . Now, the selected model �mVFCV

is taken equal to any model optimizing the V -fold criterion,

�mVFCV ∈ arg min
n∈Mn

{critVFCV (m)} , (1)

where

critVFCV (m) = 1

V

V�

j=1

P
(j)
n ³

�
�s (−j)m

�
. (2)

Let us now detail the set of assumptions under which we will investigate the

accuracy of VFCV.

Set of assumptions: (SA)

(P1) Polynomial complexity of Mn: there exist some constants cM , ³M > 0

such that Card (Mn) ≤ cM n³M .

(Alb) There exists a constant rM such that for each m ∈ Mn one can find an

orthonormal basis (×k)
Dm

k=1 satisfying, for all (³k)
Dm

k=1 ∈ RDm ,

�����

Dm�

k=1

³k×k

�����
>

≤ rM
�
Dm |³|> , (3)

where |³|> = max {|³k| ; k ∈ {1, . . . ,Dm}}.
(P2) Upper bound on dimensions of models in Mn: there exists a positive

constant AM ,+ such that for every m ∈ Mn, Dm ≤ AM ,+n1/3 (ln n)−2.
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(Ab) A positive constant A exists that bounds the data and the projections sm of

the target s7 over the models m of the collection Mn: |Yi | ≤ A < >, �sm�> ≤
A < > for all m ∈ Mn.

(An) Uniform lower-bound on the noise level: Ã (Xi) g Ãmin > 0 a.s.

(Apu) The bias decreases as a power of Dm: there exist ³+ > 0 and C+ > 0 such

that

� (s7, sm) ≤ C+D
−³+
m .

Assumption (Alb) refers to the classical concept of localized basis (Birgé and

Massart [6]). It is proved in [5], Section 3.2.1, that linear models of piecewise

polynomials with bounded degree on a regular partition of a bounded domain of

Rd are endowed with a localized basis. It is also proved that compactly supported

wavelet expansions are also fulfilled with a localized basis on Rd . However, the

Fourier basis is not a localized basis. For some sharp concentration results related

to the excess loss of least squares estimators built from the Fourier basis, we refer

to [19].

The assumption (Alb) is more general than the assumption of strongly localized

basis used in [16], but the price to pay for such generality is that, according to (P2)

we can only consider models with dimensions Dm << n1/3.

Assumption (P1) states that the collection as a polynomial cardinality with

respect to the sample size, allowing in particular to consider a collection of models

built from a basis expansion.

Then Assumption (Ab) is related to boundedness of the data and enables

in particular to use Talagrand’s type concentration inequalities for the empirical

process. Going beyond the bounded setting would in particular bring much more

technicalities that might darken our work. For an example of results in an unbounded

setting, see, for instance, [4], dealing with optimal selection of regressograms (his-

tograms being a very particular case of our general framework). Assumption (An)

is essentially a technical assumption that allows to obtain sharp lower bounds for

the excess losses of the estimators. Condition (Apu) is a very classical assumption

in the model selection literature, specifying a rate of decay for the biases of the

models. This assumption is classically satisfied for piecewise polynomials when the

regression function belongs to a Sobolev space and for wavelet models whenever

the target belongs to some Besov space (see, for instance, [5] for more details). The

specific value of ³+ parameter will only affect the value of the constants in the

derived oracle inequalities.

Theorem 1 Assume that (SA) holds. Let r ∈ (2,+>) and V ∈ {2, . . . , n− 1}
satisfying 1 < V ≤ r . Define the V -fold cross-validation procedure as the model

selection procedure given by (1). Then, for all n g n0 ((SA) , r), with probability at

least 1 − L(SA),rn
−2,

�
�
s7,�s�mVFCV

�
≤
�

1 + L(SA),r:
lnn

�
inf

m∈Mn

�
�
�
s7,�s(−1)

m

��
+ L(SA),r

(ln n)3

n
.
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In Theorem 1, we prove an oracle inequality with principal constant tending to

one when the sample size goes to infinity. This inequality bounds from above the

excess loss of the selected estimator by the excess loss of the oracle learned with a

fraction 1 − V −1 of the original data. Ideally, one would, however, expect from an

optimal procedure to recover the oracle built from the entire data. The next section

is devoted to this task.

Parameter V (or r) is considered in Theorem 1 as a constant, essentially for ease

of presentation. Actually, the value of V may be allowed to depend on n but also

on the dimensions Dm, meaning that we may take different values of V according

to the different models of the collection. More precisely, it can be seen from the

arguments in the proofs (especially from Theorem 8 in [18]) that for each model

m ∈ Mn, it suffices to have V ≤ max
�
Dm(lnn)

−Ç ; 2
�

where Ç is any number in

(1, 3) to ensure an oracle inequality with leading constant tending to one when the

amount of data tends to infinity. In this case, r cannot be considered as a parameter

independent from the sample size anymore, but it can be checked that for the latter

constraints on V , the constants n0 ((SA) , r) and L(SA),r do not explode but are still

uniformly bounded with respect to n and thus can still be considered as independent

from n.

4 V-Fold Penalization

Now we investigate the behaviour of a penalization procedure proposed by Arlot [2]

and called V -fold penalization,

�mpenVF ∈ arg min
n∈Mn

�
critpenVF (m)

�
,

where

critpenVF (m) = Pn (³ (�sm))+ penVF (m) ,

with

penVF (m) = V − 1

V

V�

j=1

�
Pn³
�
�s (−j)m

�
− P

(−j)
n ³

�
�s (−j)m

��
. (4)

The property underlying the V -fold penalization is that the V -fold penalty penVF

is an unbiased estimate of the ideal penalty penid, the latter allowing to identify the

oracle m7,

m7 ∈ arg min
m∈Mn

{P (³ (�sm))}

= arg min
m∈Mn

�
Pn (³ (�sm))+ penid (m)

�
,
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where

penid (m) = P (³ (�sm))− Pn (³ (�sm)) .

The following theorem states the asymptotic optimality of the V -fold penaliza-

tion procedure for a fixed V .

Theorem 2 Assume that (SA) holds. Let r ∈ (2,+>) and V ∈ {2, . . . , n− 1}
satisfying 1 < V ≤ r . Define the V -fold cross-validation procedure as the model

selection procedure given by

�mpenVF ∈ arg min
n∈Mn

�
Pn (³ (�sm))+ penVF (m)

�
.

Then, for all n g n0 ((SA) , r), with probability at least 1 − L(SA),rn
−2,

�
�
s7,�s�mpenVF

�
≤
�

1 + L(SA),r:
lnn

�
inf

m∈Mn

{� (s7,�sm)} + L(SA),r
(lnn)3

n
.

As for Theorem 1 above, parameter V (or r) is considered in Theorem 2 as

a constant but in fact, the value of V may be allowed to depend on n and even

on the dimensions Dm, this case corresponding to possibly different choices V

according to the models of the collection. As for Theorem 1, it is allowed to have

V ≤ max
�
Dm(lnn)

−Ç ; 2
�

where Ç is any number in (1, 3) to ensure an oracle

inequality with leading constant tending to one when the amount of data tends to

infinity.

5 Simulation Study

In order to assess the numerical performances of the model selection procedures we

have discussed, a short simulation study was conducted. Particularly, to illustrate

the theory developed above for the selection of linear estimators using the V -fold

cross-validation and V -fold penalization, linear wavelet models were considered.

Despite the fact that a linear wavelet estimator is not as flexible, or potentially

as powerful, as a nonlinear one, it still preserves the computational efficiency of

wavelet methods and can provide comparative results to thresholding estimator,

particularly when the unknown function is sufficiently smooth (see [1]).

The simulations were carried out using Matlab and the wavelet toolbox Wave-

lab850 [10]. The codes used to replicate the numerical results presented here will

be available at https://github.com/fabnavarro. For more details on the numerical

simulations and comparisons with other model selection procedures, we refer the

reader to [19].

https://github.com/fabnavarro
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Fig. 1 The three test functions used in the simulation study (from left to right Angle, Corner and

Parabolas)

The simulated data were generated according to Yi = s7(Xi) + Ã(Xi)·i, i =
1, . . . , n, where n = 4096, Xi ’s are uniformly distributed on [0, 1], ·i’s are

independent N (0, 1) variables and independent of Xi’s. The heteroscedastic noise

level Ã(x) = | cos(10x)|/10. Daubechies’ compactly supported wavelet with 8

vanishing moments was used. Three standard regression functions with different

degrees of smoothness (Angle, Corner, and Parabolas, see [7, 14]) were considered.

They are plotted in Fig. 1 and a visual idea of the noise level is given in Fig. 2b.

The computation of wavelet-based estimators is straightforward and fast in the

fixed design case, thanks to Mallat’s pyramidal algorithm [13]. In the case of random

design, the implementation requires some changes and several strategies have been

developed in the literature (see, e.g., [8, 11]). In the regression with uniform design

[9] has examined convergence rates when the unknown function is in a Hölder

class. They showed that the standard equispaced wavelet method with universal

thresholding can be directly applied to the nonequispaced data (without a loss in

the rate of convergence). We have followed this approach since it preserves the

computational simplicity and efficiency of the equispaced algorithm. In the context

of wavelet regression in random design with heteroscedastic dependent errors [12]

has also adopted this approach. Thus, the wavelet coefficients of the collection of

models is computed by a simple application of Mallat’s algorithm using the ordered

Yi’s as input variables. The collection is then constructed by successively adding

whole resolution levels of wavelet coefficients. Thus, the considered dimensions

are {Dm,m ∈ Mn} = {2j , j = 1, . . . , J − 1}, where J = log 2(n) (the

finest resolution level). Finally, the selected model is obtained by minimizing (2)

and (4) over the set m ∈ Mn. Note that these linear models operate in a global

fashion since whole levels of coefficients are suppressed as opposed to thresholding

methods.

For choosing the threshold parameter in wavelet shrinkage Nason [15] adjusted

the usual 2FCV method—which cannot be applied directly to wavelet estimation.

In order to implement its strategy in a linear context, we test, for every model

of the collection, an interpolated wavelet estimator learned from the (ordered)
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Fig. 2 (a) Noisy observations. (b) Typical reconstructions from a single simulation with n =
4096. Dashed line indicates the true function s7, solid line corresponds to the estimates�s�m2FCV

and

dashed-dotted line to�s�mpen2F
. (c) Graph of the excess risk �(s7,�sm) (black) against the dimension

Dm and (rescaled) crit2FCV(m) (gray) and critpen2F(m) (light-gray) (in a log-log scale). The gray

circle represents the global minimizer �m2FCV of crit2FCV(m), the light-gray diamond corresponds

to the global minimizer �m2FCV of critpen2F(m) and the black star the oracle model m7

even-indexed data against the odd-indexed data and vice versa. More precisely,

considering the data Xi are ordered, the selected model �m2FCV (resp. �mpen2F) is

obtained by minimizing (2) (resp. (4)) with V = 2, B1 = {2, 4, . . . , n} and

B2 = {1, 3, . . . , n− 1}.
For one Monte Carlo simulation with a sample size n = 4096, we display the

estimation results in Fig. 2b. Plots of the excess risk �(s7,�sm) against the dimension

Dm are plotted in Fig. 2c. The curve crit2FCV(m) and critpen2F(m) are also displayed

in Fig. 2c. It can be observed that crit2FCV(m) and critpen2F(m) give very reliable

estimate for the risk �(s7,�sm), and in turn, also a high-quality estimate of the

optimal model. Indeed, in this case, both methods consistently select the oracle

model m7.
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6 Proofs

As a preliminary result, let us first prove the consistency in sup-norm of our

least squares estimators. This is in fact the main change compared to the strongly

localized case treated in [16].

Theorem 3 Let ³ > 0. Assume that m is a linear vector space satisfying

Assumption (Alb) and use the notations given in the statement of (Alb). Assume

also that Assumption (Ab) holds. If there exists A+ > 0 such that

Dm ≤ A+
n1/3

(lnn)2
,

then there exists a positive constant LA,rM ,³ such that, for all n g n0 (rM , ³),

P

�
��Æsm − sm

��
> g LA,rM ,³

�
Dm ln n

n

�
≤ n−³ .

Proof (Proof of Theorem 3) Let C > 0. Set

F
>
C := {s ∈ m ; �s − sm�> ≤ C}

and

F
>
>C := {s ∈ m ; �s − sm�> > C} = m\F>

C .

Take an orthonormal basis (×k)
Dm

k=1 of (m, �·�2) satisfying (Alb). By Lemma 19 of

[16], we get that there exists L
(1)
A,rm,³

> 0 such that, by setting

«1 =
�

max
k∈{1,...,Dm}

|(Pn − P) (Ëm · ×k)| ≤ L
(1)
A,rm,³

�
ln n

n

�
,

we have for all n g n0 (A+), P («1) g 1 − n−³ . Moreover, we set

«2 =
�

max
(k,l)∈{1,...,Dm}2

|(Pn − P ) (×k · ×l)| ≤ L(2)
³,rm

min
�
�×k�> ; �×l�>

�
�

ln n

n

�
,

where L
(2)
³,rm is defined in Lemma 18 of [16]. By Lemma 18 of [16], we have that

for all n g n0 (A+), P («2) g 1 − n−³ and so, for all n g n0 (A+),

P
�
«1

�
«2

�
g 1 − 2n−³ .
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We thus have for all n g n0 (A+),

P (�sn − sm�> > C)

≤P

�
inf

s∈F>
>C

Pn (³ (s)− ³ (sm)) ≤ inf
s∈F>

C

Pn (³ (s) − ³ (sm))

�

=P

�
sup

s∈F>
>C

Pn (³ (sm)− ³ (s)) g sup
s∈F>

C

Pn (³ (sm)− ³ (s))

�

≤P

»
¿
§
«
« sup
s∈F>

>C

Pn (³ (sm)− ³ (s)) g sup
s∈F>

C/2

Pn (³ (sm)− ³ (s))

«
¯
¯
�

«1

�
«2

¿
£+ 2n−³ .

(5)

Now, for any s ∈ m such that

s − sm =
Dm�

k=1

³k×k, ³ = (³k)
Dm

k=1 ∈ RDm ,

we have

Pn (³ (sm)− ³ (s))

= (Pn − P) (Ëm · (sm − s))− (Pn − P)

�
(s − sm)

2
�

− P (³ (s)− ³ (sm))

=
Dm�

k=1

³k (Pn − P) (Ëm · ×k)−
Dm�

k,l=1

³k³l (Pn − P) (×k · ×l)−
Dm�

k=1

³2
k .

We set for any (k, l) ∈ {1, . . . ,Dm}2,

R
(1)
n,k = (Pn − P) (Ëm · ×k) and R

(2)
n,k,l = (Pn − P) (×k · ×l) .

Moreover, we set a function hn, defined as follows:

hn : ³ = (³k)
Dm

k=1 �−³
Dm�

k=1

³kR
(1)
n,k −

Dm�

k,l=1

³k³lR
(2)
n,k,l −

Dm�

k=1

³2
k .

We thus have for any s ∈ m such that s − sm =
�Dm

k=1 ³k×k , ³ = (³k)
Dm

k=1 ∈ RDm ,

Pn (³ (sm)− ³ (s)) = hn (³) . (6)
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In addition we set for any ³ = (³k)
Dm

k=1 ∈ RDm ,

|³|m,> = rm
�
Dm |³|> .

It is straightforward to see that |·|m,> is a norm on RDm , proportional to the sup-

norm. We also set for a real Dm ×Dm matrix B, its operator norm �A�m associated

to the norm |·|m,> on the Dm-dimensional vectors. More explicitly, we set for any

B ∈ RDm×Dm ,

�B�m := sup
³∈RDm , ³ �=0

|B³|m,>
|³|m,>

= sup
³∈RDm , ³ �=0

|B³|>
|³|>

.

We have, for any B =
�
Bk,l

�
k,l=1,...,Dm

∈ RDm×Dm , the following classical formula

�B�m = max
k∈{1,...,Dm}

§
«
«

§
«
«

�

l∈{1,...,Dm}

��Bk,l

��
«
¯
¯

«
¯
¯ .

Notice that by inequality (3) of (Alb), it holds

F
>
>C ¢

�
s ∈ m ; s − sm =

Dm�

k=1

³k×k & |³|m,> g C

�
(7)

and

F
>
C/2 £

�
s ∈ m ; s − sm =

Dm�

k=1

³k×k & |³|m,> ≤ C/2

�
. (8)

Hence, from (5), (6), (8), and (7) we deduce that if we find on «1

�
«2 a value of

C such that

sup
³∈RDm , |³|m,>gC

hn (³) < sup
³∈RDm , |³|m,>≤C/2

hn (³) ,

then we will get

P (��sm − sm�> > C) ≤ 2n−³ .

Taking the partial derivatives of hn with respect to the coordinates of its arguments,

it then holds for any (k, l) ∈ {1, . . . ,Dm}2 and ³ = (³i)
Dm

i=1 ∈ RDm ,

"hn

"³k
(³) = R

(1)
n,k − 2

Dm�

i=1

³iR
(2)
n,k,i − 2³k (9)
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We look now at the set of solutions ³ of the following system,

"hn

"³k
(³) = 0 , "k ∈ {1, . . . ,Dm} . (10)

We define the Dm ×Dm matrix R
(2)
n to be

R(2)
n :=

�
R
(2)
n,k,l

�
k,l=1,...,Dm

and by (9), the system given in (10) can be written

2
�
IDm + R(2)

n

�
³ = R(1)

n , (S)

where R
(1)
n is a Dm-dimensional vector defined by

R(1)
n =

�
R
(1)
n,k

�
k=1,...,Dm

.

Let us give an upper bound of the norm

���R(2)
n

���
m

, in order to show that the matrix

IDm + R
(2)
n is nonsingular. On «2 we have

���R(2)
n

���
m

= max
k∈{1,...,Dm}

§
«
«

§
«
«

�

l∈{1,...,Dm}
|(Pn − P) (×k · ×l)|

«
¯
¯

«
¯
¯

≤ L(2)
³,rm

max
k∈{1,...,Dm}

§
«
«

§
«
«

�

l∈{1,...,Dm}
min
�
�×k�> ; �×l�>

�
�

lnn

n

«
¯
¯

«
¯
¯

≤ rmL
(2)
³,rm

�
D3
m lnn

n
(11)

Hence, from (11) and the fact that Dm ≤ A+ n1/3

(ln n)2
, we get that for all n g

n0 (rm, ³), it holds on «2,

���R(2)
n

���
m

≤ 1

2

and the matrix
�
Id + R

(2)
n

�
is nonsingular, of inverse

�
Id + R

(2)
n

�−1

=
�+>

u=0

�
−R(2)

n

�u
. Hence, the system (S) admits a unique solution ³(n), given by

³(n) = 1

2

�
Id + R(2)

n

�−1
R(1)
n .
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Now, on «1 we have

���R(1)
n

���
m,>

≤ rm
�
Dm max

k∈{1,...,Dm}
|(Pn − P) (Ëm · ×k)| ≤ rmL

(1)
A,rm,³

�
Dm lnn

n

and we deduce that for all n0 (rm, ³), it holds on «2

�
«1,

���³(n)
���
m,>

≤ 1

2

����
�
Id + R(2)

n

�−1
����
m

���R(1)
n

���
m,>

≤ rmL
(1)
A,rm,³

�
Dm ln n

n
. (12)

Moreover, by the formula (6) we have

hn (³) = Pn (³ (sm))− Pn

�
Y −

Dm�

k=1

³k×k

�2

and we thus see that hn is concave. Hence, for all n0 (rm, ³), we get that on «2,

³(n) is the unique maximum of hn and on «2

�
«1, by (12), concavity of hn and

uniqueness of ³(n), we get

hn

�
³(n)
�

= sup
³∈RDm , |³|m,>≤C/2

hn (³) > sup
³∈RDm , |³|m,>gC

hn (³) ,

with C = 2rmL
(1)
A,rm,³

�
Dm lnn

n
, which concludes the proof.

From Theorem 2 of [17] and Theorem 3 above, we deduce the following excess

risks bounds.

Theorem 4 Let A+, A−, ³ > 0. Assume that m is a linear vector space of finite

dimensionDm satisfying (Alb(m)) and use notations of (Alb(m)). Assume, moreover,

that the following assumption holds:

(Ab(m)) There exists a constant A > 0, such that �sm�> ≤ A and |Y | ≤ A a.s.

If it holds

A− (lnn)2 ≤ Dm ≤ A+
n1/3

(ln n)2
,

then a positive constant A0 exists, only depending on ³,A− and on the constants

A, Ãmin and rm such that by setting

·n = A0 max

��
ln n

Dm

�1/4

,

�
Dm ln n

n

�1/4
�

,
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we have for all n g n0 (A−, A+, A, rm, Ãmin, ³),

P

�
(1 − ·n)

Cm

n
≤ � (sm,�sm) ≤ (1 + ·n)

Cm

n

�
g 1 − 10n−³ ,

P

��
1 − ·2

n

�
Cm

n
≤ �emp (�sm, sm) ≤

�
1 + ·2

n

�
Cm

n

�
g 1 − 5n−³ ,

where Cm =
�Dm

k=1 var ((Y − sm (X)) · ×k (X)).
Having at hand Theorem 4, the proofs of Theorems 1 and 4 follow from the exact

same lines as the proofs of Theorems 6 and 7 of [16]. To give a more precise view of

the ideas involved, let us detail the essential arguments of the proof of Theorem 1.

We set

crit0VFCV (m) = critVFCV (m)− 1

V

V�

j=1

P
(j)
n (³ (s7)) .

The difference between crit0VFCV (m) and critVFCV (m) being a quantity independent

of m ∈ Mn, the procedure defined by crit0VFCV gives the same result as the VFCV

procedure defined by critVFCV.

We get for all m ∈ Mn,

crit0VFCV (m) = 1

V

V�

j=1

P
(j)
n

�
³
�
�s (−j)m

�
− ³ (s7)

�

= 1

V

V�

j=1

�
P
(j)
n

�
³
�
�s (−j)m

�
− ³ (sm)

�

+
�
P
(j)
n − P

�
(³ (sm)− ³ (s7))+ P (³ (sm)− ³ (s7))

�

= �
�
s7,�s (−1)

m

�
+ �V (m)+ ·̄ (m) (13)

where

�V (m) = 1

V

V�

j=1

P
(j)
n

�
³
�
�s (−j)m

�
− ³ (sm)

�
− P
�
³
�
�s (−1)
m

�
− ³ (sm)

�
,

and

·̄ (m) = 1

V

V�

j=1

�
P
(j)
n − P

�
(³ (sm)− ³ (s7))
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Now, we have to show that�V (m) and ·̄ (m) are negligible in front of �
�
s7,�s (−1)

m

�
.

For ·̄ (m), this is done by using Bernstein’s concentration inequality (see Lemma 7.5

of [16]). To control �V (m), we also make use of Bernstein’s concentration

inequality, but by conditioning successively on the data used to learn the estimators

�s (−j)m , j = 1, . . . , V (see Lemma 7.3 and Corollary 7.4 of [16]).
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Non-parametric Lower Bounds
and Information Functions

S. Y. Novak

Abstract We argue that common features of non-parametric estimation appear in

parametric cases as well if there is a deviation from the classical regularity condition.

Namely, in many non-parametric estimation problems (as well as some parametric

cases) unbiased finite-variance estimators do not exist; neither estimator converges

locally uniformly with the optimal rate; there are no asymptotically unbiased with

the optimal rate estimators; etc.

We argue that these features naturally arise in particular parametric subfamilies

of non-parametric classes of distributions. We generalize the notion of regularity of

a family of distributions and present a general regularity condition, which leads to

the notions of the information index and the information function.

We argue that the typical structure of a continuity modulus explains why

unbiased finite-variance estimators cannot exist if the information index is larger

than two, while in typical non-parametric situations neither estimator converges

locally uniformly with the optimal rate. We present a new result on impossibility

of locally uniform convergence with the optimal rate.

1 Introduction

It was observed by a number of authors that in many non-parametric estimation

problems the accuracy of estimation is worse than in the case of a regular parametric

family of distributions, estimators depend on extra tuning “parameters,” unbiased

estimators are not available, the weak convergence of normalized estimators to the

limiting distribution is not uniform at the optimal rate, no estimator is uniformly

consistent in the considered class of distributions. These features have been

observed, e.g., in the problems of non-parametric density, regression curve, and tail

index estimation (cf. [9, ch. 13], and the references therein).
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Our aim in this study is to develop a rigorous treatment of these features through

a generalization of the notion of regularity of a family of probability distributions.

We argue that features mentioned above (which might have been considered

accidental drawbacks of particular estimation procedures) in reality are inevitable

consequences of the “richness” of the non-parametric class of distributions under

consideration.

We argue that the degree of “richness” of the class of distributions determines

the accuracy of estimation. The interplay between the degree of “richness” and the

accuracy of estimation can be revealed via the non-parametric lower bounds. In

some situations the lower bound to the accuracy of estimation is bounded away

from zero, meaning consistent estimation is impossible.

2 Regularity Conditions and Lower Bounds

In a typical estimation problem one wants to estimate a quantity of interest

aP from a sample X1, . . . , Xn of independent and identically distributed (i.i.d.)

observations, where the unknown distribution P = Ł(X1) belongs to a particular

class P .

If there are reasons to assume that the unknown distribution belongs to a

parametric family P = {P» , » ∈ �}, � ¢ X , where X is R
m or a Hilbert

space, then it is natural to choose aP» = » . Other examples include aP = fP , the

density of P with respect to a given measure μ (assuming every P ∈ P has a

density with respect to μ), the tail index of a distribution form the class of regularly

varying distributions, etc.

Let

d
H
, dÇ and d

T V

denote Hellinger, χ2 , and the total variation distances, respectively.

In the case of a parametric family of probability distributions a typical regularity

condition states/implies that

d2
H
(P» ;P»+h) > �h�2I»/8 or d2

Ç(P» ;P»+h) > �h�2I» (1)

as h ³ 0, » ∈�, »+h∈�, where I» is “Fisher’s information.” If one of regularity

conditions (1) holds, estimator Æ» is unbiased, and function » ³ E»� Æ» − »�2 is

continuous, then

E»� Æ» − »�2 g 1/nI» ("» ∈�). (2)



Non-parametric Lower Bounds and Information Functions 71

This is the celebrated Fréchet–Rao–Cramér inequality. Thus, if an unbiased estima-

tor with a finite second moment exists, then the optimal unbiased estimator is the

one that turns lower bound (2) into equality.

However, the assumption of existence of unbiased estimators may be unrealistic

even in parametric estimation problems. For instance, Barankin [1] gives an example

of a parametric estimation problem where an unbiased estimator with a finite second

moment does not exist.

Below we suggest a generalization of the regularity condition for a family of

probability distributions, and introduce the notion of an information index. We

then present a non-parametric generalization of the Fréchet–Rao–Cramér inequality.

We give reasons why in typical non-parametric estimation problems (as well as in

certain parametric ones) unbiased estimators with a finite second moment do not

exist.

Notation Below an > bn means an = bn(1+o(1)) as n ³ >. We write

an >
> bn (*)

if an g bn(1+o(1)) as n ³ >.

Recall the definitions of the Hellinger distance dH and the χ2-distance dÇ . If

the distributions P1 and P2 have densities f1 and f2 with respect to a measure

μ, then

d2
H
(P1;P2)=

1

2

�
(f

1/2
1 − f

1/2
2 )2dμ = 1 −

� �
f1f2 dμ ,

d2
Ç(P1;P2)=

�
(f2/f1 − 1)2dP1 ,

In the definition of dÇ we presume that suppP1 § suppP2.

Definition 1 We say the parametric family P = {P» , » ∈�}, �¢X , obeys the

regularity condition (Rt,H) if there exist ¿>0 and It,H >0 such that

d2
H
(Pt ;Pt+h) > It,H�h�¿ (Rt,H)

as h ³ 0, t ∈�, t+h∈� .

Family P obeys the regularity condition (RH) if there exist ¿>0 and function

I·,H >0 such that (Rt,H) holds for every t ∈� .

Definition 2 We say family P obeys the regularity condition (Rt,Ç) if there exist

¿>0 and It,Ç>0 such that

d2
Ç
(Pt ;Pt+h) > It,Ç�h�¿ (Rt,Ç)

as h ³ 0, t ∈�, t+h∈� .
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Family P obeys the regularity condition (RÇ) if there exist ¿>0 and function

I·,Ç>0 such that (Rt,Ç) holds for every t ∈� .

Definitions 1 and 2 extend the notion of regularity of a parametric family of

distributions.

A variant of these definitions has > replaced with ≤ .

We are not aware of natural examples where dependence of d2
H
(Pt ;Pt+h) or

d2
Ç
(Pt ;Pt+h) on h is more complex. However, if such examples appear, then (Rt,H)

and (Rt,Ç) can be generalized by replacing �h�¿ in the right-hand sides with Ë(h)

for a certain function Ë .

Definition 3 If (R
H
) or (RÇ ) holds, then we call ¿ the “information index” and

I·,H and/or I·,Ç the “information functions.”

It is known (see, e.g., [12] or [9, ch. 14]) that

d2
H

≤ d
T V

≤
:

2d
H

≤ dÇ . (3)

If both (R
H
) and (RÇ) are in force, then inequality 2d2

H
≤ d2

Ç
entails

2It,H ≤ It,Ç .

In Example 1 below It,Ç = 2It,H . In the case of a family {Pt = N (t; 1), t ∈R}
of normal random variables (r.v.s) one has

d2
H
(P0;Pt ) = 1 − e−t

2/8 , d2
Ç (P0;Pt ) = et

2 − 1,

hence It,Ç = 8It,H (cf. [9, ch. 14.4]).

Information index ¿ indicates how “rich” or “poor” the class P is. In the case

of a regular parametric family of distributions (i.e., a family obeying (1)) one has

¿ = 2.

“Irregular” parametric families of distributions may obey (RH) and (RÇ) with ¿ < 2

(cf. Example 1 and [9, ch. 13]).

Example 1 Let P = {Pt , t > 0}, where Pt = U[0; t] is the uniform distribution

on [0; t]. Then

d2
H
(Pt+h;Pt ) = 1 − (1+|h|/t)−1/2 > h/2t (tgh�0),

d2
Ç
(Pt+h;Pt ) = h/t, dT V(Pt+h;Pt ) = h/(t+h) (tgh>0).

Hence family P is not regular in the traditional sense (cf. (1)). Yet (R
H
) and (RÇ )

hold with

¿ = 1 , It,H = 1/2t , It,Ç = 1/t .
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The optimal estimator t7n = max{X1, . . . , Xn}(n+1)/n is unbiased, and

Et (t
7
n − t)2 = t2/n(n+2). ��

Parametric subfamilies of non-parametric classes typically obey (R
H
) and (RÇ ) with

¿ > 2 (cf. Example 3 and [9, ch. 13]).

We present now lower bounds to the accuracy of estimation when (R
H
) or (RÇ )

holds. Theorem 1 below indicates that the accuracy of estimation is determined by

the information index and the information function.

Definition 4 We say that set � obeys property (A·) if for every t ∈� there exists

t � ∈� such that �t � − t� = ·. Property (A) holds if (A·) is in force for all small

enough ·> 0.

We say that estimator Æ» with a finite first moment has “regular” bias if for every

t ∈� there exists ct>0 such that

�Et+h Æ» − Et
Æ»� > ct�h� (h ³ 0). (4)

An unbiased estimator obeys (4) with ct c 1. If � is an interval, then (A)

trivially holds.

Theorem 1 ([9]) Assume property (A), and suppose that estimator Ætn obeys (4).

If (RÇ ) holds with ¿∈(0; 2), then, as n ³ >,

sup
t∈�

(nIt,Ç )
2/¿

Et�Ætn − t�2/c2
t
>
> y2/¿

¿ /(ey¿ −1), (5)

where y¿ is the positive root of the equation 2(1−e−y) = ¿y.

If the function t ³ Et�Æt − t�2 is continuous, then, as n ³ >,

(nIt,Ç )
2/¿

Et�Ætn − t�2/c2
t
>
> y2/¿

¿ /(ey¿−1) ("t ∈�). (57)

If (RÇ ) holds with ¿>2, then Et�Ætn�2 = > (#t ∈�).

The result holds with (RÇ ) replaced by (RH ) if It,Ç is replaced with It,H and

the right-hand side of (5) is replaced with (ln 4/3)2/¿/4 .

According to (5), the rate of the accuracy of estimation for estimators with

regular bias cannot be better than n−1/¿ . Moreover, (5) establishes that the natural

normalizing sequence for Ætn − t depends in a specific way on n, ¿, and the

information function.

Theorem 1 supplements the Fréchet–Rao–Cramér inequality that deals with the

case ¿=2. Note that (57) formally extends to the case ¿=2 with y2 := 0 and the

right-hand side of (57) treated as limy³0 y/(e
y−1) = 1.

According to Theorem 1, an estimator Ætn cannot be unbiased or have a regular

bias if (RÇ ) or (R
H
) holds with ¿>2 and Et�Ætn�2 < > for every t ∈� .

Lower bounds involving continuity moduli are presented in the next section.
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3 Lower Bounds Based on Continuity Moduli

We consider now a general situation where one cannot expect regularity conditions

to hold (cf. Example 3).

Let P be an arbitrary class of probability distributions, and let the quantity of

interest aP be an element of a metric space (X , d). Given · > 0, we denote by

P
H
(P, ·) = {Q∈P : d

H
(P ;Q) ≤ ·}

the neighborhood of distribution P ∈P . We call

wH(P, ·) = sup
Q∈PH (P ,·)

d(aQ; aP )/2 and wH(·) = sup
P∈P

wH (P, ·)

the moduli of continuity.

For instance, if P = {Pt , t ∈�}, aPt = t and d(x; y) = |x − y|, then

2w
H
(Pt , ·) = sup{|h| : d

H
(Pt ;Pt+h) ≤ ·}

and wH(·) = supt wH(Pt , ·).

Similarly we define PÇ (P, ·), PT V(P, ·), wÇ(·) and wT V(·) using the χ2 -

distance dÇ and the total variation distance dT V . For instance, if aP ∈ R and

d(x; y) = |x − y|, then

w
T V
(P, ·) = sup

Q∈P
TV

(P ,·)

|aQ − aP |/2.

The notion of continuity moduli has been available in the literature on non-

parametric estimation for a while (cf. Donoho & Liu [3] and Pfanzagl [10, 11]).

It helps to quantify the interplay between the degree of “richness” of class P and

the accuracy of estimation.

Lemma 1 ([9]) For any estimator Æa and every P0 ∈ P,

sup
P∈PH(P0,·)

P(d( Æan; aP ) g wH(P0, ·)) g (1−·2)2n/4, (6)

sup
P∈PÇ(P0,·)

P(d( Æan; aP ) g wÇ(P0, ·)) g [1+(1+·2)n/2]−2 . (7)

Let R be a loss function. Lemma 1 and Chebyshev’s inequality yield a lower

bound to supP∈PH (P0,·)
E

P
R(d( Æan; aP )). For example, (6) with R(x) = x2 yields

sup
P∈PH (P0,·)

E
1/2
P

d2( Æan; aP ) g wH(P0, ·)(1 − ·2)n/2 . (8)
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A (8)-type result for asymptotically unbiased estimators has been presented by

Pfanzagl [11]. Note that Lemma 1 does not impose any extra assumptions.

The best possible rate of estimation can be found by maximizing the right-hand

side of (8) in ·. For instance, if

wH (P, ·)
>
> JH,P ·

2r (·³0) (9)

for some J
H,P

>0, then the rate of the accuracy of estimation cannot be better than

n−r .
If (R

H
) and/or (RÇ ) hold for a parametric subfamily of P, then

2wH (Pt , ·) > (·2/It,H )
1/¿ and/or 2wÇ (Pt , ·) > (·2/It,Ç )

1/¿, (10)

yielding (9) with r = 1/¿ . Hence the best possible rate of the accuracy of

estimation is n−1/¿ .

The drawback of this approach is the difficulty of calculating the continuity

moduli.

Example 2 Consider the parametric family P of distributions P» with densities

f» (x) = ×(x−»)/2 + ×(x+»)/2 (» ∈R),

where × is the standard normal density. Set

aP» = », d(»1; »2) = |»1 − »2|.

Then

d
H
(Po;Ph) > h2/4 .

Thus, (R
0,H
) holds with

¿ = 4, Io,H = 1/16,

w
H
(Po, ·) > :

· as · ³ 0; there is no asymptotically unbiased with the optimal

rate finite-variance estimator; the rate of the accuracy of estimation in a neighbor-

hood of the standard normal distribution Po cannot be better than n−1/4 (cf. Liu

and Brown [5]). An application of (13.8) in [9] yields

sup
0≤»≤·

EP» | Æ»n − » |2 >
> 1/2

:
en (n ³ >) (11)

for an arbitrary estimator Æ»n and any · > 0. ��
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Put ·2 = c2/n in (8). Then

sup
P∈PH (Po,·)

E
1/2
P d( Æan; aP )2 >

> e−c
2

w
H

�
Po, c/

:
n
�
/2 . (87)

Thus, the rate of the accuracy of estimation of aP in a neighborhood of Po cannot

be better than that of

wH(Po, 1/
:
n )

(cf. Donoho & Liu [3]). More specifically, if (9) holds, then

sup
P∈PH (Po,·)

E
1/2
P d2( Æan; aP ) >

> e−c
2

J
H,Po

c2rn−r/2 . (12)

If JH,· is uniformly continuous on P, then (12) with c2 = r yields the non-

uniform lower bound

sup
P∈P

J−1
H,P

E
1/2
P d2( Æan; aP ) >

> (r/e)rn−r/2 . (13)

Lower bound (13) is non-uniform because of the presence of the term depending

on P in the left-hand side of (13). Note that the traditional approach would be

to deal with supP∈P EP d2( Æan; aP ) (cf. [12]); the latter can in some cases be

meaningless while supP∈P J−1
H,P

EP d2( Æan; aP ) is finite (cf. (14)).

Example 1 (continued) Let aPt = t, d(t; s) = |t − s|. Then

w
H
(Pt , ·) = t·2(1 − ·2/2)/(1 − ·2)2 g t·2 ,

and (9) holds with r = 1, JH,Pt
= t . According to (8) with ·2 = 1/n,

sup
Ps∈PH (Pt ,·)

E
1/2
s |Ætn − s|2 g t/2en

for any estimator Ætn . Hence supt>0 Et |Ætn − t|2 = >, while the non-uniform bound

is

sup
t>0

E
1/2
t |Ætn/t − 1|2 g 1/2en(1+2/n). (14)

Remark In typical non-parametric situations the rate of the accuracy of estimation

is worse than n−1/2 . However, an interesting fact is that if we choose aP = P and

d = d
H
, then w

H
(P, ·) = ·/2 for all P , (9) holds with r=1/2, J

H,P
= 1/2, hence

sup
P∈P

EP d2
H
( Æan; aP ) >

> 1/32en. (15)
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4 On Unbiased Estimation

It is not difficult to notice that in most estimation problems concerning non-

parametric classes of distributions the available estimators are biased. The topic

was studied by a number of authors (see Pfanzagl [11] and the references therein).

Examples include non-parametric density, regression curve, hazard function (failure

rate), and tail index estimation.

We notice in [6] that the sample autocorrelation is a non-negatively biased

estimator of the autocorrelation function (the bias is positive unless the distribution

of the sample elements is symmetric).

Theorem 1 suggests a way of showing that there are no unbiased finite-variance

estimators for a given class P of distributions if the class contains a parametric

family of distributions obeying the regularity condition (RH ) or (RÇ ) with ¿>2.

Example 3 Let Pb, where b>0, be the class of distributions P such that

sup
0<x≤1

��x−³
P P(X<x)− 1

�� x−b³
P < > (#³

P
>0)

(the Hall class). Note that F(x) c P(X < x) = x³(1+O(xb³)) as x ³ 0 if

P ∈ Pb . We consider the problem of estimating index ³ c ³P from a sample of

independent observations when the unknown distribution belongs to Pb .

Let P³,0 and P³,³ be the distributions with distribution functions (d.f.s)

F³,0(y) = y³1{0 < y ≤ 1},
F³,³ (y) = ·−³ y³+³

1{0<y≤·} + y³1{·<y≤1},

where · = ³ 1/b³ , ³ ∈(0; 1). One can check that

d2
H
(P³,0;P³,³ ) = ³ 1/b

�
1 −
�

1+³ /³
�
(1+³ /2³)

�
≤ ³ 1/r/8³2 , (16)

d2
Ç
(P³,0;P³,³ ) = ³ 1/r³−2(1 + ³ /2³)−1 ≤ ³ 1/r/³2 , (17)

where r = b/(1 + 2b). Thus, (Rt,H) and (Rt,Ç) hold with ¿=2+1/b.

According to Theorem 1, there are no unbiased finite-variance estimators of

index ³.

Note that

d2
H
(P³,0;P³,h) > h2+1/b/8³2 (h ³ 0)

for the parametric family {P³,h, 0≤h<1} ¢ Pb , while

d2
H
(P³,0;P³+h,0) > h2/8³2 (h ³ 0)

for the parametric family {P³+h,0, 0≤h<1} ¢ Pb (cf. [9, p. 293]). ��
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The next theorem shows that in typical non-parametric situations there are no

asymptotically unbiased with the rate estimators.

Let {Pn, ng 1} be a non-increasing sequence of neighborhoods of a particular

distribution P0 , and let {zn} be a sequence of positive numbers. Pfanzagl [11] calls

estimator { Æan} asymptotically unbiased uniformly in Pn with the rate {zn} if

lim sup
u³>

lim sup
n³>

sup
P∈Pn

|EPKu(( Æan − aP )/zn)| = 0,

where Ku(x) = x1{|x|≤u}.
Denote Pn,· = PÇ(P0, ·/

:
n ), where ·>0.

Theorem 2 ([11]) Suppose that

lim sup
·³0

·−1 lim inf
n³>

wÇ(P0, ·/
:
n)/zn = >, (18)

lim
u³>

lim inf
n³>

P0(| Æan − aP0 |/zn ≤ u) > 0, (19)

lim
u³>

lim inf
n³>

EP0K
2
u(( Æan − aP0)/zn) < >. (20)

Then estimator { Æan} cannot be asymptotically unbiased with the rate {zn} uni-

formly in Pn,· for some ·>0.

Pfanzagl [11] showed that in a number of particular non-parametric estimation

problems

inf
·>0

·−c lim inf
n³>

wÇ(P0, ·/
:
n )/zn > 0 (# c∈(0; 1)) (21)

(cf. (10)). Note that (21) entails (18).

5 On Consistent Estimation

The rate of the accuracy of estimation can be very poor if the class P of

distributions is “rich.” In utmost cases the lower bound is bounded away from zero

meaning neither estimator is consistent uniformly in P . We present below few such

examples.

Example 4 Let F be a class of distributions with absolutely continuous distri-

bution functions on R such that
�

|f (x+ y) − f (x)|dx ≤ |y|. Ibragimov and

Khasminskiy [4] have shown that

sup
f∈F

Ef

�
| Æfn − f | g 2−9 (n g 1)

for any estimator Æfn of density f (see Devroye [2] for a related result). ��
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Example 5 Consider the problem of non-parametric regression curve estimation.

Given a sample of i.i.d. pairs (X1, Y1), . . . , (Xn, Yn), one wants to estimate the

regression function

Ë(x) = E{Y |X=x}.

There is no uniformly consistent estimator if the only assumption about Ł(X, Y ) is

that function Ë is continuous.

Let P be a class of distributions of random pairs (X, Y ) taking values in R
2

such that function Ë(·) = E{Y |X = ·} is continuous. Set

f0(x, y) = 1{|x|·|y| ≤ 1/2} , f1(x, y) = f0(x, y)+ hg(xh−c)g(y) ,

where c>0, h∈ (0; 1) and g(x) = sin(2Ãx)1{|x|≤1/2}. These are the densities

of two distributions of a random pair (X, Y ).

Let Ëk , k∈{0; 1}, denote the corresponding regression curves. Then

Ë0 c 0 , Ë1(x) = 2Ã−2h sin(2Ãh−cx)1{|x|≤hc/2} .

Hence �Ë0 − Ë1� = 2Ã−2h.

Note that d2
Ç
(f0; f1) ≤ h2+c/4. Applying Lemma 13.1 [9], we derive

max
i∈{0,1}

Pi(� ÆËn − Ë� g h/Ã2) g
�
1+d2

Ç

�−n
/4 g exp(−nh2+c/4)/4

for any regression curve estimator ÆËn. With c = n−2 and h = n−1/n, we get

sup
P∈P

P(� ÆËn − Ë� g 1/9) g 1/4e1/4 . (22)

Hence no estimator is consistent uniformly in P . ��
Example 6 Consider the problem of non-parametric estimation of the distribution

function of the sample maximum. No uniformly consistent estimator exists in a

general situation. Indeed, it is shown in [7, 8] that for any estimator { ÆFn} of the

distribution function of the sample maximum there exist a d.f. F such that

lim sup
n³>

PF

�
� ÆFn − F n� g 1/9

�
g 1/3 .

Moreover, one can construct d.f.s F0 and F1 such that

max
i∈{0;1}

PFi(� ÆFn − F n
i � g 1/4) g 1/4 (ng1),

where F0 is uniform on [0; 1] and F1 c F1,n ³ F0 everywhere as n ³ >.
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An estimator ãn(·) c ãn(·,X1, . . ., Xn) is called shift-invariant if

ãn(x,X1, . . . , Xn) = ãn(x+c,X1+c, . . . , Xn+c)

for every x∈R, c∈R. An estimator ãn(·) is called scale-invariant if

ãn(x, x1, . . . , xn) = ãn(cx, cx1, . . . , cxn) ("c>0)

for all x, x1, . . . , xn.

Examples of shift- and scale-invariant estimators of F n include F n
n , where Fn

is the empirical distribution function, and the “blocks” estimator

F̃n=
� [n/r]�

i=1

1{Mi,r <x}/[n/r]
�n
,

where Mi,r = max{X(i−1)r+1, . . . , Xir } (1≤r≤n).

For any shift- or scale-invariant estimator {F̃n} of the distribution function of the

sample maximum there holds

PF0

�
�F̃n − F n

0 �g1/4
�

g 1/4 (ng1). (23)

Thus, consistent estimation of the distribution function of the sample maximum is

only possible under certain assumptions on the class of unknown distributions. ��

6 On Uniform Convergence

We saw that the rate of the accuracy of estimation cannot be better than

wH(P, 1/
:
n ). According to Donoho and Liu [3], if aP is linear and class P

of distributions is convex, then there exists an estimator Æan attaining this rate.

We show now that in typical non-parametric situations neither estimator con-

verges locally uniformly with the optimal rate.

Definition 5 Let P � be a subclass of P . We say that estimator Æan converges to

aP with the rate zn uniformly in P � if there exists a non-defective distribution P 7

such that

lim
n³>

sup
P∈P �

��P(( Æan − aP )/zn ∈ A)− P 7(A)
�� = 0 (24)

for every measurable set A with P 7("A) = 0.

Note that for every P ∈ P � (24) yields the weak convergence ( Æan − aP )/vn ó
P 7 .
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The following result on impossibility of locally uniform convergence with the

optimal rate is due to Pfanzagl [10]. It involves a continuity modulus based on the

total variation distance.

Let X = R . Denote P(n)
T V
(P0, ·) = {P ∈ P : d

T V
(P n;P n

0 ) ≤ ·}, and recall

that

w(n)
T V
(P0, ·) = sup

P∈P
(n)
TV (P0,·)

|aP − aP0|/2.

Theorem 3 ([10]) Suppose that

lim
·³0

·−1 lim sup
n³>

w(n)
T V
(P0, ·)/zn = >. (25)

Then neither estimator can converge to aP with the rate zn uniformly in

P(n)
T V
(P0, ·) for some ·∈(0; 1).

Example 7 Let P
+
b , where b> 0, be the non-parametric class of distributions on

(0; 1] with densities

f (x) = C³,bx
³−1(1+r(x)),

where sup0<x≤1 |r(x)|x−³b < >. We consider the problem of estimating index ³.

Denote r = b/(1+2b) . Pfanzagl [10] showed that

·−2r lim inf
n³>

nrw(n)
T V
(P0, ·) > 0 ("·∈(0; 1)). (26)

Since r < 1/2, (25) and (26) entail that neither estimator of index ³ can converge

to ³ uniformly in P(n)
T V
(P0, ·) with the rate zn = n−b/(1+2b). ��

The next theorem presents a result on impossibility of locally uniform conver-

gence with the optimal rate involving the modulus of continuity w
H

based on the

Hellinger distance. The Hellinger distance may be preferable to the total variation

distance in identifying the optimal rate of the accuracy of estimation as there are

cases where

d
T V
(P0;P1) � d2

H
(P0;P1)

for “close” distributions P0 and P1. For instance, consider family P =
{P³,³ }³g0 , where distributions {P³,³ } have been defined in Example 3. Then

dT V(P³,o;P³,³ ) > ³ 1/r−1

³e
� d2

H
(P³,o;P³,³ ) > ³ 1/r

8³2
(³ ³ 0).

Theorem 4 If (9) holds for a particular P ∈ P with r < 1/2, then neither

estimator converges to aP with the rate n−r uniformly in PH(P, 1/
:
n ).
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Theorem 4 generalizes Theorem 13.9 in [9] by relaxing the assumption that

there exists a positive continuous derivative of distribution P 7 with respect to the

Lebesgue measure.

Proof of Theorem 4 Let Æan be an arbitrary estimator of aP . Denote

wn,· = 2w
H
(P, ·/

:
n) (·>0).

Let ·∈(0; 1]. For any c>0 one can find P � ∈P
H
(P, ·/

:
n) such that aP � − aP g

wn,· − c. Then for an arbitrary x∈R

1≤P(aP � − Æa > −x)+ P( Æan − aP g x+wn,³−c)

≤P �( Æa − aP � < x)+ P( Æa − aP g x+wn,³−c)+ dT V(P
�n;P n) .

According to (3), d
TV
(P �n;P n) ≤

:
2n d

H
(P �;P). Hence

P �( Æan − aP � g x) ≤ P( Æa − aP g x+wn,·−c)+
:

2n dH(P
�;P) .

Since d
H
(P �;P) ≤ ·/

:
n and wn,· g J

H,P
»n·

2r/nr by (9), where »n ³ 1 as

n ³ >, we can apply the monotone convergence theorem in order to derive that

inf
P �∈P

H
(P ,·/

:
n)
P �( Æan−aP � g x) ≤ P( Æan−aP g x+J

H,P
»n·

2r/nr )+ ·
:

2 (27)

for any ·∈[0; 1].
Suppose that estimator Æan converges to aP uniformly in PH(P, 1/

:
n) with

the rate zn = n−r . Then there exists a non-defective distribution P 7 such that (24)

holds with P � = PH(P, 1/
:
n ). We will show that this assumption leads to a

contradiction.

Let · be an r.v. with the distribution Ł(·) = P 7, and set

x = yn−r (y ∈ R).

The assumption implies that (24) holds also with P � = P
H
(P, ·/

:
n) for every

· ∈ [0; 1]. Taking into account (24) and (27), we derive

P(· g y) ≤ P(· g y+JH,P»n·
2r)+ ·

:
2 .

Hence P(y ≤ · < y+JH,P»n·
2r ) ≤ ·

:
2 . Thus,

P(y ≤ · ≤ y+1) ≤ (1 + [1/JH,P»n·
2r ])·

:
2 ≤ ·

:
2 + ·1−2r

:
2/JH,P »n .
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Since r < 1/2, letting · ³ 0, we get

P(y ≤ · ≤ y+1) = 0 ("y∈R),

i.e., P 7 is a defective distribution.

The contradiction obtained proves the theorem. ��

Acknowledgements The author is grateful to the anonymous reviewer for helpful comments.
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Modification of Moment-Based Tail
Index Estimator: Sums Versus Maxima

N. Markovich and M. Vaičiulis

Abstract In this contribution, we continue the investigation of the SRCEN estima-

tor of the extreme-value index ³ (or the tail index ³ = 1/³ ) proposed in McElroy

and Politis (J Statist Plan Infer 137:1389–1406, 2007) for ³ > 1/2. We propose a

new estimator based on the local maximum. This, in fact, is a modification of the

SRCEN estimator to the case ³ > 0. We establish the consistency and asymptotic

normality of the newly proposed estimator for i.i.d. data. Additionally, a short

discussion on the comparison of the estimators is included.

1 Introduction and Main Results

Let Xk, k g 1 be non-negative independent, identically distributed (i.i.d.) random

variables (r.v.s) with the distribution function (d.f.) F . Suppose that F belongs to

the domain of attraction of the Fréchet distribution

§³ (x) =
�

0, x ≤ 0,

exp{−x−1/³ }, x > 0,
§ := §1,

which means that there exist normalizing constants am > 0 such that

lim
m³>

P

�
Lm

am
≤ x

�
= lim

m³>
Fm (amx) = §³ (x), (1)

for all x > 0, where Lu,v = max{Xu, . . . , Xv} for 1 ≤ u ≤ v and Lv = L1,v .

The parameter ³ > 0 is referred to as positive extreme-value index in the statistical

literature.
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Meerschaert and Scheffler [13] introduced the estimator for ³ g 1/2, which

is based on the growth rate of the logged sample variance of N observations

X1, . . . , XN :

Æ³N = 1

2 ln(N)
ln+
�
Ns2

N

�
,

where s2
N = N−1

�N
i=1

�
Xi − X̄N

�2
, X̄N = (X1 + · · · + XN )/N and ln+(x) =

0 ∨ ln x.

McElroy and Politis [12] divided the observations X1, . . . , XN into non-

intersecting blocks {X(k−1)m2+1, . . . , Xkm2}, 1 ≤ k ≤ [N/m2] of the width m2,

while each such block was divided into non-intersecting sub-blocks of the width m.

To estimate ³ > 1/2 the so-called SRCEN estimator was proposed as the sample

mean over all blocks:

Æ³ (1)N (m) = 1

[N/m2]

[N/m2]�

i=1

¿i(m),

where

¿i(m) =
ln
��im2

j=(i−1)m2+1
X2
j

�

2 ln(m)
− 1

m

m�

k=1

ln
��(k−1)m2+km

j=(k−1)m2+(k−1)m+1
X2
j

�

2 ln(m)
, (2)

and [·] denotes the integer part. In applications a simple heuristic rule for the choice

of sub-block width m = [N1/3], provided in [12], works quite well, see the Monte-

Carlo simulation studies in [12, 17] and [18].

Using the inequality of arithmetic and geometric means we obtain that for sample

X1, . . . , XN , Æ³ (1)N (m) g 1/2 holds with equality if and only if X2
(i−1)m2+1

= · · · =
X2
im2 , 1 ≤ i ≤ [N/m2].
In this chapter we provide an estimator similar to the SRCEN estimator but one

that can be used for ³ > 0, not only for ³ > 1/2. Namely, we replace the sums

in (2) by corresponding maxima and introduce the new estimator

Æ³ (2)N (m) = 1

[N/m2]

[N/m2]�

i=1

�¿i(m)

where

�¿i(m) =
ln
�
L(i−1)m2+1,im2

�

ln(m)
− 1

m

m�

j=1

ln
�
L(i−1)m2+(j−1)m+1,(i−1)m2+jm

�

ln(m)
.
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In fact, the estimator Æ³ (2)N (m) is based on the convergence E ln (Lm) / ln(m) ³ ³

as m ³ >, which implies

2E

�
ln
�
Lm2

�

ln(m2)

�
− E

�
ln (Lm)

ln(m)

�
³ ³, m ³ >. (3)

Thus, the estimator Æ³ (2)N (m) is nothing else, but a moment-type estimator for the

left-hand side in (3).

Note that Æ³ (2)N (m) and Æ³ (1)N (m) are scale-free, i.e., they do not change when Xj

is replaced by cXj with c > 0.

Typically, the estimators, whose constructions are based on the grouping of

the observations into the blocks, are well suited for recursive on-line calculations.

In particular, if Æ³ (1)N (m) = Æ³ (1)N (m;X1, . . . , XN ) denotes the estimate of ³

obtained from observations X1, . . . , XN and we get the next group of updates

XN+1, . . . , XN+m2 , then we obtain

Æ³ (1)
N (m;X1, . . . ,XN+m2 ) = 1

Ñ + 1

Ñ+1�

i=1

¿i(m) = 1

Ñ + 1

�
Ñ Æ³ (1)

N (m)+ ¿Ñ+1(m)
�
,

denoting Ñ = [N/m2]. After getting L additional groups {XN+(k−1)m2+1, . . . ,

XN+km2}, k = 1, . . ., L, we have

Æ³ (1)N (m;X1, . . . , XN+Lm2) = 1

Ñ + L

Ñ+L�

i=1

¿i(m)

= 1

Ñ + L

�
Ñ Æ³ (1)N (m)+ ¿Ñ+1(m)+ . . .+ ¿Ñ+L(m)

�
.

It is important that Æ³ (1)N (m;X1, . . . , XN+Lm2) is obtained using Æ³ (1)N (m) after

O(1) calculations. The same is valid for �³ (2)N (m) substituting ¿i(m) by �¿i(m).
The discussion on on-line estimation of the parameter ³ > 0 can be found in

Section 1.2.3 of [11].

There are situations when data can be divided naturally into blocks but only the

largest observations within blocks (the block-maxima) are available. Several such

examples are mentioned in [15], see also [1], where battle deaths in major power

wars between 1495 and 1975 were analyzed. Then the estimator Æ³ (2)N (m) can be

applied while the estimators Æ³N and Æ³ (1)N (m) are not applicable.

We will formulate our assumptions in terms of a so-called quantile function V of

the d.f. F , which is defined as the left continuous generalized inverse:

V (t) := inf

�
x g 0 : − 1

lnF(x)
g t

�
.
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The domain of attraction condition (1) can be stated in the following way in terms

of V : regarding the d.f. F , (1) holds if and only if for all x > 0,

lim
t³>

V (tx)

V (t)
= x³ , (4)

i.e., the function V varies regularly at infinity with the index ³ > 0 (written V ∈
RV³ ), see, e.g., [3, p.34].

First our result states that Æ³ (2)N (m) is a weakly consistent estimator for ³ > 0. For

the sake of completeness we include a corresponding result (as a direct consequence

of Prop. 1 in [12]) for the SRCEN estimator Æ³ (1)N (m).

Theorem 1 Let observations X1, . . . , XN be i.i.d. r.v.s with d.f. F .

(i) Suppose F satisfies the first-order condition (4) with ³ > 1/2. Suppose, in

addition, that the probability density function p(x) of F exists and is bounded,

and also that p(x)/x is bounded in a neighborhood of zero. Then for the

sequence m = m(N) satisfying

m(N) ³ >,
N ln2 m

m2
³ >, N ³ >, (5)

it holds

Æ³ (1)N (m)
P³ ³, (6)

where
P³ denotes convergence in probability.

(ii) Suppose F satisfies (4) with ³ > 0. Suppose, in addition,

F(·) = 0 (7)

for some · > 0. Then for the sequence m = m(N) satisfying (5) it holds

Æ³ (2)N (m)
P³ ³. (8)

As usual, in order to get asymptotic normality for estimators the so-called

second-order regular variation condition in some form is assumed. We recall that

the function V is said to satisfy the second-order condition if for some measurable

function A(t) with the constant sign near infinity, which is not identically zero, and

A(t) ³ 0 as t ³ >,

lim
t³>

V (tx)
V (t)

− x³

A(t)
= x³

xÃ − 1

Ã
(9)
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holds for all x > 0 with Ã < 0, which is a second-order parameter. The function

A(t) measures the rate of convergence of V (tx)/V (t) towards x³ in (4), and

|A(t)| ∈ RVÃ , see [8].

In this work, we assume a second-order condition stronger than (9). Namely, we

assume that we are in Hall’s class of models (see [9]), where

V (t) = Ct³
�

1 + Ã−1A(t) (1 + o(1))
�
, t ³ > (10)

with A(t) = ³³tÃ , where C > 0, ³ ∈ R \ {0} and Ã < 0. The relation (10) is

equivalent to

F(x) = exp

�
−
� x
C

�−1/³
�

1 + ³

Ã

� x
C

�Ã/³
+ o
�
xÃ/³
���

, x ³ >. (11)

Theorem 2 Let the observations X1, . . . , XN be i.i.d. r.v.s with d.f. F .

(i) Suppose F satisfies the second-order condition (11) with ³ > 1/2 and, in

addition, that the probability density functionp(x) ofF exists and it is bounded,

and also that p(x)/x is bounded in a neighborhood of zero. Then for the

sequence m = m(N) satisfying m ³ > and

N1/2m−2∨(−1+Ã)∨(−2³ ) ln(m) ³ 0, if − 1 ∨ Ã �= 1 − 2³,

N1/2m−2³ ln2(m) ³ 0, if − 1 ∨ Ã = 1 − 2³,

N1/2 ln(m)

m

�
Æ³ (1)N (m)− ³

�
d³ N

�
0,

�
³ 2 − (1/4)

�
Ã2

6

�
, N ³ >,

(12)

holds, where
d³ stands for the convergence in distribution.

(ii) Suppose F satisfies (7) and (11) with ³ > 0. Then, for the sequencem = m(N)

satisfying (5) and

N1/2

m
A(m) ³ ¿ ∈ (−>,+>), (13)

it follows

N1/2 ln(m)

m

�
Æ³ (2)N (m)− ³

�
d³N

�
−¿� (1 − Ã)

Ã
,
³ 2Ã2

6

�
, N ³ >.

(14)

The remainder of this chapter is organized as follows. In the next section we

investigate the asymptotic mean squared error (AMSE) of the introduced estimator,

and compare this estimator with several classical estimators, using the same

methodology as in [4]. The last section contains the proofs of the results.
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2 Comparison

The AMSE of the estimator Æ³ (2)N (m) is given by

AMSE
�

Æ³ (2)N (m)
�

:= 1

ln2(m)

�
� 2(1 − Ã)A2(m)

Ã2
+ ³ 2Ã2m2

6N

�
. (15)

Regular variation theory, provided in [5] (see also [4]), allows us to perform the

minimization of the sum in the curly brackets of (15). Namely, under the choice

m̄(N) =
�

6� 2(1 − Ã)³2

−ÃÃ2

�1/(2(1−Ã))
N1/(2(1−Ã)) (1 + o(1)) , N ³ >,

we have

AMSE
�

Æ³ (2)N (m̄)
�

> � 2(−Ã)³2

�
6³2� 2(1 − Ã)

Ã2(−Ã)

�1/(1−Ã)
NÃ/(1−Ã)

ln2(N)
, N ³ >.

Probably, the Hill’s estimator

³
(H)
N (k) = 1

k

k−1�

j=0

ln

�
XN−j,N
XN−k,N

�
,

is the most popular, [10]. Here, 1 ≤ k ≤ N is a tail sample fraction, while X1,N ≤
X2,N ≤ · · · ≤ XN,N are order statistics from a sample X1, . . . , XN . Let us denote

r = −1 ∨ Ã and

Ç =

§
«
«

³, −1 < Ã < 0,

³ + (1/2), Ã = −1,

1/2, Ã < −1.

From [4] it follows that the minimal AMSE of the Hill’s estimator under assump-

tion (11) satisfies the relation

AMSE
�
³
(H)
N

�
k̄
��

> 1 − 2r

−2r

�−2rÇ2³ 2−4r

(1 − r)2

�1/(1−2r)

N2r/(1−2r), N ³ >,

where

k̄(N) =
�
(1 − r)2

−2rÇ2

�1/(1−2r)

N−2r/(1−2r) (1 + o(1)) , N ³ >.
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Now we can compare the estimators Æ³ (2)N (m̃) and ³
(H)
N

�
k̄
�
. Denote the relative

minimal AMSE in the same way as in [4]:

RMAMSE(³, ³, Ã) = lim
N³>

AMSE
�
³
(H)
N

�
k̄
��

AMSE
�

Æ³ (2)N (m̄)
� .

Following [4] we may conclude that ³
(H)
N

�
k̄
�

dominates Æ³ (2)N (m̄) at the point

(³, ³, Ã) if RMAMSE(³, ³, Ã) < 1 holds. Note that RMAMSE(³, ³, Ã) = 0 holds

for −2 < Ã < 0, i.e. ³
(H)
N

�
k̄
�

dominates Æ³ (2)N (m̄), while for Ã ≤ −2 we have

RMAMSE(³, ³, Ã) = > and thus, Æ³ (2)N (m̄) outperforms ³
(H)
N

�
k̄
�

in this region of

the parameter Ã. It is worth to note that the same conclusion holds if we replace

Hill’s estimator by another estimator investigated in [4].

Unfortunately, it is impossible to compare the performance of Æ³ (1)N (m) and other

estimators taking the AMSE as a measure. By taking ¿ = 0 in (14) one can compare

the estimators Æ³ (1)N (m) and Æ³ (2)N (m) under the same block width m2. By comparing

variances in the limit laws (12) and (14) we conclude that Æ³ (1)N (m) outperforms

Æ³ (2)N (m) for ³ > 1/2.

3 Proofs

Let us firstly provide preliminary results that are useful in our proofs.

Lemma 1 Let X1, . . . , XN be i.i.d. r.v.s with d.f. F . Suppose F satisfies (4) with

³ > 0 and (7). Then

lim
m³>

E ln

�
Lm

V (m)

�
= Ç³, (16)

lim
m³>

E ln2

�
Lm

V (m)

�
= ³ 2

�
Ç2 + Ã2

6

�
, (17)

lim
m³>

E ln4

�
Lm

V (m)

�
= ³ 4

�
Ç4 + Ç2Ã2 + 3Ã4

20
+ 8Ç·(3)

�
, (18)

lim
m³>

E

�
ln

�
Lm2

V (m2)

�
ln

�
Lm

V (m)

��
= Ç2³ 2, (19)

holds, where Ç j 0.5772 is the Euler–Mascheroni constant defined by Ç =
−
�>

0
ln(t) exp{−t}t., while ·(t) denotes the Riemann zeta function, ·(3) j 1.202.
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Proof of Lemma 1 We shall prove (16). Let Y be an r.v. with d.f. §. It is easy to

check that it holds

ln

�
Lm

V (m)

�
d= ln

�
V (mY)

V (m)

�
.

By Theorem B.1.9 in [3], the assumption V ∈ RV³ , ³ > 0 implies that for

arbitrary �1 > 0, �2 > 0 there exists m0 = m0(�1, �2) such that for m g m0,

my g m0,

(1 − �1)y
³ min

�
y�2, y−�2

�
<

V (my)

V (m)
< (1 + �1)y

³ max
�
y�2, y−�2

�

holds. Whence we get that under restriction 0 < �1 < 1 it follows

ln(1 − �1)+ (³ − u(y)) ln(y) < ln

�
V (my)

V (m)

�
< ln(1 + �1)+ (³ + u(y)) ln(y),

(20)

where u(y) = −�2I {y < 1} + �2I {y g 1} and I {·} denotes the indicator function.

We write for m > m0,

E

�
ln

�
V (mY)

V (m)

��
= J1,m + J2,m,

where

J1,m =
� m0/m

0

ln

�
V (my)

V (m)

�
d§(y), J2,m =

� >

m0/m

ln

�
V (my)

V (m)

�
d§(y).

The statement (16) follows from

lim
m³>

J1,m = 0, (21)

lim
m³>

J2,m = Ç³. (22)

Substituting my = t we get

��J1,m

�� ≤
� m0

0

����ln
�
V (t)

V (m)

����� d§(t/m)

=
� m0

0

|lnV (t)| d§(t/m)+ §(m0/m) |lnV (m)| .
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By using d§(t/m) = m§ (t/(m− 1)) d§(t) we obtain

��J1,m

�� ≤ m§ (m0/(m− 1))

� m0

0

|lnV (t)| d§(t)+§(m0/m) |lnV (m)| .

Assumption (7) ensures V (0) g ·, which implies
� m0

0
|lnV (t)| d§(t) < >. Since

the sequence V (n) is of a polynomial growth and §(m0/m) = exp{−m/m0} tends

to zero exponentially fast, then relation (21) follows.

To prove (22) we use inequality (20). Then we obtain

��J2,m − Ç³
�� ≤ max {− ln(1 − �1), ln(1 + �1)}+�2E |ln(Y )|+³

� m0/m

0

|ln (y)| d§(y).

One can check that E |ln(Y )| = Ç − 2Ei(−1), where Ei(x), x ∈ R \ {0} denotes the

exponential integral function, Ei(−1) j −0.219384.

Since �1 > 0 and �2 > 0 may be taken arbitrary small, the proof of relation (22)

will be finished if we show that
� m0/m

0
|ln (y)| d§(y) ³ 0, m ³ >. Substituting

t = my we get

� m0/m

0

|ln (y)| d§(y) =
� m0

0

|ln(t/m)| d§(t/m)

= m

� m0

0

|ln(t/m)|§(t/(m − 1))d§(t)

≤ m§(m0/(m− 1)) (ln(m)+ E |ln(Y )|) ³ 0,

as m ³ >. This completes the proof of (22), and also of relation (16).

Proofs of relations (17) and (18) are similar and thus are skipped. It remains to

prove (19). We note that Lm and Lm+1,m2 are independent r.v.s and Lm2 = Lm ∨
Lm+1,m2 . Let Y1 and Y2 are independent r.v.s with d.f. §. Then it holds

ln

�
Lm2

V (m2)

�
ln

�
Lm

V (m)

�
d= ln

�
V (mY1) ∨ V (m(m− 1)Y2)

V (m2)

�
ln

�
V (mY1)

V (m)

�
,

and consequently,

E

�
ln

�
Lm2

V (m2)

�
ln

�
Lm

V (m)

��
= E

�
ln

�
V (mY1) ∨ V (m(m− 1)Y2)

V (m2)

�
ln

�
V (mY1)

V (m)

��
.

Let us recall that V (t), t g 0 is a non-decreasing function, see, e.g., Prop. 2.3 in [6].

By using this property we obtain

E

�
ln

�
V (mY1) ∨ V (m(m− 1)Y2)

V (m2)

�
ln

�
V (mY1)

V (m)

��
= J3,m + J4,m + J5,m,
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where

J3,m = E

�
ln

�
V (mY1)

V (m2)

�
ln

�
V (mY1)

V (m)

�
I {Y1 > (m− 1)Y2}

�
,

J4,m = E

�
ln

�
V (m(m− 1)Y2)

V (m2)

��
E

�
ln

�
V (mY1)

V (m)

��
,

J5,m = E

�
ln

�
V (m(m− 1)Y2)

V (m2)

�
ln

�
V (mY1)

V (m)

�
I {Y1 > (m− 1)Y2}

�
.

Let us rewrite quantity J4,m as follows:

J4,m =
�

ln

�
V (m(m− 1))

V (m2)

�
+ E ln

�
Lm(m−1)

V (m(m− 1))

��
E ln

�
Lm

V (m)

�
.

For any � > 0 there exists natural m̃0 such that 1/m < � for m g m0. Then

V (m2(1 − �))/V (m2) ≤ V
�
m2(1 − 1/m)

�
/V (m2) ≤ 1. By (4) we get V (m2(1 −

�))/V (m2) ³ (1 − �)³ , m ³ >. Since � > 0 can be taken arbitrary small, the

relation V (m(m − 1))/V (m2) ³ 1, m ³ > holds. By using the last relation

and (16) we deduce that J4,m ³ Ç2³ 2 holds as m ³ >.

Next, we have

J3,m = E

�
ln2

�
V (mY1)

V (m)

�
I {Y1 > (m− 1)Y2}

�

+ ln

�
V (m)

V (m2)

�
E

�
ln

�
V (mY1)

V (m)

�
I {Y1 > (m− 1)Y2}

�
.

We apply the Hölder’s inequality to get

��J3,m

�� ≤
�
E ln4

�
Lm

V (m)

��1/2

{P(Y1 > (m− 1)Y2)}1/2

+
����ln
�
V (m)

V (m2)

�����
�
E ln2

�
Lm

V (m)

��1/2

{P(Y1 > (m− 1)Y2)}1/2 .

We find that P(Y1 > (m−1)Y2) = 1/m holds. Let us recall the well-known property

of regularly varying functions: if V ∈ RV³ , then

lim
m³>

lnV (m)

ln(m)
= ³, (23)

see, e.g., Prop. B.1.9 in [3]. By using (23) we obtain ln
�
V (m2)/V (m)

�
> ³ ln(m),

m ³ >. Thus, keeping in mind (17) and (18) we obtain
��J3,m

�� = O
�
m−1/2 ln(m)

�
,



Modification of Moment-Based Tail Index Estimator 95

m ³ >. By a similar argument we obtain
��J5,m

�� = O
�
m−1/2

�
, m ³ >. This

finishes the proof of (19) and Lemma 1.

Proof of Theorem 1 First we prove (8). Let us rewrite

Æ³ (2)N (m) = ³ +
�
E Æ³ (2)N (m)− ³

�
+ SN (m), (24)

where

E Æ³ (2)N (m)− ³ =
�

lnV (m2)− lnV (m)

ln(m)
− ³

�

+ 1

ln(m)

�
E ln

�
Lm2

V (m2)

�
− E ln

�
Lm

V (m)

��
(25)

and

SN (m) = 1

[N/m2] ln(m)

[N/m2]�

i=1

��
ln

�
L(i−1)m2+1,im2

V (m2)

�
− E ln

�
Lm2

V (m2)

��

− 1

m

m�

j=1

�
ln

�
L(i−1)m2+(j−1)m+1,(i−1)m2+jm

V (m)

�
− E ln

�
Lm

V (m)

���
.

By combining (16) and (23) we deduce that E Æ³ (2)N (m) − ³ ³ 0, m ³ >. Thus,

it is enough to prove that SN (m)
P³ 0 as N ³ >. By Chebyshev’s inequality, for

any � > 0 it holds P (|SN (m)| > �) ≤ �−2
E (SN (m))

2 . We have

E (SN (m))
2 = 1

[N/m2] ln2(m)

�
Var

�
ln

�
Lm2

V (m2)

��

−2Cov

�
ln

�
Lm2

V (m2)

�
, ln

�
Lm

V (m)

��
+ 1

m
Var

�
ln

�
Lm

V (m)

���
. (26)

Use (16)–(17) and (19) to deduce that the sum in the curly brackets has a finite limit

as m ³ >. Thus, assumption (5) ensures E (SN (m))
2 ³ 0, m ³ >. This finishes

the proof of (8).

Consider now (6), where the restriction ³ > 1/2 holds. Assumption (4) is

equivalent to 1 −F ∈ RV−1/³ . By the Representation Theorem (see Thm. B.1.6. in

[3]), there exists a function � ∈ RV0, such that

1 − F(x1/2) = x−1/(2³ )�
�
x1/2
�
, x ³ >. (27)
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Following the Mijnheer Theorem (see Thm. 1.8.1 in [16]), we determine the

norming function a(m) ∈ RV2³ from

lim
m³>

m�
�
a1/2(m)

�

(a(m))1/(2³ )
= d(³ ), d(³ ) = � (1 − 1/(2³ )) cos (Ã/(4³ )) . (28)

Put Q(m) = (X2
1 +· · ·+X2

m)/am. Then Q(m)
d³Z, as m ³ >, where Z is totally

skewed to the right 1/(2³ )-stable r.v. with characteristic function

E exp{i»Z} = exp

�
−|» |1/(2³ )

�
1 − i sgn(») tan

�
Ã

4³

���
. (29)

Similarly to (24) we use the decomposition

Æ³ (1)N (m) = ³ +
�
E Æ³ (1)N (m)− ³

�
+ S̃N (m),

where

S̃N (m) = 1

2[N/m2] ln(m)

[N/m2]�

i=1

§
«
«ln

»
¿

im2�

j=(i−1)m2+1

X2
j

a(m2)

¿
£− E lnQ(m2)

«
¯
¯

− 1

m

m�

j=1

§
«
«ln

»
¿

(i−1)m2+im�

j=(i−1)m2+(i−1)m+1

X2
j

a(m)

¿
£− E lnQ(m)

«
¯
¯ .

The bias of the estimator Æ³ (1)N (m) is given by E Æ³ (1)N (m)−³ = �(m2)−(1/2)�(m),

where

�(m) = ln a(m)

lnm
− 2³ + 1

lnm
{E lnQ(m)− E lnZ} .

In Prop. 1–2 of [12] it is proved

E lnQ(m) ³ E lnZ, E ln2 Q(m) ³ E ln2 Z, (30)

Cov
�

lnQ(m2), lnQ(m)
�

³ 0, m ³ >. (31)

It is worth to note that the moments E lnZ and E ln2 Z can be found explicitly.

Indeed, there is a direct connection between moments of order r < 1/(2³ ) and

log-moments of order k ∈ N:

E lnk Z = dk

drk
EZr

����
r=0

, (32)
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see [19]. Regarding the moments EZr , the following relation is proved in Sec-

tion 8.3 of [14]:

EZr = � (1 − 2³ r)

� (1 − r)

�
1 + tan2

�
Ã

4³

��³ r
, −1 < r < 1/(2³ ). (33)

By using (32) and (33) we obtain

E lnZ = −Ç + 2Ç³ + ³ ln

�
tan2

�
Ã

4³

�
+ 1

�
, (34)

E ln2 Z = Ç2 − Ã2

6
+ 4Ç2³ 2 − 4Ç2³ + 2Ã2³ 2

3
+ ³ 2 log2

�
tan2

�
Ã

4³

�
+ 1

�

+4Ç³ 2 log

�
tan2

�
Ã

4³

�
+ 1

�
− 2Ç³ log

�
tan2

�
Ã

4³

�
+ 1

�
. (35)

We combine (23) and the first relation in (30) to deduce that �(m) ³ 0, m ³
>, which implies E Æ³ (1)N (m) − ³ ³ 0, m ³ >. Thus, relation (6) will be proved

if we show that under assumptions (5), E
�
S̃N (m)

�2
³ 0. The last relation can be

verified by using (30) and (31), and

E

�
S̃N (m)

�2
=

Var
�
lnQ(m2)

�
− 2Cov

�
lnQ(m2), lnQ(m)

�
+m−1Var (lnQ(m))

4[N/m2] ln2(m)
.

(36)

This completes the proof of Theorem 1.

Proof of Theorem 2 In view of decomposition (24), the assertion (14) follows from

E (SN (m))
2 > Ã2³ 2m2

6N ln2(m)
, (37)

�
E (SN (m))

2
�−1/2

SN (m)
d³ N (0, 1), (38)

N1/2 ln(m)

m

�
E Æ³ (1)N (m)− ³

�
³ −¿� (1 − Ã)

Ã
, N ³ >, (39)

where ¿ is the same as in (13).

Relation (37) follows from (26) by applying (16)–(17) and (19). To prove (38),

by using (16)–(19) we check the 4-th order Lyapunov condition for i.i.d. random

variables forming a triangular array. We skip standard details.

By using (10) we obtain

lnV (m)

ln(m)
− ³ = 1

ln(m)

�
ln(C)+ A(m)

Ã
(1 + o(1))

�
, m ³ >.
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Following the proof of Lemma 2 in [18] one can obtain

E ln

�
Lm

V (m)

�
− Ç³ = � (1 − Ã)− 1

Ã
A(m) (1 + o(1)) , m ³ >.

We combine the last two relations, assumption (13) and decomposition (25) to

verify (39).

Let us discuss the proof of (12) now. Relations (30), (31), (34)–(36) imply

E

�
S̃N (m)

�2
> m2N−1 ln−2(m)

�
³ 2 − (1/4)

�
Ã2/6, N ³ >. In view of the last

relation it is enough to prove that

�
Var
�
S̃N (m)

��−1/2
S̃N (m)

d³ N (0, 1) , (40)

E Æ³ (1)N (m)− ³ =
�
O
�
m−1∨Ã∨(1−2³ )

�
, −1 ∨ Ã �= 1 − 2³ ,

O
�
m1−2³ ln(m)

�
, −1 ∨ Ã = 1 − 2³.

(41)

We skip a standard proof of (40) and focus on the investigation of the bias

E Æ³ (1)N (m)− ³ . Firstly, we prove that

ln a(m2)− ln a(m)

2 ln(m)
− ³ = O

�
m−1∨Ã

ln(m)

�
, m ³ >. (42)

The relation (11) can be written in the form 1−F(x) = x−1/³ �(x), x ³ >, where

function � ∈ RV0 has the form

�(x) = C1/³
�

1 + C̃(³, Ã) (x/C)(−1∨Ã)/³ + o
�
x(−1∨Ã)/³

��
, x ³ >,

(43)

where

C̃(³, Ã) =

§
«
«

³/Ã, −1 < Ã < 0,

−(2³ − 1)/Ã, Ã = −1, ³ �= 1/2,

−1/2, Ã < −1.

Now, by using (28), one can find that under assumption (11) the norming function

satisfies the asymptotic relation

a(m) =
�
C1/³ /d(³ )

�2³
m2³
�

1 + 2³ C̃(³, Ã)d−(−1∨Ã)(³ )m−1∨Ã + o
�
m−1∨Ã

��

as m ³ >, while the last relation implies (42).
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We claim that

E lnQ(m)− E lnZ

lnm
=
�
O
�
m−1∨Ã∨(1−2³ )

�
, −1 ∨ Ã �= 1 − 2³ ,

O
�
m1−2³ ln(m)

�
, −1 ∨ Ã = 1 − 2³

(44)

as m ³ >.

Then terms ln−1(m2)
�
E lnQ(m2)− E lnZ

�
and (2 ln(m))−1

�
ln a(m2) −

ln a(m)} − ³ are negligible with respect to ln−1(m) {E lnQ(m)− E lnZ} and

thus, the relation (41) follows.

To verify (44) we use the similar decomposition E lnQ(m) − E lnZ = R1,m −
R2,m − R3,m as in the proof of Prop. 3 in [12], where

R1,m =
� >

0

{P (lnQ(m) > x)− P (lnZ > x)} dx,

R2,m =
� 0

− lnm

{P (lnQ(m) < x)− P (lnZ < x)} dx,

R3,m =
� − lnm

−>
{P (lnQ(m) < x)− P (lnZ < x)} dx.

By using substitution t = exp{x} we obtain

R1,m =
� >

1

t−1 {P (Q(m) > t)− P (Z > t)} dt .

Similarly we get R2,m =
� 1

1/m
t−1 {P (Q(m) < t)− P (Z < t)} dt . From Corol-

lary 2 in [2] it follows

sup
tg0

f³ (t) |P (Q(m) > t)− P (Z > t)| = O
�
»
�
m2³
�

+m−2³
�
, m ³ >,

where f³ (t) = 1 + t2³ ln−2 (e + t) and »(R) = »1(R)+R−1+1/(2³ )»2(R), R > 0,

where

»1(R) = sup
ugR

u1/(2³ )
���P(X2

1 > u)− P (Z > u)

��� ,

»2(R) =
� R

0

���P(X2
1 > u)− P (Z > u)

��� du.

It is well-known that P(Z > x) = C1x
−1/(2³ )

�
1 + C2x

−1/(2³ ) + o
�
x−1/(2³ )

��
,

x ³ > holds, where Ck = Ck(³ ) are some constants. The asymptotic of P(X2
1 >

u) is given in (27), where a function � slowly varying at infinity is given in (43).

Recall that Æ³ (1)N (m) is a scale-free estimator. Thus, without loss of generality, we
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may assume that the scale parameter C in (43) satisfies C1/³ = C1. Then we have

P(X2
1 > x)− P (Z > x) = Dx(−2∨(Ã−1))/(2³ ) + o

�
x(−2∨(Ã−1))/(2³ )

�
, x ³ >,

(45)

where D �= 0 is some constant. By applying (45) we obtain immediately

»1

�
m2³
�

= O
�
m−1∨Ã�, m ³ >. If −2 ∨ (Ã − 1) > −2³ , by ex. 1.2 in [7],

a relation f (x) > xr , x ³ > implies

� x

0

f (t)dt >
�
xr+1/(r + 1), r > −1,

ln(x), r = −1,
x ³ > (46)

and thus we obtain m1−2³»2(m
2³ ) = O

�
m−1∨Ã�, m ³ >. In the case −2 ∨

(Ã − 1) = −2³ , by applying (46) one more time we get m1−2³»2(m
2³ ) =

O
�
m1−2³ ln(m)

�
, m ³ >. As for the case −2 ∨ (Ã − 1) < −2³ , we have

m1−2³»2(m
2³ ) = O

�
m1−2³

�
, m ³ >. By putting the obtained results together

we get

sup
tg0

f³ (t) |P (Q(m)> t) − P (Z > t)| =
�
O
�
m−1∨Ã∨(1−2³ )

�
, −1 ∨ Ã �= 1 − 2³ ,

O
�
m1−2³ ln(m)

�
, −1 ∨ Ã = 1 − 2³

as m ³ >.

Applying the last asymptotic relation we obtain immediately

��R2,m

�� =
�
O
�
m−1∨Ã∨(1−2³ ) ln(m)

�
, −1 ∨ Ã �= 1 − 2³ ,

O
�
m1−2³ ln2(m)

�
, −1 ∨ Ã = 1 − 2³

and
��R1,m

�� = o
���R2,m

��� as m ³ >. Since the relation |R3,m| = O
�
m−1
�

=
o
���R2,m

���, m ³ > holds (see proof of Prop. 3 in [12]), the statement of Theorem 2

follows.
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Constructing Confidence Sets
for the Matrix Completion Problem

A. Carpentier, O. Klopp, and M. Löffler

Abstract In the present contribution we consider the problem of constructing

honest and adaptive confidence sets for the matrix completion problem. For the

Bernoulli model with known variance of the noise we provide a method with

polynomial time complexity for constructing confidence sets that adapt to the

unknown rank of the true matrix.

1 Introduction

In recent years, there has been a considerable interest in statistical inference for

high-dimensional matrices. One particular problem is matrix completion where one

observes only a small number n � m1m2 of the entries of a high-dimensional

m1 ×m2 matrix M0 of unknown rank r; it aims at inferring the missing entries. The

problem of matrix completion comes up in many areas including collaborative fil-

tering, multi-class learning in data analysis, system identification in control, global

positioning from partial distance information and computer vision, to mention some

of them. For instance, in computer vision, this problem arises as many pixels may

be missing in digital images. In collaborative filtering, one wants to make automatic

predictions about the preferences of a user by collecting information from many

users. So, we have a data matrix where rows are users and columns are items. For

each user, we have a partial list of his preferences. We would like to predict the

missing ones in order to be able to recommend items that he may be interested in.
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In general, recovery of a matrix from a small number of observed entries is

impossible, but, if the unknown matrix has low rank, then accurate and even exact

recovery is possible. In the noiseless setting, [3, 5, 6] established the following

remarkable result: assuming that it satisfies a low coherence condition, M0 can be

recovered exactly by constrained nuclear norm minimization with high probability

from only n � rank(M0)(m1 ∨ m2) log2(m1 ∨ m2) entries observed uniformly at

random.

What makes low-rank matrices special is that they depend on a number of free

parameters that is much smaller than the total number of entries. Taking the singular

value decomposition of a matrix A ∈ Rm1×m2 of rank r , it is easy to see that A

depends upon (m1+m2)r−r2 free parameters. This number of free parameters gives

us a lower bound for the number of observations needed to complete the matrix.

A situation, common in applications, corresponds to the noisy setting in which

the few available entries are corrupted by noise. Noisy matrix completion has been

extensively studied recently (e.g., [2, 8, 13, 16]). Here we observe a relatively small

number of entries of a data matrix

Y = M0 + E

where M0 = ((M0)ij ) ∈ Rm1×m2 is the unknown matrix of interest and E = (·ij ) ∈
Rm1×m2 is a matrix of random errors. It is an important issue in applications to be

able to say from the observations how well the recovery procedure has worked or,

in the sequential sampling setting, to be able to give data-driven stopping rules that

guarantee the recovery of the matrix M0 at a given precision. This fundamental

statistical question was recently studied in [7] where two statistical models for

matrix completion are considered: the trace regression model and the Bernoulli

model (for details see Sect. 2). In particular, in [7], the authors show that in the case

of unknown noise variance, the information-theoretic structure of these two models

is fundamentally different. In the trace regression model, even if only an upper

bound for the variance of the noise is known, a honest and rank adaptive Frobenius-

confidence set whose diameter scales with the minimax optimal estimation rate

exists. In the Bernoulli model however, such sets do not exist.

Another major difference is that, in the case of known variance of the noise, [7]

provides a realizable method for constructing confidence sets for the trace regression

model whereas for the Bernoulli model only the existence of adaptive and honest

confidence sets is demonstrated. The proof uses the duality between the problem

of testing the rank of a matrix and the existence of honest and adaptive confidence

sets. In particular, the construction in [7] is based on an infimum test statistic which

cannot be computed in polynomial time. This is not feasible in practice. Thus, in

the present note we develop an alternative method of constructing a confidence set

in the Bernoulli model which is computable with a polynomial time algorithm.
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2 Notation, Assumptions, and Some Basic Results

Let A,B be matrices in Rm1×m2 . We define the matrix scalar product as �A,B� =
tr(ATB). The trace norm of a matrix A = (aij ) is defined as �A�7 :=

�
Ãj (A),

the operator norm as �A� := Ã1(A) and the Frobenius norm as �A�2
2 :=

�
i Ã

2
i =�

i,j a
2
ij where (Ãj (A))j are the singular values ofA ordered decreasingly. �A�> =

max
i,j

|aij | denotes the largest absolute value of any entry of A. In what follows,

we use symbols C, c for a generic positive constant, which is independent of

n, m1,m2, rank and may take different values at different places. We denote by

a∨b = max(a, b). We let PM denote the distribution of the data when the parameter

is M . For a set of matrices C we denote by �C �2 its diameter measured in Frobenius

norm.

We assume that each entry of Y is observed independently of the other entries

with probability p = n/(m1m2). More precisely, if n ≤ m1m2 is given and Bij

are i.i.d. Bernoulli random variables of parameter p independent of the ·ij ’s, we

observe

Yij = Bij

�
(M0)ij + ·ij

�
, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. (1)

This model for the matrix completion problem is usually called the Bernoulli model.

Another model often considered in the matrix completion literature is the trace

regression model (e.g., [2, 10, 13, 16]). Let k0 = rank(M0) ∨ 1.

In many of the most cited applications of the matrix completion problem, such

as recommendation systems or the problem of global positioning from the local

distances, the noise is bounded but not necessarily identically distributed. This is

the assumption which we adopt in the present chapter. More precisely, we assume

that the noise variables are independent, homoscedastic, bounded, and centered:

Assumption 1 For any (ij) ∈ [m1]×[m2] we assume that E(·ij ) = 0, E(·2
ij ) = Ã 2

and that there exists a positive constant u > 0 such that

max
ij

��·ij
�� ≤ u.

Let m = min(m1,m2), d = m1 + m2. For any l ∈ N we set [l] = {1, . . . , l}.
For any integer 0 ≤ k ≤ m and any a > 0, we define the parameter space of rank k

matrices with entries bounded by a in absolute value as

A (k, a) =
�
M ∈ Rm1×m2 : rank(M) ≤ k, �M�> ≤ a

�
. (2)

For constants ³ ∈ (0, 1) and c = c(Ã, a) > 0 we have that

inf
�M

sup
M0∈A (k,a)

PM0,Ã

�
��M −M0�2

2

m1m2
> c

kd

n

�
g ³
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where � denotes two-sided inequality up to a universal constant and �M is an

estimator of M0 (see, e.g., [11]). This bound is valid uniformly over M0 ∈ A (k, a).

It has been also shown in [11] that an iterative soft thresholding estimator �M satisfies

with PM0-probability at least 1 − 8/d

��M − M0�2
F

m1m2
≤ C

(a + Ã)2k0d

n
and �M0 − �M�> ≤ 2a (3)

for a constant C > 0. These lower and upper bounds imply that for the Frobenius

loss the minimax risk for recovering a matrix M0 ∈ A (k0, a) is of order�
(Ã + a)2k0dm1m2

n
.

For k ∈ [m] we set

rk = C
(Ã + a)2dk

n
,

where C is the numerical constant in (3). We use the following definition of honest

and adaptive confidence sets:

Definition 1 Let ³, ³� > 0 be given. A set Cn = Cn((Yij , Bij ), ³) ¢ A (m, a) is a

honest confidence set at level ³ for the model A (m, a) if

lim inf
n

inf
M∈A (m,a)

PM(M ∈ Cn) g 1 − ³.

Furthermore, we say that Cn is adaptive for the sub-model A (k, a) at level ³� if

there exists a constant C = C(³, ³�) > 0 such that

sup
M∈A (k,a)

PM (�Cn�2 > Crk) ≤ ³�

while still retaining

sup
M∈A (m,a)

PM (�Cn�2 > Crm) ≤ ³�.

The lim inf in this definition is to be understood in a high-dimensional sense, i.e.

m1,m2 both depend on n and grow to > as n ³ > such that n ≤ m1(n)m2(n).
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3 A Non-asymptotic Confidence Set for the Matrix

Completion Problem

Let �M be an estimator of M0 based on the observations (Yij , Bij ) from the Bernoulli

model (1) such that ��M�> ≤ a. Assume that for some ³ > 0, �M satisfies the

following bound:

sup
M0∈A (k0,a)

P

�
��M − M0�2

2

m1m2
≤ C

(Ã + a)2k0d

n

�
g 1 − ³. (4)

We can take, for example, the thresholding, estimator considered in [11] which

attains (4) with ³ = 8/d. Our construction is based on Lepski’s method [15]. We

denote by �Mk the projection of �M on the set A (k, a) of matrices of rank k with

sup-norm bounded by a:

�Mk ∈ argmin
A∈A (k,a)

��M − A�2.

We set

S = {k : ��M − �Mk�2
2 ≤ rk} and Æk = min{k ∈ S}

and we will use �M = �M Æk to center the confidence set with diameter controlled by

the residual sum of squares statistic Ærn:

Ærn = 1

n

�

ij

(Yij − Bij
�Mij )

2 − Ã 2. (5)

Given ³ > 0, we denote

z̄ = p

256
�M − �M�2

2 + z(uc7)2d Æk and ¿³,u = 2u2
�

log(³−1)+ 4u2 log(³−1)

3
:
n

.

Here z is a sufficiently large numerical constant to be chosen later on and c7 g 2 is

a universal constant in Corollary 3.12 [1]. We define the confidence set as follows:

Cn =
�
M ∈ Rm1×m2 :

�M − �M�2
2

m1m2
≤ 128

�
Ærn + a2zd Æk + z̄

n
+ ¿³,u:

n

��
. (6)

Theorem 1 Let ³ > 0, d > 16 and suppose that �M attains the bound (4) with

probability at least 1−³. Let Cn be given by (6). Assume that �M0�> ≤ a and that
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Assumption 1 is satisfied. Then, for every n g m log(d), we have

PM0(M0 ∈ Cn) g 1 − ³ − exp(−cd). (7)

Moreover, with probability at least 1 − ³ − exp(−cd)

�Cn�2
2

m1m2
≤ C

(Ã + a)2dk0

n
. (8)

Theorem 1 implies that Cn is a honest and adaptive confidence set:

Corollary 1 Let ³ > 0, d > 16 and suppose that �M attains the risk bound (4)

with probability at least 1 − ³. Let Cn be given by (6). Assume that Assumption 1 is

satisfied. Then, for n g m log(d), Cn is a ³ + exp(−cd) honest confidence set for

the model A (m, a) and adapts to every sub-model A (k, a), 1 ≤ k ≤ m, at level

³ + exp(−cd).
Remark The procedure for building a confidence set consists of

1. Building an adaptive estimator satisfying Eq. (4), that is computable in polyno-

mial time, e.g. the thresholding estimator from [11] or the matrix lasso [13]

2. Projecting the estimator on the smallest possible model which is coherent with

the estimator and amounts to computing the SVD of �M once. This has complexity

of smaller order than the complexity of the matrix lasso.

3. Computing Ærn for which on average n terms have to be considered

Summarizing, the computational cost of computing the adaptive confidence set is

of smaller order than the computational complexity of constructing an adaptive

estimator.

Proof (Proof of Theorem 1) For 1 ≤ k ≤ m1 'm2 we consider the following sets

C (k, a) =
�
A ∈ Rm1×m2 : �A�> ≤ a, �M0 − A�2

2 g 256(a ∨ u)2zd

p
and rank(A) ≤ k

�

and write

C = *m
k=1C (k, a). (9)

When
��M0 − �M

��2

2
≤ 256(a ∨ u)2zd

p
we have that M0 ∈ Cn. So, we only need to

consider the case
��M0 − �M

��2

2
g 256(a ∨ u)2zd

p
. In this case we have that �M ∈ C .

We introduce the observation operator X defined as follows:

X : Rm1×m2 ³ Rm1×m2 with X (A) = (Bijaij )ij .
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and set �A�2
L2(£) = E�X (A)�2

2 = p�A�2
2. We can decompose

Ærn = n−1�X (�M − M0)�2
2 + 2n−1�X (E),M0 − �M� + n−1�X (E)�2

2 − Ã 2.

Then we can bound the probability PM0(M0 /∈ Cn) by the sum of the following

probabilities:

I := PM0

�
��M −M0�2

L2(£)

128
> �X (�M − M0)�2

2 + za2d Æk
�
,

II := PM0

�
−2�X (E),M0 − �M� > z̄

�
,

III := PM0

�
−�X (E)�2

2 + nÃ 2 >
:
n¿³,u

�
.

By Lemma 1, the first probability is bounded by 8 exp (−4d) for z g (27c7)2. For

the second term we use Lemma 7 which implies that II ≤ exp(−cd) for z g 6240.

Finally, for the third term, Bernstein’s inequality implies

P
�
−�X (E)�2

2 + nÃ 2 > t
�

≤ exp

�
− t2

2Ã 2nu2 + 2
3
u2t

�
.

Taking t = 2u2
�
n log(³−1)+ 4

3
u2 log(³−1) we obtain that III ≤ ³ by definition

of ¿³,u. This completes the proof of (7).

To prove (8), using Lemmas 1 and 7, we can bound the square Frobenius norm

diameter of our confidence set Cn defined in (6) as follows:

�Cn�2
2

m1m2
�

��M −M0�2
2

m1m2
+
�
r Æk + ¿³,u:

n

�
.

This bound holds on an event of probability at least 1 − exp(−cd). Now we restrict

to the event where �M attains the risk bound in (4) which happens with probability

at least 1−³. On this event, M0 ∈ A (k0, a) implies ��M− �Mk0�2
2 ≤ rk0 . So, k0 ∈ S

and Æk ≤ k0. Now, the triangle inequality and r Æk ≤ rk0 imply that on the intersection

of those two events we have that

��M −M0�2
2 � m1m2

�
rk0 + r Æk

�
� m1m2rk0 .

This, together with the definition of ¿³,u and the condition n ≤ m1m2, completes

the proof of (8).
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4 Technical Lemmas

Lemma 1 With probability larger than 1 − 8 exp (−4d) we have that

sup
A∈C

���X (M0 − A)�2 − �M0 − A�L2(£)

��− 7
8
�M0 − A�L2(£)

a
:
(rank(A) ∨ 1)d

≤ 27 c7

where c7 is a universal numerical constant and C is defined in (9).

Proof We have that

P

�
sup
A∈C

���X (M0 − A)�2 − �M0 − A�L2(£)

��− 7
8
�M0 − A�L2(£)

a
:
(rank(A) ∨ 1)d

g 27 c7
�

≤
k0�

k=1

P

�
sup

A∈C (k,a)

���X (M0 − A)�2 − �M0 −A�L2(£)

��− 7

8
�M0 − A�L2(£) g 27 c7a

:
kd

�

� �� �
I

.

(10)

In order to upper bound I, we use a peeling argument. We set ³ = 7/6 and ¿2 =
188a2zd

p
. Moreover, for l ∈ N set

Sl =
�
A ∈ C (k, a) : ³l¿ ≤ �A− M0�2 ≤ ³l+1¿

�
.

Then

I ≤
>�

l=1

P

�
sup
A∈Sl

���X (M0 − A)�2 − �M0 − A�L2(£)

�� g 27 c7a
:
kd + 7

8
³la

:
188zd

�

≤
>�

l=1

P

�
sup

A∈C (k,a,³l+1¿)

���X (M0 − A)�2 − �M0 − A�L2(£)

�� g 27 c7a
:
kd + 7

8
³la

:
188zd

�

� �� �
II

where C (k, a, T ) = {A ∈ C (k, a) : �M0 − A�2 ≤ T }. The following lemma gives

an upper bound on II:

Lemma 2 Consider the following set of matrices:

C (k, a, T ) = {A ∈ C (k, a) : �M0 − A�2 ≤ T }

and set

ZT = sup
A∈C (k,a,T )

���X (M0 − A)�2 − �M0 − A�L2(£)

�� .
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Then, we have that

P

�
ZT g 3

4

:
pT + 27 c7a

:
kd

�
≤ 4e−c1 p T

2/a2

with c1 g (512)−1.

Lemma 2 implies that II ≤ 4 exp(−c1 p ³
2l¿2/a2) and we obtain

I ≤ 4

>�

l=1

exp(−c1 p ³
2l+2¿2/a2) ≤ 4

>�

l=1

exp
�
−2c1 p ¿

2 log(³) l/a2
�

where we used ex g x. We finally compute for ¿2 = 188a2zdp−1

I ≤
4 exp

�
−2c1 p ¿

2 log(³)/a2
�

1 − 4 exp
�
−2c1 p ¿2 log(³)/a2

� ≤ 8 exp (−376 c1zd log(7/6)) ≤ exp(−5d)

where we take z g (27c7)2. Using (10) and d g log(m) we obtain the statement of

Lemma 1.

Proof (Proof of Lemma 2) This proof is close to the proof of Theorem 1 in [16]. We

start by applying a discretization argument. Let {G1
· , . . .G

N(·)
· } be a ·−covering of

C (k, a, T ) given by Lemma 3. Then, for any A ∈ C (k, a, T ) there exist an index

i ∈ {1, . . . , N(·)} and a matrix � with ���2 ≤ · such that A = Gi
· +�. Using the

triangle inequality we thus obtain that

���M0 − A�L2(£) − �X (M0 − A)�2

�� ≤
���
���X (M0 −Gi

·)

���
2
− �M0 −Gi

·�L2(£)

���

+ �X ��2 + :
p·.

Lemma 3 implies that � ∈ D·(2k, 2a, 2T ) where

D·(k, a, T ) = {A ∈ Rm1×m2 : �A�> ≤ a, �A�2 ≤ · and �A�7 ≤
:
kT }.

Then,

ZT ≤ max
i=1,...,N(·)

���
���X (M0 −Gi

·)

���
2
− �M0 −Gi

·�L2(£)

���+ sup
�∈D·(2k,2a,2T )

�X ��2 + :
p·.

Now we take · = T/8 and use Lemmas 5 and 6 to obtain that

ZT ≤ :
p· + 8 c7a

:
kd + 19a c7

:
2kd + :

pT/2 + :
p· ≤ 27 c7a

:
kd + 6

:
pT/8.

with probability at least 1 − 8 exp
�
− pT 2

512a2

�
.
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Lemma 3 Let · = T/8. There exists a set of matrices {G1
·, . . . G

N(·)
· } with N· ≤�

18T
·

�2(d+1)k
and such that

(i) For any A ∈ C (k, a, T ) there exists a GA
· ∈ {G1

· , . . .G
N(·)
· } satisfying

�A −GA
· �2 ≤ · and (A−GA

· ) ∈ D·(2k, 2a, 2T ).

(ii) Moreover, �Gj
· −M0�> ≤ 2a and �Gj

· −M0�2 ≤ 2T for any j = 1, . . . , N· .

Proof We use the following result (see Lemma 3.1 in [4] and Lemma A.2 in [18]):

Lemma 4 Let S(k, T ) = {A ∈ Rm1×m2 : rank(A) ≤ k and �A�2 ≤ T }. Then,

there exists an �−net S̄(k, T ) for the Frobenius norm obeying

��S̄(k, T )
�� ≤ (9T/�)(m1+m2+1)k .

Let SM0(k, T ) = {A ∈ Rm1×m2 : rank(A) ≤ k and �A − M0�2 ≤ T } and take

a X0 ∈ C (k, a, T ). We have that SM0(k, T ) − X0 ¢ S(2k, 2T ). Let S̄(2k, 2T ) be

an ·−net given by Lemma 4. Then, for any A ∈ SM0(k, T ) there exists a ḠA
· ∈

S̄(2k, 2T ) such that �A − X0 − ḠA
· �2 ≤ ·. Let G

j
· = £(Ḡ

j
· ) + X0 for j =

1, . . . ,
��S̄(2k, 2T )

�� where £ is the projection operator under Frobenius norm into

the set D(2k, 2a, 2T ) = {A ∈ Rm1×m2 : �A�> ≤ 2a, and �A�7 ≤ 2
:

2kT }.
Note that as D(2k, 2a, 2T ) is convex and closed, £ is non-expansive in Frobenius

norm. For any A ∈ C (k, a, T ) ¢ SM0(k, T ), we have that A−X0 ∈ D(2k, 2a, 2T )

which implies

�A− X0 −£(ḠA
· )�2 = �£(A −X0 − ḠA

· )�2 ≤ �A− ḠA
· −X0)�2 ≤ ·

and we have that (A−£(ḠA
· )−X0) ∈ D·(2k, 2a, 2T ) which completes the proof

of (i) of Lemma 3. To prove (ii), note that by the definition of £ we have that

�Gj
· − M0�> = �£(Ḡ

j
· ) + X0 − M0�> = �£(Ḡ

j
· + X0 − M0)�> ≤ 2a and

�Gj
· −M0�2 ≤ 2T .

Lemma 5 Let · = T/8 and assume that n g m log(m). We have that with

probability at least 1 − 4 exp

�
− pT 2

512a2

�

sup
�∈D·(2k,2a,2T )

�X ��2 ≤ 19a c7
:

2kd + :
pT/2.

Proof Let XT = sup
�∈D·(2k,2a,2T )

�X ��2. We use the following concentration

inequality by Talagrand:
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Theorem 1 Suppose that f : [−1, 1]N ³ R is a convex Lipschitz function with

Lipschitz constant L. Let �1, . . . �N be independent random variables taking value

in [−1, 1]. Let Z : = f (�1, . . . , �n). Then for any t g 0,

P (|Z − E(Z)| g 16L+ t) ≤ 4e−t
2/2L2

.

For a proof see [17, Theorem 6.6.] and [8, Theorem 3.3]. Let f (x11, . . . , xm1m2) : =
sup

�∈D·(2k,2a,2T )

��
(i,j) x

2
ij�

2
ij . It is easy to see that f (x11, . . . , xm1m2) is a Lipschitz

function with Lipschitz constant L = 2a. Indeed,

��f (x11, . . . , xm1m2)− f (z11, . . . , zm1m2)
��

=

������
sup

�∈D·(2k,2a,2T )

��

(i,j)

x2
ij�

2
ij − sup

�∈D·(2k,2a,2T )

��

(i,j)

z2
ij�

2
ij

������

≤ sup
�∈D·(2k,2a,2T )

��

(i,j)

(xij − zij )2�
2
ij ≤ 2a�x − z�2

where x = (x11, . . . , xm1m2) and z = (z11, . . . , zm1m2). Now, Theorem 1 implies

P (XT g E(XT )+ 32a + t) ≤ 4 exp

�
− t2

8a2

�
. (11)

Next, we bound the expectation E(XT ). Applying Jensen’s inequality, a sym-

metrization argument and the Ledoux-Talagrand contraction inequality (e.g., [12,

Theorem 2.2]) we obtain

(E(XT ))
2 ≤ E

»
¿ sup
�∈D·(2k,2a,2T )

�

(i,j)

Bij�
2
ij

¿
£

≤ E

»
¿ sup
�∈D·(2k,2a,2T )

�

(i,j)

Bij�
2
ij − E

�
Bij�

2
ij

�
¿
£+ p·2

≤ 2E

»
¿ sup
�∈D·(2k,2a,2T )

������
�

(i,j)

·ijBij�
2
ij

������

¿
£+ p·2

≤ 8aE

»
¿ sup
�∈D·(2k,2a,2T )

������
�

(i,j)

·ijBij�ij

������

¿
£+ p·2

= 8aE

�
sup

�∈D·(2k,2a,2T )

|�£R,��|
�

+ p·2 ≤ 16 a
:

2k T E (�£R�)+ p·2



114 A. Carpentier et al.

where {·ij } is an i.i.d. Rademacher sequence, £R =
�

(i,j) Bij·ijXij with Xij =
ei(m1)e

T
j (m2) and ek(l) are the canonical basis vectors in Rl . Lemma 4 in [11] and

n g m log(m) imply that

E �£R� ≤ c7
�
pd (12)

where c7 g 2 is a universal numerical constant. Using (12),
:
x + y ≤ :

x + :
y,

2xy ≤ x2 + y2 and · = T/8 we compute

E(XT ) ≤ 4
�

a c7
�

2kpd T
�1/2

+ :
p· ≤ 16a c7

:
2kd + 3

:
pT/8.

Taking in (11) t = :
pT/8 we obtain the statement of Lemma 5.

Lemma 6 Let · = T/8, d > 16 and (G1
·, . . . ,G

N(·)
· ) be the collection of matrices

given by Lemma 3. We have that

max
k=1,...,N(·)

���
���X (M0 −Gk

·)

���
2
− �M0 −Gk

·�L2(£)

��� ≤ :
p· + 8 c7a

:
kd

with probability at least 1 − 4 exp
�
−p·2

8a2

�
.

Proof For any fixed A ∈ Rm1×m2 satisfying �A�> ≤ 2a we have that

�X A�2 =
��

ij

BijA
2
ij = sup

�u�2=1

�

ij

�
uijBijAij

�
.

Then we can apply Theorem 1 with f (x11, . . . , xm1m2) : = sup
�u�2=1

�
ij

�
uijxij

�
to

obtain

P (|�X A�2 − E�X A�2| > t + 32a) ≤ 4 exp

�
− t2

8a2

�
. (13)

On the other hand, let Z = sup
�u�2=1

�
ij

�
uijBijAij

�
. Applying Corollary 4.8 from

[14] we obtain that Var(Z) = �A�2
L2(£) − (E�X A�2)

2 ≤ 162a2 which together

with (13) implies

P
����X A�2 − �A�L2(£)

�� > t + 48a
�
≤ 4 exp

�
− t2

8a2

�
. (14)

Now Lemma 6 follows from Lemma 3, (14) with t = :
p· + 5c7a

:
kd and the

union bound.
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Lemma 7 We have that

sup
A∈C

|�X (E),A −M0�| − 1
256

�M0 − A�2
L2(£)

d rank(A)
≤ 6240(uc7)2.

with probability larger than 1 − exp(−cd) with c g 0.0003.

Proof Following the lines of the proof of Lemma 1 with ³ = :
65/64 and ¿2 =

252(a ∨ u)2zd

p
we obtain

P

�
sup
A∈C

|�X (E),A −M0�| − 1
256

�M0 − A�2
L2(£)

d rank(A)
g 6240(uc7)2

�

≤
k0�

k=1

>�

l=1

P

�
sup

A∈C (k,a,³l+1¿)

|�X (E),A− M0�| g 6240(uc7)2dk + p³2l¿2

256

�

≤ 4

k0�

k=1

>�

l=1

exp

�
− p³2l+2¿2

c2(a ∨ u)2

�
≤ exp (−cd)

where we use the following lemma:

Lemma 8 Consider the following set of matrices

C (k, a, T ) = {A ∈ C (k, a) : �M0 − A�2 ≤ T }

and set

�ZT = sup
A∈C (k,a,T )

|�X (E),A− M0�| .

We have that

P
�
�ZT g 6240(c7u)2dk + pT 2/260

�
≤ 4 exp

�
−pT 2/c2(a ∨ u)2

�

with c2 ≤ 12(1560)2.

Proof (Proof of Lemma 8) Fix an X0 ∈ C (k, a, T ). For any A ∈ C (k, a, T ), we

set � = A − X0 and we have that rank(�) ≤ 2k and ���2 ≤ 2T . Then using

|�X (E),A−M0�| ≤ |�X (E),X0 −M0�| + |�X (E),��| we obtain that

�ZT ≤ |�X (E),X0 −M0�| + sup
�∈T (2k,2a,2T )

|�X (E),��|
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where

T (2k, 2a, 2T ) = {A ∈ Rm1×m2 : �A�> ≤ 2a, �A�2 ≤ 2T and rank(A) ≤ 2k}.

Bernstein’s inequality and �X0 −M0�2 ≤ T imply that

P {|�X (E),X0 −M0�| > t} ≤ 2 exp

�
− t2

2Ã 2pT 2 + 4
3
uat

�
.

Taking t = pT 2/520 we obtain

P
�
|�X (E),X0 −M0�| > pT 2/520

�
≤ 2 exp

�
− pT 2

c2(a ∨ u)2

�
. (15)

On the other hand, Lemma 9 implies that with probability at least 1 −

2 exp

�
− pT 2

c3(a ∨ u)2

�

sup
�∈T (2k,2a,2T )

|�X (E),��| ≤ 6240(c7u)2kd + pT 2/520

which together with (15) implies the statement of Lemma 8.

Lemma 9 Assume that n g m log(m). We have that with probability at least 1 −

2 exp

�
− pT 2

c3(a ∨ u)2

�

sup
�∈T (2k,2a,2T )

|�X (E),��| ≤ 6240(c7u)2kd + pT 2/520

where c3 ≤ 12(1560)2 is a numerical constant.

Proof Let �XT = sup
�∈T (2k,2a,2T )

|�X (E),��| = sup
�∈T (2k,2a,2T )

�X (E),��. First we

bound the expectation E(�XT ):

E(�XT ) ≤ E

»
¿ sup
�∈T (2k,2a,2T )

������
�

(i,j)

·ijBij�ij

������

¿
£ = E

�
sup

�∈T (2k,2a,2T )

|�£,��|
�

≤ 2
:

2k T E (�£�)

where £ =
�

(i,j) Bij ·ijXij with Xij = ei(m1)e
T
j (m2) and ek(l) are the canonical

basis vectors in Rl . Using n g m log(m) Lemma 4 in [11] and Corollary 3.3 in [1]
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implies that

E �£� ≤ c7u
�
pd. (16)

where c7 g 2 is a universal numerical constant. Using (16) we obtain

E(�XT ) ≤ 2c7u
�

2kpd T ≤ 3120(c7u)2kd + pT 2/1560. (17)

Now we use Theorem 3.3.16 in [9] (see also Theorem 8.1 in [7]) to obtain

P
��XT g E(�XT )+ t

�
≤ exp

�
− t2

4uaE(�XT )+ 4Ã 2pT 2 + 9uat

�

≤ exp

�
− t2

8au2c7
:

2kpdT + 4Ã 2pT 2 + 9uat

�
(18)

Taking in (18) t = pT 2/1560 + 2uc7
:

2kpdT , together with (17) we obtain the

statement of Lemma 9.
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A Nonparametric Classification
Algorithm Based on Optimized
Templates

J. Kalina

Abstract This contribution is devoted to a classification problem into two groups.

A novel algorithm is proposed, which is based on a distance of each observation

from the centroid (prototype, template) of one of the groups. The general procedure

is described on the particular task of mouth localization in facial images, where

the centroid has the form of a mouth template. While templates are most com-

monly constructed as simple averages of positive examples, the novel optimization

criterion allows to improve the separation between observations of one group

(images of mouths) and observations of the other group (images of non-mouths).

The separation is measured by means of the weighted Pearson product-moment

correlation coefficient. On the whole, the new classification method can be described

as conceptually simple and at the same time powerful.

1 Introduction

In this chapter, a novel nonparametric classification method to two groups is

proposed, which is based on a centroid (prototype, template) of one of the groups.

The method does not consider any distributional assumptions, allows a clear

interpretation, and optimizes the centroid without any parametric model, as it is

common in the nonparametric regression context.

The method is explained and illustrated on a particular classification task in the

context of 2D images, namely a mouth detection in images of faces. Nevertheless,

the method does not use any specific properties of mouths and not even of images

and thus can be described as a general classification method suitable for high-

dimensional data. Thus, the optimization algorithm may bring improvement in

a wide variety of applications in different fields, e.g. in medicine or forensic science.
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The concept of centroids in classification tasks has been recently investigated

within various classification [9, 26] or unsupervised [6] learning tasks with rec-

ommendations to replace means by other (shrunken, regularized) centroids to

improve the classification performance. Searching for a suitable centroid in various

applications (e.g., image analysis or gene expression data) may be complicated

i.e. by strongly correlated variables or by a high dimensionality of the problem,

especially if the number of variables is large compared to the number of training

data [14].

Centroid-based classification is popular in image analysis for being simple,

powerful, and comprehensible. In the context of images, a centroid is called a

template and is interpreted as a typical form, a virtual object with ideal appearance

or shape, or image model [26], while the most common classification method

based on templates is known as template matching. It is commonly performed by

measuring similarity (most often by means of Pearson product-moment correlation

coefficient) between the template and every rectangular part of the image, which has

the same size as the template. Such area of the image with the largest similarity with

a given mouth template is classified as the part of the image corresponding to the

template.

Template matching has established applications, e.g. in person recognition, com-

puter vision, forensic science, or archeology [2, 5, 21, 25] even recently. Unflagging

attention is paid to templates as tools within more complicated approaches (e.g., sets

of landmarks are used as templates in geometric morphometrics [27]), but also to

self-standing local or global 2D or 3D templates, geometrical descriptors in the form

of rigid templates [4], allowing to model the covariance structure of the data and to

distinguish the intrapersonal variation from noise. All such approaches, just like any

likelihood-based approaches to detection of eyes [24], faces [19] or humans [20],

can be however described as parametric with all possible disadvantages following

from violations of the probabilistic assumptions and models.

To the best of our knowledge, there have been no recommendations on a

sophisticated construction of templates, which is surprising with regard to their

simplicity and applicability. Commonly, a template is constructed as the average

of several different positive examples. This ignores the requirement that templates

should be very different from all possible negative examples, which are defined as

parts of the image not corresponding to any mouth. If a mouth detection task is

considered as an example, positive examples are mouths and negative will be called

non-mouths. At the same time, we are not aware of any procedures for optimizing

the discrimination between two images.

Our previous work in the task of face detection attempted to improve the

correlation coefficient [11] exploiting its robust versions [13, 15], while only the

current contribution is focused on improving and optimizing templates. Section 2

of this chapter describes a nonparametric method for optimizing templates together

with an approximate algorithm. Results of computations over a particular data set

of images of faces are presented in Sect. 3. Section 4 discusses the results as well as

advantages of the proposed approach. Finally, Sect. 5 concludes the work.
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2 Methods

2.1 Optimization Criterion

We propose a minimax optimization procedure for a nonparametric construction

of an optimal centroid (template). The approach, although rather general, will be

explained on the example of locating the mouth using a single template. Let rw(r, s)

denote the weighted (Pearson, i.e. product-moment) correlation coefficient between

two data vectors r and s with given weights. Without any prior dimensionality

reduction, rw will be used as a measure of similarity between the template and the

image throughout this chapter. Our aim is to optimize the classification rule over

grey values of the template for the weighted correlation coefficient. The template is

improved over the training data set of images, starting with an initial template. Fixed

weights are used throughout the whole procedure, which express the importance of

particular pixels for the classification task.

Let us consider a given template t and let us use the notation, e.g. t = vec(t) =
(t1, . . . , tn)

T so that the matrix is converted to a vector. Denoting n the number

of its pixels, we consider a particular mouth x = (x1, . . . , xn)
T and a particular

non-mouth z = (z1, . . . , zn)
T as vectors of the same size as the template. We also

consider given non-negative weights w = (w1, . . . , wn)
T , which fulfil

n�

i=1

wi = 1. (1)

The function

f (x, z, t,w) = rFw (x, t)

rFw (z, t)
(2)

will be considered, where the monotone Fisher transformation

rFw (x, y) = 1

2
log

1 + rw(x, y)

1 − rw(x, y)
(3)

is applied on rw extending its values to the whole real line (−>,>) and improving

the separation between mouths and non-mouths by putting emphasis on the worst

non-mouths with the largest weighted correlation coefficient with the template.

Besides, (3) can be characterized as a variance-stabilizing transformation. The value

of (2) exceeds 1 if and only if the particular mouth x is classified correctly, i.e. it is

well discriminated from the non-mouth. The larger (2), the better separation between

x and z.

The template optimization proposed below maximizes the worst separation,

i.e. the separation for the worst case, which is defined as the mouth and non-mouth

in a particular image with the worst separation over the whole training data set. For
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a particular image i in the data set of images I , let us consider the set I of all

rectangular areas in image i, which have the same size as the template. If there is

exactly one mouth in every image, then I consists of the mouth and of the set Iz
corresponding to the remaining areas (non-mouths). Retaining given weights w, the

optimal template is found as

argmax
t1,...,tn∈IR

min
i∈I

min
z∈Iz

f (x, z, t,w), (4)

considering all non-mouths z in every particular image i ∈ I of the training data

set.

Let us now consider more mouths in a given image. Then, we consider I to

contain also the set Ix with several (rather than one) areas corresponding to the

mouth. Then, we consider the worst of the mouths and thus instead of (4),

argmax
t1,...,tn∈IR

min
i∈I

min
z∈Iz

min
x∈Ix

f (x, z, t,w) (5)

will be searched for.

2.2 Optimizing Templates

A linear approximation to the solution of the nonlinear problem (5) will be now

used to simplify the optimization, while results will be presented later in Sect. 3. Let

us use the notation (2) for the separation between a particular mouth x and a non-

mouth z in the worst case over all images, given the template t and weights w. The

task of minimizing (5) will be replaced by a linear approximation obtained from the

Taylor series as

f (x, z, t + δ,w) j f (x, z, t,w)+
n�

i=1

·i
"f (x, z, t,w)

"ti
. (6)

Small constants ·1, . . . , ·n, where n is the size of the template, will be added

to the grey intensities of the initial template with the aim to increase the worst

separation. Formally, the linear problem

max
·1,...,·n∈IR

n�

i=1

·i
"f (x, z, t,w)

"ti
(7)

will be solved under constraints

•
�n

i=1 ·i = 0,

• 0 ≤ ti + ·i ≤ C with a given C > 0, i = 1, . . . , n,

• −· ≤ ·i ≤ · with a given · > 0, i = 1, . . . , n.
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The linear problem for the separation in the worst case should be formulated

and solved repeatedly within an iterative algorithm. The simplex algorithm will be

used to solve the linear problem. In some applications, e.g. mouth localization, it

is reasonable to accompany the set of constraints by a requirement on the optimal

template to be symmetric along its vertical axis, which at the same time reduces the

dimensionality of the problem.

As the worst separation (5) increases, sooner or later it reaches the level of the

second worst case. Therefore, we introduce additional constraints to improve the

separation for several cases simultaneously. Let us now consider all non-mouths

together with the mouths from the same images, which have the separation larger

than the very worst case by less than (say) p = 0.01. For each one of these worst

cases with the mouth denoted by x7 and the non-mouth z7, let us require

n�

i=1

·i
"f (x, z, t,w)

"ti
=

n�

i=1

·i
"f (x7, z7, t,w)

"ti
(8)

as additional constraints for (7). The classification is based on mouths and non-

mouths near the boundary between these two classes and the whole iterative

computation is described in Algorithm 1. The value of (5) as a function of a given

template and weights will be denoted as M(t,w).

Remark 1 A repeated evaluation of (5) requires to find the worst case over all

images repeatedly, as it may be different from the worst case in the previous

iteration.

Algorithm 1 Linear approximation for optimizing a given (initial) template

Require: Symmetric initial template t0, symmetric weights w0, p = 0.01

Ensure: Optimal template t7

1: k := 0

2: repeat

3: Consider the linear problem (7) for t = tk .

4: Find such mouths and non-mouths, which have the separation using tk smaller than

M(tk,w0)+ p.

5: Formulate constraints (8) for all such mouths and non-mouths for the linear problem.

6: Solve the constrained linear problem by linear programming to obtain ·1, . . . , ·n.

7: k := k + 1

8: tk :=
�
tk−1,1 + ·1, . . . , tk−1,n + ·n

�T
9: until M(tk,w0) g M(tk−1,w0)

10: t7 := tk−1
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3 Results

3.1 Description of the Data

The novel classification method, i.e. template matching with the template obtained

with the approach of Sect. 2.2, will be now illustrated on the task of mouth

localization in a data set of 212 raw grey-scale images of faces of size 192 × 256

pixels. The data set, which was created within projects BO 1955/2-1 and WU 314/2-

1 of the German Research Council (DFG), was acquired at the Institute of Human

Genetics, University of Duisburg-Essen [1, 11]. A grey intensity in the interval [0, 1]
corresponds to each pixel. Each image contains a face of one individual sitting

straight in front of the camera under standardized conditions, i.e. looking straight

in the camera with open eyes without glasses, without hair covering the face or

other nuisance effects. The size or rotation of the head differs only slightly.

First, the data set is divided to a training data set of 124 images and an

independent validation data set of the remaining 88 images. The reason for this

division was pragmatic as the 88 images were acquired later but still under the same

standardized conditions fulfilling assumptions of independent validation.

In order to compare results of various methods, we manually localized the

position of the midpoint of the mouth in every image of both data sets. The

localization is considered successful if the midpoint of the detected mouth has

the distance from the manually localized midpoint less or equal to three pixels

(cf. Sect. 2.1). In this way, every mouth contains the middle parts of the lips, but

reaches neither the nostrils nor the chin. All further computations are performed on

raw images without a prior reduction of dimensionality or feature extraction. We

used C++ for programming the entire code and R software for visualization of the

results.

3.2 Locating the Mouth: Initial Results

For the given database of images of faces, the average mouth computed from the

whole training data set contains a clear mouth without any inkling of moustache, but

has rather a weak performance if used as a template. It localizes the mouth correctly

in 85% of the images in the training data set. Instead, we attempted to construct

various mouth templates of the same fixed size 26 × 56 pixels as averages of

groups (clusters) of mouths mutually resembling each other. The size was selected to

cover each mouths together with a small neighborhood. We consider only this fixed

template size, while data driven approaches to selecting a suitable template size are

much more complicated [17]. Several templates constructed in such a way yield

a better performance than the overall average. The template with the best mouth

localization performance among 10 such templates is the bearded template of Fig. 1,

constructed as the average of 7 mouths of bearded men.
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Fig. 1 Bearded template of size 26 × 56 pixels

The classification performance of the templates turns out to be improved if radial

weights (Fig. 2, second row left) for the template are used. They are inversely

proportional to the distance of each pixel from the template midpoint, stressing the

central area of the template rather than its boundary parts. If a pixel with coordinates

[i, j ] is considered, radial weights in this pixel are inversely proportional to its

distance from the midpoint [i0, j0], formally for even n1 and n2 defined as

wR
ij = 1�

(i − i0)2 + (j − j0)2
(9)

and a standardization (1) is used.

Table 1 presents values of the worst separation (5) obtained with various

templates on the training and validation data sets. The optimal template was

always constructed over the training data set. Its classification performance was

subsequently evaluated over the training as well as the validation data sets.

Let us also compare the results obtained with template matching with those

obtained with standard algorithms. The approaches of [22] and [28] were applied

on raw images over the considered data set. To compare the results also with several

standard classification methods, we performed the following manual pre-processing.

Out of the training data set, a set of 124 manually selected mouth images of size

26 × 56 pixels and 124 non-mouths of the same size, where each non-mouth comes

from one image, was created. Here, such non-mouth was selected from each image

which has the largest correlation coefficient with the bearded template. The results

are shown in Table 2 for various general classification methods as well as specific

procedures for object detection in 2D images. However, the separation measure (2)

cannot be applied to any of these standard methods.

3.3 Optimal Mouth Template

The template optimization of Sect. 2.2 will be now used to further improve the

results of template matching in terms of separation between mouths and non-

mouths. The optimization starts always with the bearded initial template but

considers various choices of the weights. Symmetry of the optimal mouth template
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Fig. 2 Results of template optimization. Left: choice of the weights. Middle: optimal template

obtained for these weights and for the bearded initial template. Right: optimal weights for this

optimal template, obtained by the two-stage search with the upper bounds c1 = c2 = 0.005

is required to reduce the computational complexity. In the computations, the choice

C = 0.005 was made to prevent overfitting. This is rather a precaution because

templates resulting from the optimization commonly reach C only in a small

percentage of pixels.

The computation based on the linear approximation requires several hundreds of

iterations in small steps. Concerning the value of ·, we started with · = 0.000020
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Table 1 Performance of mouth localization evaluated by means of (5) in the training and

validation data sets for equal or radial weights

Equal weights Radial weights

Template Training set Validation set Training set Validation set

Average 0.66 0.69 0.85 0.82

Bearded 0.78 0.55 1.13 0.94

Optimal (C = 0.005) 2.12 1.81 1.79 1.52

Different templates include the average across the training data set, a bearded template (Fig. 1),

and the solution of the linear approximation of Sect. 2.2, starting with the bearded initial template

Table 2 Percentages of correctly classified images using different standard methods for classifi-

cation or object detection

Results over the

Method Training set Validation set Software

Viola-Jones [22] 1.00 1.00 MATLAB, package vision

Zhu [28] 1.00 1.00 Online supplement of [28]

Support vector machines 0.90 0.85 R, package e1071

Classification tree 0.97 0.90 R, package tree

Multilayer perceptron 1.00 1.00 R, package neural

SCRDA 0.98 0.92 R, package rda

The classification rule was learned over the training data set and its performance was subsequently

evaluated over both data sets

Table 3 Performance of mouth localization evaluated by means of (5)

Weights Initial template Optimal template

(row of Fig. 2) Training set Validation set Training set Validation set

1 0.78 0.75 2.12 1.53

2 1.13 1.03 1.79 1.43

3 0.77 0.72 2.05 1.36

4 0.80 0.81 2.06 1.48

5 0.82 0.75 2.05 1.41

Different weights are used from different rows of Fig. 2 (left). For the initial bearded template, the

performance is evaluated for the training (T) and validation (V) data sets. The optimal template

was constructed over the training data set and its performance was subsequently evaluated over

both data sets

but later iterations required a decrease to · = 0.000001 in order to continue

improving the worst separation. Also, there happen to be as many as 10 worst cases

from different images during the last iterations. To speed the computation, we have

a good experience with violating Remark 1 and finding the worst case over the

whole data set only in each fifth iteration.

The resulting optimal templates are shown in Fig. 2 for different choices of fixed

weights. The performance of the optimal templates for these various choices of

weights is presented in Table 3. As we can see, the optimal templates in all cases

contain clear lips but no beard any more (Fig. 2).
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4 Discussion

In this chapter, a novel classification method is proposed, which can be characterized

as a nonparametric classifier to two groups based on optimizing the centroid

(template) of one of the groups. It is illustrated on a particular task of optimal

construction of a mouth template for the automatic mouth localization in 2D grey-

scale images of faces. We use a weighted Pearson product-moment correlation

coefficient as the measure of similarity between the image and the template. The

procedure may find applications in a broad scope of classification problems not

limited to template matching, which itself is acknowledged as one of standard,

powerful, comprehensible, and simple methods useful for object detection in single

images. Still, the topic of optimal construction of templates has not attracted

sufficient attention.

If the average mouth is used as a single template, the performance of template

matching is rather weak over the given dataset. A simple bearded template yields

the best performance with the mouth localization results to be correct in 100% of

images if radial weights are used. While some of the standard algorithms of machine

learning as well as specific approaches of image analysis are able to reach the 100%

performance as well, the advantages of the new approach include the possibility to

measure directly the separation (2) in the worst case. Such measure is tailor-made

for template matching and allows to search for an optimal template, while it cannot

be even evaluated for any other classification procedure.

The optimization criterion is formulated to separate the mouths and non-mouths

in the worst case across the whole data set. The optimization task was solved

exploiting a linear approximation to the high-dimensional optimization task and

depends on a small number (not more than ten) of non-mouths with the largest

resemblance to the mouths. The optimization is able to remarkably improve the

initial classification performance and the improvement is retained if verified on an

independent validation data set. This contradicts the popular belief that the average

of mouths of different people as a very suitable template. We have a good experience

with the bearded initial template, although the beard seems to disappear from the

optimized templates. Additional computations also reveal the resulting template not

to be very sensitive to the choice of the initial template.

The procedure can also be described as a nonparametric search for a shrinkage

version of the centroid of one group (cf. [23]). Numerous classification procedures

for high-dimensional data are based on shrinkage estimators of the population

mean, which reduce the mean square error compared to the classical mean for

multivariate data [10, 16]. In the classification task, the mean of each group is

commonly shrunken towards the overall mean [18] or towards zero [9]. However,

all such approaches require to consider the prototype (e.g., regularized mean)

also of the non-mouths, while the population of non-mouths is substantially more

heterogeneous (diverse) than that of mouths.

The novel method works reliably on the considered data without any initial

reduction of dimensionality, which allows a clear interpretation and represents also
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the difference from numerous habitual approaches to image analysis which require

a prior feature extraction. It may be, however, used after a prior dimensionality

reduction (feature extraction) as well. The classifier does not seem to have a

tendency to overfitting in spite of the high dimensionality of the task, when the

number of pixels n = 1456 largely exceeds the number of images.

5 Conclusion

In this chapter, a novel general nonparametric approach to classification to two

groups is proposed and implemented. It is based on measuring the weighted

correlation coefficient between an observation and a centroid of one of the two

groups, for which an optimization criterion tailor-made for the classification task

is formulated. The novel method does not require any distributional assumptions

and does not evaluate any form of a likelihood. It may be applied to classification

tasks for high-dimensional multivariate data in various fields, while it is common

to use the arithmetic mean to play the role of a centroid (prototype, estimator of

the population mean) of the groups in classification tasks, e.g. in the framework of

linear discriminant analysis [10, 12].

Principles of the new nonparametric classifier, although rather general, are

explained and illustrated on a particular classification task in images. In such

context, the centroid can be denoted as a template and we may speak of a nonpara-

metric construction of optimal templates exploiting all benefits of a nonparametric

approach.

The optimization criterion of the new method is based on improving the

separation only for a small set of the worst cases. These are in our case mouths with

the worst separation from non-mouths, i.e. non-mouths with the largest resemblance

to a mouth. This is a common feature of various nonparametric optimization

approaches, e.g. kernel-based methods [7, 10] or support vector machines, where the

latter are based only on selected observations (support vectors) near the boundary

between the classes. In our examples, the novel template optimization brings

improvements in the separation between positive and negative examples, as verified

on an independent validation data set.

The resulting classification procedure can be perceived as a comprehensible

method allowing to interpret which variables contribute the most to the similarity

between the template and the corresponding part of the image. This is an advantage

over competing image analysis procedures, which commonly contain a large

number of parameters with a great impact on the result but with a too difficult

interpretability (e.g., [22]).

Limitations of the new method include its computational intensity due to its

nonparametric character. Still, the method may be suitable, e.g. for applications in

medicine or forensic science, which do not require a fast computation. The demand-

ing computation is performed however only in the optimization (i.e., learning) of

the template, while assigning a new observation to one of the groups (i.e., the
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template matching itself) can be computed quickly. Other disadvantages include

the suitability of template matching only for standardized images, although the

method itself is general and uses specific properties of neither faces nor images.

Further, we did not invent a special solution for images with the mouth located

at the boundary of the image; it may be worthwhile to replace rw by a robust

correlation coefficient [15]. While template matching is common as an elementary

tool within more complicated computational pipelines, it must be admitted that

templates themselves cannot compete with image analysis approaches invariant to

illumination changes [3]. The rigid character of the template represents another

restriction, while deformable 2D templates represent a more flexible alternative,

allowing to model the deformation of the object from the ideal template.

A future research is intended to be devoted to the following tasks, which are

arranged from the simplest applications to more complicated extensions.

• Localizing other objects (e.g., eyes) in facial images by optimal templates in 2D

or 3D images.

• Optimizing also the weights for the weighted correlation coefficient.

• Applying the new method to nonparametric classification of data which are not

images, especially data which are high-dimensional and not normally distributed

(e.g., molecular genetic measurements). While this chapter considers mouths

and non-mouths in blocks (i.e., within images), gene expression data have an

analogous structure in pairs, while a sample of a patient and a sample of a control

individual both are measured within a pair within a microarray.

• Optimizing deformable templates, which are obtained by a shape alteration

(distortion, warping) of rigid templates [8].
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PAC-Bayesian Aggregation of Affine
Estimators

L. Montuelle and E. Le Pennec

Abstract Aggregating estimators using exponential weights depending on their

risk appears optimal in expectation but not in probability. We use here a slight

overpenalization to obtain oracle inequality in probability for such an explicit

aggregation procedure. We focus on the fixed design regression framework and

the aggregation of linear estimators and obtain results for a large family of linear

estimators under a non-necessarily independent sub-Gaussian noise assumptions.

1 Introduction

We consider here a classical fixed design regression model

"i ∈ {1, . . . , n}, Yi = f0(xi)+Wi

with f0 an unknown function, xi the fixed design points, and W = (Wi)i≤n a

centered sub-Gaussian noise. We assume that we have at hand a family of linear

estimate { Æft (Y ) = AtY |At ∈ S +
n (R), bt ∈ Rn, t ∈ T }, for instance a family

of projection estimator, of linear ordered smoother in a basis or in a family of

basis. The most classical way to use such a family is to select one of the estimates

according to the observations, for instance using a penalized empirical risk principle.

A better way is to combine linearly those estimates with weights depending on the

observation. A simple strategy is the Exponential Weighting Average in which all

those estimates are averaged with a weight proportional to exp
�
−�rt

³

�
Ã(t) where

�rt is a (penalized) estimate of the risk of Æft . This strategy is not new nor optimal
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as explained below but is widely used in practice. In this chapter, we analyze

the performance of this simple EWA estimator by providing oracle inequalities in

probability under mild sub-Gaussian assumption on the noise.

Our aim is to obtain the best possible estimate of the function f0 at the grid points.

This setting is probably one of the most common in statistics and many regression

estimators are available in the literature. For non-parametric estimation, Nadaraya-

Watson estimator [39, 52] and its fixed design counterpart [26] are widely used,

just like projection estimators using trigonometric, wavelet [24] or spline [51] basis,

for example. In the parametric framework, least squares or maximum likelihood

estimators are commonly employed, sometimes with minimization constraints,

leading to LASSO [47], ridge [34], elastic net [60], AIC [1], or BIC [45] estimates.

Facing this variety, the statistician may wonder which procedure provides the

best estimation. Unfortunately, the answer depends on the data. For instance, a

rectangular function is well approximated by wavelets but not by trigonometric

functions. Since the best estimator is not known in advance, our aim is to mimic

its performances in terms of risk. This is theoretically guaranteed by an oracle

inequality:

R(f0, f̃ ) ≤ Cn inf
t∈T

R(f0, Æft )+ �n

comparing the risk of the constructed estimator f̃ to the risk of the best available

procedure in the collection { Æft , t ∈ T }. Our strategy is based on convex combi-

nation of these preliminary estimators and relies on PAC-Bayesian aggregation to

obtain a single adaptive estimator. We focus on a wide family, commonly used in

practice : affine estimators { Æft (Y ) = At (Y −b)+b+bt|At ∈ S +
n (R), bt ∈ Rn, t ∈

T } with b ∈ Rn a common recentering.

Aggregation procedures have been introduced by Vovk [50], Littlestone and

Warmuth [37], Cesa-Bianchi et al. [13], Cesa-Bianchi and Lugosi [14]. They are

a central ingredient of bagging [9], boosting [25, 44], or random forest ([3] or [10];

or more recently [6–8, 27]).

The general aggregation framework is detailed in [40] and studied in [11, 12]

through a PAC-Bayesian framework as well as in [53–59]. See, for instance, [49]

for a survey. Optimal rates of aggregation in regression and density estimation are

studied by Tsybakov [48], Lounici [38], Rigollet and Tsybakov [42], Rigollet [41]

and Lecué [35].

A way to translate the confidence of each preliminary estimate is to aggregate

according to a measure exponentially decreasing when the estimate’s risk rises. This

widely used strategy is called exponentially weighted aggregation. More precisely,

as explained before, the weight of each element Æft in the collection is proportional

to exp
�
−�rt

³

�
Ã(t) where�rt is a (penalized) estimate of the risk of Æft , ³ is a positive

parameter, called the temperature, that has to be calibrated and Ã is a prior measure

over T . The key property of exponential weights is that they explicitly minimize the

aggregated risk penalized by the Kullback-Leibler divergence to the prior measure

Ã[12]. Our aim is to give sufficient conditions on the risk estimate �rt and the
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temperature ³ to obtain an oracle inequality for the risk of the aggregate. Note that

when the family T is countable, the exponentially weighted aggregate is a weighted

sum of the preliminary estimates.

This procedure has shown its efficiency, offering lower risk than model selection

because we bet on several estimators. Aggregation of projections has already been

addressed by Leung and Barron [36]. They have proved, by the mean of an oracle

inequality, that the aggregate performs almost as well, in expectation, as the best

projection in the collection. Those results have been extended to several settings

and noise conditions [5, 18, 19, 21–23, 29, 30, 43, 46] under a frozen estimator

assumption: they should not depend on the observed sample. This restriction, not

present in the work by Leung and Barron [36], has been removed by Dalalyan

and Salmon [20] within the context of affine estimator and exponentially weighted

aggregation. Nevertheless, they make additional assumptions on the matricesAt and

the Gaussian noise to obtain an optimal oracle inequality in expectation for affine

estimates. Very sharp results have been obtained in [15, 31] and [32]. Those papers,

except the last one, study a risk in expectation.

Indeed, the Exponential Weighting Aggregation is not optimal anymore in

probability. Dai et al. [17] have indeed proved the sub-optimality in deviation

of exponential weighting, not allowing to obtain a sharp oracle inequality in

probability. Under strong assumptions and independent noise, [4] provides a sharp

oracle inequality with optimal rate for another aggregation procedure called Q-

aggregation. It is similar to exponential weights but the criterion to minimize is

modified and the weights no longer are explicit. Results for the original EWA

scheme exist nevertheless but with a constant strictly larger than 1 in the oracle

inequality. Dai [16] obtain, for instance, a result under a Gaussian white noise

assumption by penalizing the risk in the weights and taking a temperature at

least 20 times greater than the noise variance. Golubev and Ostobski [32] does

not use an overpenalization but assumes some ordered structure on the estimate

to obtain a result valid even for low temperature. An unpublished work, by

Gerchinovitz [28], provides also weak oracle inequality with high probability for

projection estimates on non-linear models. Alquier and Lounici [2] consider frozen

and bounded preliminary estimators and obtain a sharp oracle inequality in deviation

for the excess risk under a sparsity assumption, if the regression function is bounded,

with again a modified version of exponential weights.

In this work, we will play on both the temperature and the penalization. We

will be able to obtain oracle inequalities for the Exponential Weighting Aggregation

under a general sub-Gaussian noise assumption that does not require a coordinate

independent setting. We conduct an analysis of the relationship between the choice

of the penalty and the minimal temperature. In particular, we show that there is a

continuum between the usual noise based penalty and a sup norm type one allowing

a sharp oracle inequality.
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2 Framework and Estimate

Recall that we observe

"i ∈ {1, . . . , n}, Yi = f0(xi)+Wi

with f0 an unknown function and xi the fixed grid points. Our only assumption

will be on the noise. We do not assume any independence between the coordinates

Wi but only that W = (Wi)i≤n ∈ Rn is a centered sub-Gaussian variable. More

precisely, we assume that E(W) = 0 and there exists Ã 2 ∈ R+ such that

"³ ∈ Rn, E
�
exp
�
³�W

��
≤ exp

�
Ã 2

2
�³�2

2

�
,

where �.�2 is the usual euclidean norm in Rn. If W is a centered Gaussian vector

with covariance matrix £ , then Ã 2 is nothing but the largest eigenvalue of £ .

The quality of our estimate will be measured through its error at the design points.

More precisely, we will consider the classical euclidean loss, related to the squared

norm

�g�2
2 =

n�

i=1

g(xi)
2.

Thus, our unknown is the vector (f0(xi))
n
i=1 rather than the function f0.

As announced, we will consider affine estimators Æft (Y ) = At (Y − b) + b + bt
corresponding to affine smoothed projection.

We will assume that

Æft (Y ) = At (Y − b)+ b + bt =
n�

i=1

Ãt,i�Y − b, gt,i�gt,i + b + bt

where (gt,i)
n
i=1 is an orthonormal basis, (Ãt,i)

n
i=1 a sequence of non-negative real

numbers, and bt ∈ Rn. By construction, At is thus a symmetric positive semi-

definite real matrix. We assume furthermore that the matrix collection {At }t∈T is

such that supt∈T �At�2 ≤ 1. For the sake of simplicity, we only use the notation
Æft (Y ) = At (Y − b)+ b + bt in the following.

To define our estimate from the collection { Æft (Y ) = AtY+bt |At ∈ S +
n (R), bt ∈

Rn, t ∈ T }, we specify the estimate�rt of the (penalized) risk of the estimator Æft (Y ),
choose a prior probability measure Ã over T and a temperature ³ > 0. We define

the exponentially weighted measure ÃEWA, a probability measure over T , by

dÃEWA(t) =
exp
�
− 1

³
�rt
�

�
exp
�
− 1

³
�rt �
�
dÃ(t �)

dÃ(t)
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and the exponentially weighted aggregate fEWA by fEWA =
� Æft dÃEWA(t). If T

is countable, then

fEWA =
�

t∈T

e−�rt/³Ãt�
t �∈T e−�rt �/³Ãt �

Æft .

This construction naturally favors low risk estimates. When the temperature goes

to zero, this estimator becomes very similar to the one minimizing the risk estimate

while it becomes an indiscriminate average when ³ grows to infinity. The choice

of the temperature appears thus to be crucial and a low temperature seems to be

desirable.

Our choice for the risk estimate �rt is to use the classical Stein unbiased estimate,

which is sufficient to obtain optimal oracle inequalities in expectation,

rt = �Y − Æft (Y )�2
2 + 2Ã 2Tr(At )− nÃ 2

and add a penalty pen(t). We will consider simultaneously the case of a penalty

independent of f0 and the one where the penalty may depend on an upper bound of

(kind of) sup norm.

More precisely, we allow the use, at least in the analysis, of an upper bound

��f0 − b�> which can be thought as the supremum of the sup norm of the

coefficients of f0 in any basis appearing in T . Indeed, we define ��f0 − b�> as

the smallest non-negative real number C such that for any t ∈ T ,

�At (f0 − b)�2
2 ≤ C2Tr(A2

t ).

By construction, ��f0 − b�> is smaller than the sup norm of any coefficients of

f0 − b in any basis appearing in the collection of estimators. Note that ��f0 − b�>
can also be upper bounded by �f0 − b�1, �f0 − b�2 or

:
n�f0 − b�> where the �1

and sup norm can be taken in any basis.

Our aim is to obtain sufficient conditions on the penalty pen(t) and the

temperature ³ so that an oracle inequality of type

�f0 − fEWA�2
2 ≤ inf

μ∈M 1
+(T )

(1 + �)

�
�f0 − Æft�2

2dμ(t)

+ (1 + ��)

��
price(t)dμ(t)+ 2³KL(μ, Ã)+ ³ ln

1

·

�

holds either in probability or in expectation. Here, � and �� are some small non-

negative numbers possibly equal to 0 and price(t) a loss depending on the choice

of pen(t) and ³. When T is countable, such an oracle proves that the risk of
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our aggregate estimate is of the same order as the one of the best estimate in the

collection as it implies

�f0 − fEWA�2
2 ≤ inf

t∈T

�
(1 + �)�f0 − Æft�2

2 + (1 + ��)
�

price(t)+ ³ ln
1

Ã(t)2·

��
.

Before stating our more general result, which is in Sect. 4, we provide a

comparison with some similar results in the literature on the countable T setting.

3 Penalization Strategies and Preliminary Results

The most similar result in the literature is the one from [16] which holds under

a Gaussian white noise assumption and uses a penalty proportional to the known

variance Ã 2:

Proposition 3.1 ([16]) If pen(t) = 2Ã 2Tr(At ), and ³ g 4Ã 216, then for all · > 0,

with probability at least 1 − ·,

�f0 − fEWA�2 ≤ min
t

��
1 + 128Ã 2

3³

�
�f0 − Æft�2 + 8Ã 2Tr(At )

+3³ ln
1

Ãt
+ 3³ ln

1

·

�
.

Our result generalizes this result to the non-necessarily independent sub-

Gaussian noise. We obtain

Proposition 3.2 If ³ g 20Ã 2, there exists ³ ∈ [0, 1/2), such that if pen(t) g
4Ã 2

³−4Ã 2 Tr(A2
t )Ã

2, for any · > 0, with probability at least 1 − ·,

�f0 − fEWA�2 ≤ inf
t

��
1 + 4³

1 − 2³

�
�f0 − Æft�2

+
�

1 + 2³

1 − 2³

��
pen(t)+ 2Ã 2Tr(At )+ 2³ ln

1

Ãt
+ ³ ln

1

·

��
.

The parameter ³ is explicit and satisfies � = O(Ã
2

³
). We recover thus a similar weak

oracle inequality under a weaker assumption on the noise. It should be noted that

[4] obtains a sharp oracle inequality for a slightly different aggregation procedure

but only under the very strong assumption that Tr(At ) ≤ ln 1
Ã(t)

.

Following [33], a lower bound on the penalty that involves the sup norm of f0,

can be given. In that case, the oracle inequality is sharp as � = �� = 0. Furthermore,

the parameter ³ is not necessary and the minimum temperature is lower.
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Proposition 3.3 If ³ > 4Ã 2, and

pen(t) g 4Ã 2

³ − 4Ã 2

�
Ã 2Tr(A2

t )+ 2

�
��f0 − b�

2

>Tr(A2
t )+ �bt�2

2

��
,

then for any · > 0, with probability at least 1 − ·,

�f0 − fEWA�2 ≤ inf
t

�
�f0 − Æft�2 + 2Ã 2Tr(At )

+ 8Ã 2

³ − 4Ã 2

�
��f0 − b�

2

>Tr(A2
t )+ �bt�2

2

�

+ pen(t)+ 2³ ln
1

Ãt
+ ³ ln

1

·

�
.

We are now ready to state the central result of this contribution, which gives

an explicit expression for ³ and introduce an optimization parameter ¿ > 0, from

which this theorem can be deduced.

4 A General Oracle Inequality

We consider now the general case for which T is not necessarily countable. Recall

that we have defined the exponentially weighted measure ÃEWA, a probability

measure over T , by

dÃEWA(t) =
exp
�
− 1

³
�rt
�

�
exp
�
− 1

³
�rt �
�
dÃ(t �)

dÃ(t)

and the exponentially weighted aggregate fEWA by fEWA =
� Æft dÃEWA(t).

Propositions 3.2 and 3.3 will be obtained as straightforward corollaries.

Our main contribution is the following two similar theorems:

Theorem 4.1 For any ³ g 20Ã 2, let

³ = ³ − 12Ã 2 −
�
³ − 4Ã 2

�
³ − 20Ã 2

16Ã 2
.

If for any t ∈ T ,

pen(t) g 4Ã 2

³ − 4Ã 2
Ã 2Tr(A2

t ),
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then

• for any · ∈ (0, 1], with probability at least 1 − ·,

�f0 − fEWA�2
2 ≤ inf

μ∈M 1
+(T )

�
1 + 4³

1 − 2³

��
�f0 − Æft�2

2dμ(t)

+
�

1 + 2³

1 − 2³

��
pen(t)+ 2Ã 2Tr(At )dμ(t)

+ ³

�
1 + 2³

1 − 2³

��
2KL(μ, Ã)+ ln

1

·

�
.

• Furthermore

E�f0 − fEWA�2
2 ≤ inf

μ∈M 1
+(T )

�
1 + 4³

1 − 2³

��
E�f0 − Æft�2

2dμ(t)

+
�

1 + 2³

1 − 2³

��
pen(t)+2Ã 2Tr(At )dμ(t)+2³

�
1 + 2³

1 − 2³

�
KL(μ, Ã).

and

Theorem 4.2 For any · ∈ [0, 1], if ³ > 4Ã 2, If for any t ∈ T ,

pen(t) g 4Ã 2

³ − 4Ã 2

�
Ã 2Tr(A2

t )+ 2

�
��f0 − b�

2

>Tr(A2
t )+ �bt�2

2

��
,

then

• for any · ∈ (0, 1], with probability at least 1 − ·,

�f0 − fEWA�2
2 ≤ inf

μ∈M 1
+(T )

�
�f0 − Æft�2

2dμ(t)

+
�

pen(t)+ 2Ã 2Tr(At )+
8Ã 2

³ − 4Ã 2

�
��f0 − b�

2

>Tr(A2
t )+ �bt�2

2

�
dμ(t)

+ ³

�
2KL(μ, Ã)+ ln

1

·

�
.

• Furthermore

E�f0−fEWA�2
2 ≤ inf

μ∈M 1
+(T )

�
1 + 4³

1 − 2³

��
E�f0− Æft�2

2dμ(t)+
�

pen(t)

+2Ã 2Tr(At )+
8Ã 2

³ − 4Ã 2

�
��f0 − b�

2

>Tr(A2
t )+ �bt�2

2

�
dμ(t)+2³KL(μ, Ã).
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When T is discrete, one can replace the minimization over all the probability

measures in M 1
+(T ) by the minimization overall all Dirac measures ·ft with

t ∈ T . Propositions 3.2 and 3.3 are then straightforward corollaries. Note that

the result in expectation is obtained with the same penalty, which is known not to

be necessary, at least in the Gaussian case, as shown by Dalalyan and Salmon [20].

If we assume the penalty is given

pen(t) = »Tr(A2
t )Ã

2,

one can rewrite the assumption in terms of » . The weak oracle inequality holds for

any temperature greater than 20Ã 2 as soon as » g 4Ã 2

³−4Ã 2 . While an exact oracle

inequality holds for any vector f0 and any temperature ³ greater than 4Ã 2 as soon

as

³ − 4Ã 2

4Ã 2
» − 1 g

��f0 − b�
2

> + �bt�2/Tr(A2
t )

Ã 2
.

For fixed » and ³, this corresponds to a low peak signal to noise ratio
��f0−b�

2

>
Ã 2 up

to the �bt�2 term which vanishes when bt = 0. Note that similar results hold for

a penalization scheme but with much larger constants and some logarithmic factor

in n.

Finally, the minimal temperature of 20Ã 2 can be replaced by some smaller value

if one further restricts the smoothed projections used. As it appears in the proof, the

temperature can be replaced by 8Ã 2 or even 6Ã 2 when the smoothed projections are,

respectively, classical projections and projections on the same basis. The question

of the minimality of such temperature is still open. Note that in this proof, there is

no loss due to the sub-Gaussianity assumption, since the same upper bound on the

exponential moment of the deviation as in the Gaussian case is found, providing the

same penalty and bound on temperature.

The two results can be combined in a single one producing weak oracle

inequalities for a wider range of temperatures than Theorem 4.1. Our proof is

available in an extended version of this contribution in which, we prove that a

continuum between those two cases exists: a weak oracle inequality, with smaller

leading constant than the one of Theorem 4.1, holds as soon as there exists · ∈ [0, 1)

such that ³ g 4Ã 2(1 + 4·) and

³ − 4Ã 2

4Ã 2
» − 1 g (1 − ·)(1 + 2³ )2

��f0 − b�
2

> + �bt�2/Tr(A2
t )

Ã 2
,

where the signal to noise ratio guides the transition. The temperature required

remains nevertheless always above 4Ã 2. The convex combination parameter ·

measures the account for signal to noise ratio in the penalty.
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Note that in practice, the temperature can often be chosen smaller. It is an open

question whether the 4Ã 2 limit is an artifact of the proof or a real lower bound. In the

Gaussian case, [32] have been able to show that this is mainly technical. Extending

this result to our setting is still an open challenge.
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Light- and Heavy-Tailed Density
Estimation by Gamma-Weibull Kernel

L. Markovich

Abstract In our previous papers we focus on the gamma kernel estimators of

density and its derivatives on positive semi-axis by dependent data by univariate

and multivariate samples. We introduce the gamma product kernel estimators for

the multivariate joint probability density function (pdf) with the nonnegative support

and its partial derivatives by the multivariate dependent data with a strong mixing.

The asymptotic behavior of the estimates and the optimal bandwidths in the sense

of minimal mean integrated squared error (MISE) are obtained. However, it is

impossible to fit accurately the tail of the heavy-tailed density by pure gamma

kernel. Therefore, we construct the new kernel estimator as a combination of the

asymmetric gamma and Weibull kernels, i.e. Gamma-Weibull kernel. The gamma

kernel is nonnegative and it changes the shape depending on the position on the

semi-axis and possesses good boundary properties for a wide class of densities.

Thus, we use it to estimate the pdf near the zero boundary. The Weibull kernel is

based on the Weibull distribution which can be heavy-tailed and hence, we use it

to estimate the tail of the unknown pdf. The theoretical asymptotic properties of

the proposed density estimator like the bias and the variance are derived. We obtain

the optimal bandwidth selection for the estimate as a minimum of the MISE. The

optimal rate of convergence of the MISE for the density is found.

L. Markovich (�)

Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region, Russia

Institute for Information Transmission Problems, Moscow, Russia

V. A. Trapeznikov Institute of Control Sciences, Moscow, Russia

e-mail: kimo1@mail.ru

© Springer Nature Switzerland AG 2018

P. Bertail et al. (eds.), Nonparametric Statistics, Springer Proceedings

in Mathematics & Statistics 250, https://doi.org/10.1007/978-3-319-96941-1_10

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96941-1_10&domain=pdf
mailto:kimo1@mail.ru
https://doi.org/10.1007/978-3-319-96941-1_10


146 L. Markovich

1 Introduction

It is well known that in modeling of a wide range of applications in engineering,

signal processing, medical research, quality control, actuarial science, and climatol-

ogy among others the nonnegatively supported pdfs are widely used. For example,

the distributions from the gamma family play a key role in actuarial science. Most

total insurance claim distributions are shaped like gamma pdfs [11]: nonnegatively

supported, skewed to the right and unimodal. The gamma distributions are also

used to model rainfalls [1]. Erlang and Ç2 pdfs are used in modeling insurance

portfolios [13]. The pdfs from the exponential class play a prominent role in the

optimal filtering in the signal processing and control of nonlinear processes [7].

On the basis of the high popularity of the nonnegatively supported distributions,

it is fairly natural to study the estimation methods of such pdfs by finite data

samples. One of the most common nonparametric pdf estimation methods are kernel

estimators. However most of the known asymmetric kernel estimators are oriented

on the univariate nonnegative independent identically distributed (iid) data and

the light-tailed distributions. For example, for the iid random variables (r.v.s), the

estimators with gamma kernels were proposed in [6]. The gamma kernel estimator

was developed for univariate dependent data in [4]. In [3] the gamma kernel

estimator of the multivariate pdf for the nonnegative iid r.v.s was introduced. Other

asymmetrical kernel estimators for the case of the iid data like inverse Gaussian

and reciprocal inverse Gaussian estimators were studied in [20]. The comparison

of these asymmetric kernels with the gamma kernel is given in [5]. However,

for a real life modeling the multivariate dependent probability models are used.

For example, to attempt modeling portfolios of insurance losses the dependent

multivariate probability models with gamma distributed univariate margins were

used in [11]. Moreover, in the risk theory the pdfs can be heavy-tailed [9]. Modeling

the heavy-tailed densities is important to compute and forecast the portfolio value-

at-risk when the underlying risk factors have a heavy-tailed distribution [12, 19].

Hence, the need of the multivariate pdf estimation for the nonnegative dependent

r.v.s and heavy-tailed pdfs arises. In [16] we introduce the gamma product kernel

estimators for the multivariate joint pdf with the nonnegative support and its

partial derivatives by the multivariate dependent data. The author develops both

the asymptotic behavior of the estimates and the optimal bandwidths in the sense

of the minimal mean integrated squared error (MISE). Note that the derivative

estimation requires a specific bandwidth different from that for the pdf estimation.

The mathematical technic applied for the derivative estimation is similar to the

one applied for the pdf. However all formulas became much more complicated

particulary because of the special Digamma functions arisen. Thus, one has to find

the order by a bandwidth from complicated expressions containing logarithms and

the special function. Other asymmetrical kernel estimators like inverse Gaussian

and reciprocal inverse Gaussian estimators were studied in [20]. The comparison

of these asymmetric kernels with the gamma kernel is given in [5]. The gamma

kernel is nonnegative and flexible regarding the shape. This allows to provide a
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satisfactory fitting of the multi-modal pdfs and their derivatives. Gamma kernel

estimators have no boundary bias if f ��(0) = 0 holds, i.e. when the underlying pdf

f (x) has a shoulder at x = 0 [22]. This shoulder property is fulfilled, for example,

for a wide exponential class of pdfs. Other bias correction methods can be found

in [14] for the univariate iid data and in [10] for the multivariate iid data. However,

less attention is dedicated to the tail fitting. The main focus of this chapter is on the

nonparametric estimation of the heavy-tailed pdfs which are defined on the positive

part of the real axis. It is obvious that the known classical estimators cannot be

directly applied to the heavy-tailed pdfs. These are characterized by slower decay to

zero of heavy tails than that of an exponential rate, the lack of some or all moments

of the distribution, and sparse observations at the tail domain of the distribution

[9]. The known approaches of the heavy-tailed density estimation are the kernel

estimators with the variable bandwidth, the estimators based on the preliminary

transform of the initial r.v. to a new one and “piecing-together approach” which

provides a certain parametric model for the tail of the pdf and a nonparametric

model to approximate the “body” of the pdf [18]. In this contribution, we introduce a

new kernel constructed from the gamma and the Weibull kernels. The new Gamma-

Weibull kernel has two smoothing parameters (bandwidths) and the third parameter

that is the width of the boundary domain of the gamma part of the kernel. A stapling

between the gamma and the Weibull parts is provided. The asymptotic behavior

of the estimates and the optimal bandwidths in the sense of the minimal MISE

are obtained. Normally, the Pareto distribution tail is accepted as a tail model for

regularly varying heavy-tailed distributions. We selected the Weibull distribution tail

since it does not belong to the latter class of the distributions and can be either heavy-

tailed or light-tailed, depending on the shape parameter. This chapter is organized

as follows. In Sect. 1.1 we provide a brief overview of the results known for the

gamma kernel density and its derivative estimators. In Sect. 2 we introduce the

Gamma-Weibull kernel estimator and in Sect. 3 its convergence rate and the optimal

bandwidth parameters that minimize its MISE are derived.

1.1 Gamma Kernel

In this section we briefly recall the theory known for gamma kernel estimators. Let

{Xi; i = 1, 2, . . .} be a strongly stationary sequence with an unknown probability

density function f (x), which is defined on x ∈ [0,>). To estimate f (x) by a

known sequence of observations {Xi} the non-symmetric gamma kernel estimator

was defined in [6] by the formula

�fn(x) = 1

n

n�

i=1

KÃb(x),b(Xi). (1)
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Here

KÃb(x),b(t) = tÃb(x)−1 exp(−t/b)
bÃb(x)� (Ãb(x))

(2)

is the kernel function, b is a smoothing parameter (bandwidth) such that b ³ 0 as

n ³ >, � (·) is a standard gamma function and

Ãb(x) =
�
x/b, if x g 2b,

(x/(2b))2 + 1, if x ∈ [0, 2b).
(3)

The use of gamma kernels is due to the fact that they are nonnegative, change

their shape depending on the position on the semi-axis, and possess better boundary

bias than symmetrical kernels. The boundary bias becomes larger for multivariate

densities. Hence, to overcome this problem the gamma kernels were applied in [3].

Earlier the gamma kernels were only used for the density estimation of identically

distributed sequences in [3, 6] and for stationary sequences in [4]. Along with the pdf

estimation it is often necessary to estimate the derivative of the pdf. The estimation

of the univariate pdf derivative by the gamma kernel estimator was proposed in [17]

for iid data and in [15] for a strong mixing dependent data. Our procedure achieves

the optimal MISE of order n−4/7 when the optimal bandwidth is of order n−2/7. In

[21] an optimal MISE of the kernel estimate of the first derivative of order n−4/7

corresponding to the optimal bandwidth of order n−1/7 for symmetrical kernels was

indicated. The unknown smoothing parameter b was obtained as the minimum of

the mean integrated squared error (MISE) which, as known, is equal to

MISE( Æfn(x)) = E

>�

0

(f (x)− Æfn(x))2dx.

Remark 1 The latter integral can be split into two integrals
� 2b

0
and
�>

2b
. In the

case when x g 2b the integral
� 2b

0
tends to zero when b ³ 0. Hence, we omit the

consideration of this integral in contrast to [22]. The first integral has the same order

by b as the second one, thus it cannot affect the selection of the optimal bandwidth.

In [21, p. 49], it was indicated an optimal MISE of the first derivative kernel

estimate n− 4
7 with the bandwidth of order n− 1

7 for symmetrical kernels. Neverthe-

less, our procedure achieves the same order n− 4
7 with a bandwidth of order n− 2

7 .

Moreover, our advantage concerns the reduction of the bias of the density derivative

at the zero boundary by means of asymmetric kernels. Gamma kernels allow us

to avoid boundary transformations which is especially important for multivariate

cases.
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2 Gamma-Weibull Kernel

The term heavy-tailed is used to the class of pdf whose tails are not exponentially

bounded, i.e. their tails are heavier than the exponential pdf tail [2, 9]. The examples

of such pdfs are Lognormal, Pareto, Burr, Cauchy, Weibull with shape parameter

less than 1 among others. Let {Xi; i = 1, 2, . . .} be a strongly stationary sequence

with an unknown pdf f (x) which is defined on the nonnegative semi axes x ∈
[0,>). Our objective is to estimate the unknown heavy-tailed pdf by a known

sequence of observations {Xi}. Since the pdf is assumed to be asymmetric and

heavy-tailed we cannot use the standard symmetrical kernels. Let us construct a

special kernel function which would be both flexible on the domain near the zero

boundary and it could estimate the heavy tail of the distribution. For the domain

x ∈ [0, a], a > 0 we use the gamma kernel estimator that was defined in [6] by the

formula

�fGn(x) = 1

n

n�

i=1

KÃ(x,h),»(Xi) = 1

n

n�

i=1

X
Ã(x,h)−1
i e−Xi/»

»Ã(x,h)� (Ã(x, h))
, Ã, » > 0.

Here, � (Ã) is the gamma function evaluated at Ã and h is the bandwidth of the

kernel. The shape parameters Ã, » will be selected further. For the domain x > a

the Weibull kernel estimator is constructed by

�fWn(x) = 1

n

n�

i=1

Kk(x,b) (Xi) = 1

n

n�

i=1

k(x, b)

»

�
Xi

»

�k(x,b)−1

exp

�
−
�
Xi

»

�k(x,b)�
,

where the shape parameters are » > 0, 0 < k < 1 and b is the bandwidth of the

kernel. Hence, the pdf estimator is the following

�fGWn(x) =
��fGn(x) if x ∈ [0, a],
�fWn(x) if x > a.

(4)

The latter kernel estimator has two bandwidth parameters h and b and one special

parameter a. The parameters Ã(x, h), k(x, b), » and » can be found from the

matching conditions

fG(X, Ã(x, h), »)

���
x=a

− fW (a, k(x, b), »)

���
x=a

= 0, (5)

f �
G(X, Ã(x, h), »)

���
x=a

− f �
W (a, k(x, b), »)

���
x=a

= 0. (6)

From the condition (5) we can deduce that the shape parameters of the kernels are

Ã(a, h) = k(a, b), » = ».



150 L. Markovich

From the condition (6) we can deduce that

tialÃ(x, h)

tialx

���
x=a

= tialk(x, b)

tialx

���
x=a

. (7)

Hence, we can select any variety of Ã(x, h) and k(x, b) that satisfy the latter

conditions to get some kernel estimators. Let us select, for example, the following

parameters

Ã(x, h) = x + c1h

a
, k(x, b) = x + c2b

a
. (8)

Hence, the bandwidth parameters satisfy the condition h = bc2/c1. Since k(x, b) <

1 for the heavy-tailed Weibull pdf the parameters c1, c2 are some negative constants

that we will select further. As the measure of error of the proposed estimator (4) we

consider the MISE and the unknown smoothing parameters h and b are obtained as

the minima of (4).

3 Convergence Rate of the Density Estimator

In this section we obtain the asymptotic properties of the estimator (4). To this end

we derive the bias and the variance of the estimates in the following lemmas.

Lemma 1 If b ³ 0 as n ³ >, then the bias of the pdf estimate (4) is equal to

Bias(�f (x)) =
�
C1(x, a)+ hC2(x, a, c1)+ o(h) if x ∈ [0, a],
B1(x, a)+ bB2(x, a, c2)+ o(b) if x > a,

, (9)

where we denote

C1(x, a) = xa

2
f ��(x), C2(x, a, c1) c c1c2(x, a) = c1

�
f �(x)+ f ��(x)

a

2
+ f ���(x)

xa

2

�
,

(10)

B1(x, a) = f (a� (t))− f (x)+ f �� (a� (t))
a2

2
(� (t)− � (r))2 , (11)

B2(x, a, c2) c c2b2(x, a) = a2c2

x2

�
− f � (a� (t)) � (t)« (t) (12)

+ f �� (a� (t)) a

�
(� (t)− � (r)) (� (t) « (t)− 2� (r) « (r))

�

− f ��� (a� (t))
a2

2
(� (t)− � (r))2 � (t) « (t)

�
,
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and

t = 1 + a

x
, r = 1 + 2a

x
. (13)

Lemma 2 If b ³ 0 as n ³ >, then the variance of the pdf estimate (4) is equal

to

V ar(�f (x)) = 1

n

�
A1(x, a)− (C1(x, a)+ f (x))2 + h(A2(x, a, c2) (14)

− 2C2(x, a, c1)(C1(x, a)+ f (x)))

�
+ o(h) if x ∈ [0, a],

V ar(�f (x)) = 1

n

�
D1(x, a)− (B1(x, a)− f (x))2 + b(D2(x, a, c2)

− 2B2(x, a, c2)(B1(x, a)− f (x)))

�
+ o(b) if x > a,

where we denote

A1(x, a) = −f
�
x − a

2

� :
x:

a(a − 2x)
, (15)

A2(x, a, c1) c c1a2(x, a) = −c1

�
f
�
x − a

2

� a + 2x

2
:
ax(a − 2x)2

+
:
x:

a(a − 2x)

�
f �
�
x − a

2

�
+ a

4

�
x − a

2

�
f ��
�
x − a

2

���

and

D1(x, a) = x2
3x
a

−1

a2

�
f (2a)

�
x(x − 3a)

2a2
+ 2

�
+ f �(2a)(x − a) + f ��(2a)2a2

�
, (16)

D2(x, a, c2) c d21(x, a) + c2d22(x, a) = x2
3x
a

−1

a2

�
f (2a)

�
(x − 2a)(dx2 + a(c2 − dx))

2a3

+ dx2 + a(c2 − dx)

a
− x(x − a)(x − 2a)(6³ − 10 − ln(4))

2a3

�

+ f �(2a)

�
dx2 + a(c2 − dx)

a
− 2xd(x − 2a + 1)− x(x − a)(6³ − 10 − ln(4))

a

�

− f ��(2a)
�

2x(d(x − a) + 2a2 + a(6³ − 10 − ln(4)))
�

+ c22
3x
a

−1

a3
(−x ln(a) + a + 2x ln(2))

×
�
f (2a)

�
x(x − 3a)

2a2
+ 2

�
+ f �(2a)(x − a)+ f ��(2a)2a2

��
.

The proofs of the latter lemmas are given in Appendix.
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3.1 The Optimal Bandwidth Parameters for the Density

Estimator

To find the mean integrated squared error (MISE) we use the results of two last

sections. Hence, for the domain x ∈ (0, a] the MSE is equal to

MSE( Æf (x))G = C2
1 (x, a)+ h2C2

2 (x, a, c1)+ 2hC1(x, a)C2(x, a, c1) (17)

+ 1

n

�
A1(x, a)− (C1(x, a)+ f (x))2 + h(A2(x, a, c1)

− 2C2(x, a, c1)(C1(x, a)+ f (x)))

�
+ o(h).

Thus, from the minima of the latter equation we can obtain the optimal bandwidth

parameter for the domain x ∈ (0, a]

hopt (x, a, n) = − C1(x, a)

C2(x, a, c1)
− 1

C2(x, a, c1)n

�
A2(x, a, c1)

2C2(x, a, c1)
− C1(x, a)− f (x)

�
.

(18)

Substituting the latter bandwidth into (17) we get

MSE( Æf (x))Gopt = − 1

n2

�
A2(x, a, c1)

2C2(x, a, c1)
− (C1(x, a)+ f (x))

�2

+ 1

n

�
A1(x, a)−

A2(x, a, c1)C1(x, a)

C2(x, a, c1)
+ (C2

1 (x, a)− f 2(x))

�
.

For the domain x > a the MSE is the following:

MSE( Æf (x))W = B2
1 (x, a)+ b2B2

2 (x, a, c2)+ 2bB1(x, a)B2(x, a, c2) (19)

+ 1

n

�
D1(x, a)− (B1(x, a)− f (x))2 + b(D2(x, a, c2)

− 2B2(x, a, c2)(B1(x, a)− f (x)))

�
+ o(b)

and the optimal bandwidth is

bopt (x, a, n) = −B1(x, a)

B2(x, a, c2)
− 1

B2(x, a, c2)n

�
D2(x, a, c2)

2B2(x, a, c2)
− B1(x, a)+ f (x)

�
.

(20)
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Substituting the latter bandwidth into (19) we get the following rate:

MSE( Æf (x))Wopt = − 1

n2

�
D2(x, a, c2)

2B2(x, a, c2)
− (B1(x, a)+ f (x))

�2

+ 1

n

�
D1(x, a)−

D2(x, a, c2)B1(x, a)

B2(x, a, c1)
+ (B2

1 (x, a)− f 2(x))

�
.

To satisfy the condition hopt (a, a, n) = bopt(a, a, n)c2/c1, we have to find the

parameters a, c1, c2. Let us select the bandwidth bopt(a, a, n) which is optimal

for the tail part of the estimate. Hence, the second bandwidth is hbopt (a, a, n) =
bopt(a, a, n)c2/c1. We can find such constants a, c1, c2 that provide

min
a,c1,c2

{hopt (a, a, n)− hbopt (a, a, n)}.

Hence, substituting the values of the bandwidths (18) and (20) we get the following

condition:

c2 = 1

d21(a, a)

�
B1(a, a)b2(a, a)

C1(a, a)

�
a2(a, a)

c2(a, a)
− 2f (a)

�
− 2f (a)b2(a, a)− d22(a, a)

�

where

d21(a, a) = 2
3a
2

�
f �(2a)

ln(10)
(a − 1)(³ ln(10)− ln(5))

+ f ��(2a)
�
³ − 1 + 2a2

�
ln(4)

ln(10)
− 6³ + 10

�
+ ln(2)

ln(10)

��
,

d22(a, a) = 2
3a
2 −1

�
f (2a)

a2

�
2a − 1

2
+ 3

�
1 − 1

ln(10)(ln(a)− 2 ln(2))

��

+ f �(2a)

a
+ f ��(2a)

�
1 − 1

ln(10)
(ln(a)− 2 ln(2))

��

and a2(a, a), B1(a, a), b2(a, a), C1(a, a), and c2(a, a) are defined in Lemmas 1

and 2. Note that we can select any negative c1, e.g. c1 = −1. Hence, the selection

of a provides the choice of c2 which gives us the optimal bandwidths (18) and (20)

for both domains x ∈ (0, a] and x > a, respectively. In practice, the calculation of

c2 requires a pilot estimation of the pdf f (x). One can use the rule of thumb method

with the gamma reference function (see [8]).
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4 Conclusion

The new kernel estimator of the heavy-tailed probability density function on

the positive semi-axis by iid data is proposed. Our estimator is based on two

kernels: the gamma kernel for the boundary domain and the Weibull kernel for

the tail domain. Since the Weibull density can be either heavy-tailed or light-

tailed, depending on the shape parameter, the proposed kernel estimator can be

applied to both types of densities. The Gamma-Weibull kernel is smooth due

to the cross-linking condition on the boundary and the introduced cross-linking

parameter. We provide the asymptotic properties of the estimator by optimal rates of

convergence of its mean integrated squared error. We develop explicit formulas for

the optimal smoothing parameters (bandwidths). Further development may concern

the investigation of alternative bandwidth selection methods. The results can also be

extended to multivariate samples with mixing conditions.

Acknowledgements The study was supported by a Foundation for Basic Research, grant 16-08-

01285A.

Appendix

Proof of Lemma 1

To find the bias of the estimate �f (x) let us write the expectation of the kernel

estimator (4)

E(�f (x)) =
�
EG(�f (x)) =

�>
0 KÃ(x,h),» (y)f (y)dy = E(f (¿x)), if x ∈ [0, a),

EW (�f (x)) =
�>

0 Kk(x,b),»(y)f (y)dy = E(f (·x)), if x g a.

(21)

where ¿x is the gamma distributed (Ã(x, h), ») r.v. with the expectation μx =
Ã(x, h)» and the variance V ar(¿x) = Ã(x, h)»2 and ·x is the weibull distributed

(k(x, b), ») r.v. with the expectation �μx = »� (1 + 1
k(x,b)

) and the variance

�V ar(·x) = »2
�
� (1 + 2

k(x,b)
)− � (1 + 1

k(x,b)
)
�2

. Let us use the parameters (8)

and » = » = a. Hence, using the Taylor series in the point μx the expectation for

the domain x ∈ [0, a] can be written as

E(f (¿x)) = f (μx)+ 1

2
f ��(μx)V ar(¿x)+ o(h)

= f (x + c1h)+
a(x + c1h)

2
f ��(x + c1h)+ o(h)

= f (x)+ f �(x)c1h+ a(x + c1h)

2

�
f ��(x)+ f ���(x)c1h

�
+ o(h). (22)
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Thus, it is straightforward to verify that the bias of the estimate in the domain x ∈
[0, a] is

BiasG(�f (x)) = C1(x, a)+ C2(x, a)h+ o(h),

where we used the notations (10). To find the bias for the domain x > a we need

to Taylor expand E(f (·x)) in the point �μx . However �μx and �V ar(·x) contain the

gamma function depending on the bandwidth parameter. To find their order on b we

need to expand them knowing that b ³ 0 and nb ³ > as the n ³ >. Hence, we

can write

�μx = a� (t)− b
a2c2

x2
� (t) « (t)+ o(b),

�V ar(·x) = a2 (� (t)− � (r))2 + b
2a3c2

x2
(� (t)− � (r)) (� (t) « (t)− 2� (r) « (r))+ o(b),

where we used the notation (13) and « (·) is a digamma function. Thus, the

expectation (21) can be written as

E(f (·x)) = f (�μx)+
1

2
f ��(�μx)�V ar(·x)+ o(h) (23)

= f (a� (t))− f � (a� (t))
a2c2� (t) « (t)

x2
b

+ 1

2

�
a2 (� (t)− � (r))2 + 2a3c2b

x2
(� (t)− � (r)) (� (t) « (t)− 2� (r)« (r))

�

×
�
f �� (a� (t))− f ��� (a� (t))

a2c2b

x2
� (t) « (t)

�
+ o(b).

Therefore, we can write that the bias of the pdf estimate in the domain x > a is

BiasW (�f (x)) = B1(x, a)+ bB2(x, a)+ o(b),

where we used the notations (11) and (12).

Proof of Lemma 2

By definition the variance is

V ar( Æf (x)) = 1

n
V ar(K(x)) = 1

n

�
E(K2(x))− E2(K(x))

�
. (24)

The second term of the right-hand side of (24) is the square of (22) and (23) for the

domains x ∈ [0, a] and x > a, respectively. The first term of the right-hand side



156 L. Markovich

of (24) for the domain x ∈ [0, a] can be represented by

E(K2
G(x)) =

>�

0

K2
G(y)f (y)dy =

>�

0

y
2
�
x+c1h

a
−1
�
e−2y/a

a2
x+c1h

a � 2
�
x+c1h

a

�f (y)dy = B(x, h, a)E(f (·x)),

(25)

where ·x is the gamma distributed r.v. (with parameters
�

2(x+c1h)
a

− 1, a
2

�
). The

expectation is μ· = x + c1h− a
2

and the variance is V ar(·x) = (x + c1h)
a
2

− a2

4
.

Here we used the following notation:

B(x, h, a) =
�
�

2(x+c1h)
a

− 1
�

a� 2
�
x+c1h

a

�
2

2(x+c1h)
a −1

. (26)

Using the Stirling’s formula for the gamma function, x ∈ (0, a] and h ³ 0 as

n ³ > we can expand (26) as

B(x, h, a) = −
:
x:

a(a − 2x)
− hc1

a + 2x

2
:
ax(a − 2x)2

+ o(h).

The expectation in (25) can be Taylor expanded similarly to (23) as

E(f (·x)) = f
�
x + c1h− a

2

�
+
�
(x + c1h)

a

4
− a2

8

�
f ��
�
x + c1h− a

2

�
+ o(h)

= f
�
x − a

2

�
+ c1h

�
f �
�
x − a

2

�
+ a

4

�
x − a

2

�
f ��
�
x − a

2

��
+ o(h).

Hence, the expectation (25) is

E(K2(x)) = A1(x, a)+ hA2(x, a)+ o(h),

where we used the notations (15). The variance (24) for the domain x ∈ (0, a] is

V arG( Æf (x)) = 1

n
(A1(x, a)− C1(x, a)+ hc1(A2(x, a)− 2C1(x, a)C2(x, a))) + o(h).

Now we turn our attention to the domain x > a. Similarly to the previous part of

the proof it can be written that

E(K2
W (x)) =

>�

0

K2
W (y)f (y)dy =

>�

0

k(x, b)2

a2

�y
a

�2(k(x,b)−1)

exp

�
−2
�y
a

�k(x,b)�
f (y)dy

= 4k(x,b)k(x, b)

ak(x,b)
E(f (Ãx)Ã

k(x,b)−1
x ), (27)



Gamma-Weibull Kernels 157

where Ãx is the Weibull distributed r.v. with the parameters
�
k(x, b), 2k(x,b)a

�
and

the expectation is

mx = 2(a − bxd)+ o(b2), d = ³ − 1 + ln(2)

and the variance is

V arÃx = 4a2 − 4bax(6³ − 10 + ln(4))+ o(b2),

where ³ is the Euler-Mascherson constant. Hence, the expectation (27) can be

written as

E(f (Ãx )Ã
k(x,b)−1
x ) = f (mx )m

k(x,b)−1
x + V arÃx

2

�
f ��(mx )m

k(x,b)−1
x

+ 2(k(x, b)− 1)f �(mx )m
k(x,b)−2
x + (k(x, b)− 1)(k(x, b)− 2)f (mx )m

k(x,b)−3
x

�
+ o(b)

= m
k(x,b)−1
x

�
f (mx )+ V arÃx

2

�
f ��(mx )+ (k(x, b)− 1)m−1

x

·
�
f �(mx )+ (k(x, b)− 2)f (mx )m

−1
x

���
.

Using the Taylor series, we can write that

mk(x,b)−1
x = (2a)

x
a −1

�
1 + b

a

�
c2 ln(2a)+ xd(1 − x)

��
+ o(b),

(k(x, b)− 1)m−1
x = x − a

2a2
+ b

a(c2 − dx)+ dx2

2a3
+ o(b)

(k(x, b)− 2)m−1
x = x − 2a

2a2
+ b

a(c2 − 2dx)+ dx2

2a3
+ o(b)

4k(x,b)k(x, b)

ak(x,b)
= x4

x
a a− x

a −1 + c2b4
x
a a− x

a −2(−x ln(a)+ a + x ln(4))+ o(b).

Finally, the variance can be written as follows:

V arW ( Æf (x)) = 1

n

�
D1(x, a)+ bD2(x, a, c2)− (B1(x, a)+ bB2(x, a)+ f (x))2

�
,

where we used the notations (16).
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Adaptive Estimation of Heavy Tail
Distributions with Application to Hall
Model

D. N. Politis, V. A. Vasiliev, and S. E. Vorobeychikov

Abstract The problem of tail index estimation of Hall distribution is considered.

We propose the estimators of tail index using the truncated estimation method

developed for ratio type functionals. It is shown that the truncated estimator

constructed on the sample of fixed size has a guaranteed accuracy in the sense

of the L2m-norm, m g 1. The asymptotic properties of estimators are although

investigated. These properties make it possible to find the rates of decreasing of

the Ç2 divergence in the almost surely sense between distribution and its adaptive

estimator. Simulations confirm theoretical results.

1 Introduction

The models with heavy tail distributions are of interest in many applications con-

nected with financial mathematics, insurance theory [1, 4, 15], telecommunication

[16], and physics [2]. Usually it is assumed that the distribution function contains

as an unknown multiplier a slowly varying function. The problem of tail index

estimation was studied by Hill [9] who proposed the estimators based on the order

statistics. The estimator is optimal in mean square sense on the class of distribution

functions with heavy tails in presence of unknown slowly varying function. It should

be noted that Hill’s estimators are unstable and can diverge essentially from the

estimated parameter for large sample sizes [4, 17].

Later other approaches to estimation problem were proposed (see, e.g., [6, 10]

and the references therein). In [18] a least squares estimator for tail index was

proposed which is based on the estimation of parameters in linear regression. The

geometric-type estimators of the tail index are proposed and investigated in [2].
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Some estimators have the form of ratio statistics, see, e.g., Embrechts et al. [4].

For example, formula (1.7) of Markovich [10] describes a well-known class of

ratio estimators which are generalization of Hill’s estimator in the sense that an

arbitrary threshold level instead of an order statistic is used—see, e.g., Novak [11–

14], Resnick and Stǎricǎ [17], or Goldie and Smith [5].

In this work, the truncated estimation method of ratio type functionals, proposed

by Vasiliev [19], is used to obtain estimators with guaranteed accuracy in the sense

of the L2m-norm, m g 1. The estimators are constructed on the basis of empirical

functionals without usage of non-parametric approach in an effort to obtain (or get

close to) the parametric optimal rate of convergence. These estimators can be used

to construct the adaptive estimators of distribution functions. It allows one to find

the rates of decreasing ×−1
· (n), · > 0 of the Ç2 divergence in the almost surely

sense between distributions and their adaptive estimators.

As an example we have found the rate of decreasing for Hall distribution [7, 8]

with unknown tail index. Similar results for convergence of the Ç2 divergence in

probability are presented, e.g., in [6].

2 Adaptive Distribution Estimation

Let F = {F�(x), x ∈ G ¦ R1, � ∈ D ¦ Rq} be the parametric family of heavy

tail distributions. Here D is an admissible set of the unknown parameter �. Denote

�n an estimator of �.

Suppose that for every � ∈ D the density f�(x) = dF�(x)/dx exists. It is easy

to verify that the Ç2 divergence between F� and F�n has the form

Ç2(F�, F�n) =
�

G

dF�n(x)

dF�(x)
dF�n(x)− 1 =

�

G

�
f�n(x)

f�(x)
− 1

�2

f�(x)dx.

The problem is to construct estimators F�n of concrete well-known distributions

F� on the basis of a special type parameter estimators �n with known rates of

decreasing ×−1
· (n), · > 0 of the Ç2 divergence in the following sense

lim
n³>

×·(n)Ç
2(F�, F�n) = 0 a.s. (1)

Suppose the following

Assumption (A). Assume there exists the number ·0 > 0 such that for true value �

the set D0 = {· : � + · ¦ D, ||·|| ≤ ·0} is not empty and

sup
·∈D0

�

G

||'�f�+·(x)||2f−1
� (x)dx < >.
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Then, using the Taylor expansion for the function f�n(x) on the set «n = {Ë :
||�n −�|| ≤ ·0} we have

Ç2(F�, F�n) =
�

G

�
f�n(x)− f�(x)

�2
f−1
� (x)dx

=
�

G

�
q�

i=1

"f�+³(�n−�)(x)

"�i

(�n −�)i

�2

· f−1
� (x)dx

≤ ||�n −�||2 ·
�

G

||'�f�+³(�n−�)(x)||2f−1
� (x)dx ≤ C0||�n − �||2,

where ³ ∈ (0, 1).

Thus to prove (1) it is enough to find the functions ×·(n) and estimators �n such

that

lim
n³>

×·(n)||�n −�||2 = 0 a.s. (2)

The general truncated estimation method presented in [19] makes possible to

obtain estimators of tail indexes of various type distributions with the properties

E||�n − �||2p ≤ r−1(n, p), n g 1, (3)

which are fulfilled for every p g 1 and some functions r(n, p) ³ > as n ³ >
and/or p ³ >.

Define «n a complement of the set «n. Suppose that there exists a number p0

such that the series

�

ng1

r−1(n, p0) < >.

Then using inequalities

P(Ç2(F�, F�n) > C0||�n − �||2) ≤ P(«n) = P(||�n −�|| > ·0)

≤ ·
−2p0

0 E||�n −�||2p0 ≤ ·
−2p0

0 r−1(n, p0),

and the Borel-Cantelli lemma we have

||�n −�||−2Ç2(F�, F�n ) ³ 0 a.s. (4)



162 D. N. Politis et al.

Define ×(n, p) = (n−2r(n, p))1/p. By making use of the Borel-Cantelli lemma

for every p g 1 in particular it follows

lim
n³>

×(n, p)||�n −�||2 = 0 a.s. (5)

From (4) and (5) we get

×(n, p)Ç2(F�, F�n) ³ 0 a.s.

and the function ×·(n) can be defined as ×·(n) = ×(n, p·) with an appropriate

chosen p· > 0.

We will apply this approach to the adaptive estimation problem of the Hall model

for distribution function F�(x) = 1 − C1x
−³ − C2x

−1/³, ³−1 = ³ + ».

In the next section the estimator �n = Æ³n of ³ with needed properties will be

constructed and investigated.

Define Ã = »/³ − 1.

The following theorem presents the main result of this contribution.

Theorem 2.1 For every · > 0 there exist numbers p· such that the property (1) for

the Hall model is fulfilled with

×·(n) = n
Ã+1
Ã+2

−·
.

3 Estimation of Heavy Tail Index of the Hall Model

The problem is to estimate by i.i.d. observationsX1, . . . , Xn the parameter ³ = 1/³

of the Hall distribution function [7]

F�(x) = 1 − C1x
−1/³ − C2x

−1/³, x g c,

where ³ > 0, ³ > 0; ³ = ³ + » g ³0 > 0.

Then the tail distribution function

P(x) = C1x
−³ (1 + C3x

−³ (Ã+1)),

where C3 = C2/C1, ³ = 1/³, Ã = »/³ − 1.

The density function has the form

f (x) = C1³ x
−(³+1) + (C2/³)x

−(1/³+1)

and Assumption (A) is fulfilled for D = {� = ³, ³ > 0}, D0 = {· : |·| ≤ ³ /2}
and ·0 = ³ /2.
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To construct the estimator for ³ we find its appropriate representation.

For some X = (x1, x2), x1 > x2 > c by the definition of P(x) we have

logP(x1) = logC1 − ³ log x1 + log(1 + C3x
−³ (Ã+1)
1 ),

logP(x2) = logC1 − ³ log x2 + log(1 + C3x
−³ (Ã+1)
2 ).

Thus we can find ³ as a solution of this system

³ = log(P (x2)/P (x1))

log(x1/x2)
− log

�
1 +

C3(x
−³ (Ã+1)
2 − x

−³ (Ã+1)
1 )

1 + C3x
−³ (Ã+1)
1

�

and it is natural to define the estimators ³n of ³ as follows:

³n(X) = log(Pn(x2)/Pn(x1))

log(x1/x2)
· Ç(Pn(x1) g log−1 n), n > 1.

Here Pn(x) is the empirical tail distribution function

Pn(x) = 1

n

n�

i=1

Ç(Xi g x).

To get the estimator ³n with the optimal rate of convergence (in the sense of

L2-norm see [3, 6, 8]), we put for p g 1 the sequence X(n) = (x1(n), x2(n)),

where

x1(n) = e · x2(n), x2(n) = n
p

³ [2p(Ã+2)−1] (6)

The deviation of this estimator has the form

³n(X)− ³ =
�

log(Pn(x2(n))/P (x2(n)))− log(Pn(x1(n))/P (x1(n)))

− log

�
1 + C3(1 − e−1)

1 + C3x
−³ (Ã+1)
1 (n)

x
−³ (Ã+1)
2 (n)

��
· Ç(Pn(x1(n)) g log−1 n)

− ³ · Ç(Pn(x1(n)) < log−1 n). (7)

For any m g 1 and x g c it follows

E(Pn(x)− P(x))2m ≤ 2BmP(x)

nm
, n g 1, (8)

where Bm is a constant from the Burkholder inequality.
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We will use the following inequality

| log(Pn(x)/P (x))| = | log

�
1 + Pn(x)− P(x)

P (x)

�
· Ç(Pn(x)− P(x) > 0)

+ log

�
1 + |Pn(x)− P(x)|

Pn(x)

�
· Ç(Pn(x)− P(x) ≤ 0)|

≤ |Pn(x)−P(x)|·
� 1

P(x)
+ 1

Pn(x)

�
= |Pn(x)−P(x)|·

� 2

P(x)
+
�

1

Pn(x)
− 1

P(x)

��

≤ 2|Pn(x)− P(x)|
P(x)

+ (Pn(x)− P(x))2

P(x)Pn(x)
.

Then using the cr -inequality and (8) for i = 1, 2 we estimate

E log2p(Pn(xi)/P (xi)) · Ç
�
Pn(x1) g log−1 n

�

≤ C

npP 2p−1(x1)
+ C log2p n

n2pP 2(p−1)(x1)
. (9)

In what follows, C will denote a generic non-negative constant whose value is

not critical (and not always the same).

Further, by the Chebyshev inequality and (8) we have

P(Pn(x) < log−1 n) = P(P(x) − Pn(x) > P(x)− log−1 n)

≤ E[Pn(x)− P(x)]4p

[P(x)− log−1 n]4p
≤ C

n2pP 4p−1(x)
≤ C

x(4p−1)³

n2p
. (10)

From (7), (9), and (10) it follows

E(³n(X(n))− ³ )2p ≤ Cr−1(n, p), (11)

r(n, p) = n
2p(Ã+1)

2p(Ã+1)+2p−1
p

and we can put according to the definition of ×(n, p) = (n−2r(n, p))1/p with the

r(n, p) defined in (11)

p· g 2·−1, ×·(n) = n
Ã+1
Ã+2 −·

.

Note that proposed parameter estimation procedure gives estimator ³n with

convergence rate, with optimal (for p = 1) convergence rate, see[6]. At the same
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time the sequences (6) in the definition of ³n depend on the unknown model

parameters. Then the adaptive estimation procedure should be constructed, e.g., on

the presented scheme using some estimators of ³ and Ã. The main aim is to get

adaptive estimators with the optimal convergence rate.

Consider, for instance, the case of known Ã. Define the known deterministic

sequence (mn)ng1, mn = n» , » ∈ (0, 1) and pilot estimator ³̃n = ³̃n(X̃(mn)) of ³

as follows

³̃n(X̃(mn))

= min
� log(Pmn(x̃2(mn))/Pmn(x̃1(mn)))

log(x̃1(mn)/x̃2(mn))
· Ç(Pmn(x̃1(mn)) g log−1 mn), ³0

�
,

(12)

where X̃(n) = (x̃1(n), x̃2(n)),

x̃1(n) = e · x̃2(n), x̃2(n) = n
p

³0[2p(Ã+2)−1] , ³0 = ³−1
0 . (13)

This estimator has the property

E(³̃n − ³ )2p ≤ C · r−1
0 (n, p), p g 1,

r0(n, p) = n
2p³ »(Ã+1)

³0[2p(Ã+1)+2p−1]p,

which can be proved similar to (11) and is strongly consistent according to the

Borel-Cantelli lemma with the following rate

n¿(³̃n − ³ ) ³ 0 a.s. (14)

for every

0 < ¿ <
³»(Ã + 1)

³0(2Ã + 3)
.

Indeed, for every a > 0, ¿ defined above and p large enough

�

ng1

P(n¿(³̃n − ³ ) > a) ≤ a−2p
�

ng1

n2¿pE(³̃n − ³ )2p ≤ C
�

ng1

n2¿p

r0(n, p)
< >.

Define the adaptive estimator of ³ as follows

Æ³n = log(P̃n( Æx2(n))/P̃n( Æx1(n)))

log( Æx1(n)/ Æx2(n))
, (15)
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where P̃n is the empirical tail distribution function

P̃n(x) = 1

n−mn

n�

k=mn+1

Ç(Xk g x)

and ÆX(n) = ( Æx1(n), Æx2(n)),

Æx1(n) = e · Æx2(n), Æx2(n) = n
p

³̃n[2p(Ã+2)−1] . (16)

The estimator Æ³n has the property

E[( Æ³n − ³ )2p|Fmn] ≤ C · r̃−1(n, p), p g 1,

where Ã -algebra Fmn = Ã {X1, . . . , Xmn} and

r̃(n, p) = n
2p³ (Ã+1)

³̃n[2p(Ã+1)+2p−1]p.

Thus, using the Borel-Cantelli lemma and strong consistency of the pilot

estimator ³̃n it is easy to prove the last property of Theorem 2.1 for the adaptive

estimator P Æ³ in the Hall model.

To prove the strong consistency of ×(n, p)( Æ³n−³ )2 and, as follows, Theorem 2.1,

we establish first the convergence to zero of ×̃(n, p)( Æ³n − ³ )2, where ×̃(n, p) =
(n−2r̃(n, p))1/p :
�

ng1

P(×̃(n, p)( Æ³n − ³ )2 > a) ≤ a−2p
�

ng1

E×̃p(n, p)E[( Æ³n − ³ )2p|Fmn ]

= a−2p
�

ng1

n2Er̃(n, p)E[( Æ³n − ³ )2p|Fmn ] ≤ C
�

ng1

1

n2
< >.

Then as n ³ >

×̃(n, p)( Æ³n − ³ )2 ³ 0 a.s.

Using the property (14), we have

log r̃(n, p)r−1(n, p) > ( Æ³n − ³ ) logn ³ 0 a.s.

and, as follows, for the function ×(n, p) defined after formula (11), as n ³ >

×(n, p)( Æ³n − ³ )2 ³ 0 a.s.
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Thus Theorem 2.1 is proven with

p· > (Ã + 1)max
� ³0

»³ (Ã + 1)
,

2

Ã + 1 − ·(Ã + 2)

�
(17)

if in the Hall distribution estimator we use, according to the notation in Sect. 2 the

adaptive parameter estimator �n = Æ³n of � = ³, defined in (15).

4 Simulation Results

To establish the convergence of Ç2 divergence (1) one needs to check the condi-

tion (3), which is the key point to investigate the properties of estimators. In this

section, to present some numerical results we define the quantity �n as L2p-norm

of normalized deviation of estimator ³n from the parameter ³

�n = [r(n, p)E(³n − ³ )2p]
1

2p (18)

in Hall’s model [6]

F(x) = 1 − 2x−1 + x−2.5, x g 1, Ã = 0.5,

as a function of n. The values of �n are given in Figs. 1 and 2 for different sample

sizes n. Each coordinate is computed as an empirical average over 1000 Monte

Carlo simulations of the experiment (for each value of n).

First the simulation was performed for the case when one can choose the

sequences x1(n), x2(n) according (6) to get the estimators ³n with the rate of

convergence close to the optimal one, see [6]. The value of p = p· was chosen

as p· = [2/·] + 1. The results are presented in Fig. 1 for · = 0.1 and · = 0.05.

One can see that �n remains bounded from above as n increases and therefore the

condition (3) is fulfilled. Similar results were obtained for p > p·.

The results for adaptive estimator Æ³n (15) with the sequences Æx1(n), Æx2(n)

defined by (16) are given in Fig. 2 for · = 0.1 and · = 0.05. The value of ³0 was

equal 0.5, the sequences x̃1(n), x̃2(n) were defined by (13) withmn = n» , » = 0.8.

The pilot estimator ³̃n was determined by (12), the power p was defined as the right-

hand side of inequality (17). The quantity �n remains bounded from above as n

increases as well.

Our numerical simulations in all cases give practical confirmation of the theoret-

ical properties of the proposed estimators.
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Extremal Index for a Class
of Heavy-Tailed Stochastic Processes
in Risk Theory

C. Tillier

Abstract Extreme values for dependent data corresponding to high threshold

exceedances may occur in clusters, i.e., in groups of observations of different sizes.

In the context of stationary sequences, the so-called extremal index measures the

strength of the dependence and may be useful to estimate the average length of

such clusters. This is of particular interest in risk theory where public institutions

would like to predict the replications of rare events, in other words, to understand

the dependence structure of extreme values. In this contribution, we characterize the

extremal index for a class of stochastic processes that naturally appear in risk theory

under the assumption of heavy-tailed jumps. We focus on Shot Noise type-processes

and we weaken the usual assumptions required on the Shot functions. Precisely, they

may be possibly random with not necessarily compact support and we do not make

any assumption regarding the monotonicity. We bring to the fore the applicability of

the result on a Kinetic Dietary Exposure Model used in modeling pharmacokinetics

of contaminants.

1 Motivations and Framework

The assessment of major risks in our technological society has become vital because

of the economic, environmental, and human impacts of recent industrial disasters.

Hence, risk analysis has received an increasing attention over the past years in

the scientific literature in various areas, e.g., in dietary risk, hydrology, finance

and insurance; see [1, 7, 12], for instance. By nature, risk theory concerns the

probability of occurrence of rare events which are functions—sums or products—of

heavy-tailed random variables. Hence, stochastic processes provide an appropriate

framework for modeling such phenomena through time. For instance, non-life

insurance mathematics deal with particular types of Shot Noise Processes (SNP)
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defined as

S1(t) =
N(t)�

i=0

Wih(t − Ti), t g 0, (1)

where usually (Wi)ig0 are independent and identically distributed (i.i.d.) random

variables (r.v.’s), h is a nonincreasing measurable function, and N is a homogeneous

Poisson process. In this insurance context, S1 may be used to represent the amount

of aggregate claims that an insurer has to cope with; see [20] for a complete review

of non-life insurance mathematics. More generally, this kind of jump processes are

useful in many applications to model time series for which sudden jumps occur

such as in dietary risk assessment, finance, hydrology or as reference models for

intermittent fluctuation in physical systems; see [8] and [24], for instance. The

study of the extremal behavior of these stochastic processes leads to risk indicators

such as the expected time over a threshold or the expected shortfall, which supply

information about the exceedances that give rise to hazardous situations; see [23],

for instance.

Besides, since extremal events may occur in clusters, the study of the dependence

structure of rare events is a major issue, for example to predict potential replications

of earthquakes in environmental sciences. This dependence structure may be

captured by the extremal index defined in the seminal contribution [16]. Recall that

a stationary sequence (Zi)i∈Z has an extremal index » ∈ [0, 1] if for all Ç > 0 and

all sequence un(Ç ) such that limn³> nP(Z1 g un(Ç )) = Ç, it holds that

lim
n³>

P

�
max

i=1,...,n
Zi ≤ un(Ç )

�
= e−»Ç . (2)

Less formally, the extremal index indicates somehow, how many times in average

an extremal event will reproduce. The case » = 1 (respectively » = 0) corresponds

to independent data, i.e., to extreme values occurring in an isolated fashion

(respectively to potentially infinite size clusters).

Authors in [9, 14] and [18] characterize the extremal index in several particular

configurations of (1) and study the extremal properties of the process; see also

[10, 11] and [13]. More recently, [19] compute the extremal index when the jumps

(Wi)ig0 form a chain-dependent sequence (the cumulative distribution function

(c.d.f.) is linked to a secondary Markov chain) and they assume that h is a bounded

positive strictly decreasing function supported on a finite interval.

In this chapter, we continue the investigation of the extremal index for such

stochastic processes relaxing the conditions required on h. We focus on an extension

of such SNP on the form

S(t) =
>�

i=0

Wihi(t − Ti), t g 0, (3)
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where t ³ hi(t) is a random function. Throughout this chapter, we work under the

following three conditions (C1)–(C3).

(C1) Jumps (Wi)i∈N are nonnegative r.v.’s with c.d.f. H such that H = 1 − H is

regularly varying at infinity with index −³, ³ > 0, that is

H(wx)

H(x)
−³
x³>

w−³, " w > 0.

(C2) Jumps instants (Ti)i∈N are defined for i g 1 by Ti =
�i

k=1 �Tk and

T0 = 0 while the inter-jumps (�Ti)i∈N7 are i.i.d. positive r.v.’s with finite

expectation.

(C3) For all i g 0, the random functions hi are positive, stationary, and

independent of Ti .

The condition (C1) is the heavy-tailed distribution assumption on the jumps. We

refer to [22] for an exhaustive review of the univariate regular variation theory. The

condition (C2) means that (T0, T1, . . .) forms a renewal sequence so that one may

define the associated renewal process {N(t)}tg0 by N(t) := #{i g 0 : Ti ≤ t}
for t g 0. The remaining part of the manuscript is organized as follows. In Sect. 2,

we present the main result regarding the extremal index of the process (3) while

an illustrative application is given in Sect. 3. In the Appendix, we recall the main

notions involved in the proof of the theorem.

2 The Extremal Index

The extremal index defined in Eq. (2) holds for discrete-time series. The purpose

of this work is to investigate the dependence structure of the extreme values of

the continuous-time stochastic processes S defined in Eq. (3). Depending on the

context, it means that we are interested in the dependence structure either of its

maxima or of its minima. In dietary risk assessment, S aims at representing the

evolution of a contaminant in the human body through time; see Sect. 3 for more

details. Toxicologists determine thresholds from which the exceedance may have

some adverse effect for the health of an individual and we are therefore interested in

the maxima of S. Similarly, in hydrology, (3) may be used to describe the flow of a

river and a hazardous situation—seen as a rare event—arises when the flow exceeds

a critical threshold; see [17]. On the other the hand, in most of the applications,

the random functions hi are in essence monotonic for each i g 0 when t grows.

To be convinced, let us go back to the dietary risk assessment. In this context, hi
models the elimination of the contamination and is thus a decreasing function for

each i g 0. For instance, hi(t) c e−t , t g 0 has been proposed in [6] and is also

used in non-life insurance mathematics; see [20].
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Assuming that the random function hi are monotonic for each i g 0, it is

straightforward to see that the extreme values—the maxima or the minima—occur

on the embedded chain, i.e., the process {S(t)}tg0 sampled at the jump arrivals

T1, T2 . . .. As a consequence, the dependence structure of the continuous-time

stochastic process S may be deduced from the analysis of the dependence structure

of the underlying sequence (S(T1), S(T2), . . .).

This is the purpose of this section: to compute the extremal index of the

embedded chain of the jump process (3). This means that we focus on the following

discrete-time risk process

S(Tk) =
k�

i=1

Wihi(Tk − Ti), k > 0. (4)

Hereinafter, for i g 1, define −T−i (respectively W−i and h−i ) as an independent

copy of Ti (respectively of Wi and hi) so that under (C1) and (C3), (Wi)
>
i=−> and

(hi)
>
i=−> form, respectively, an i.i.d. and a stationary sequence of positive r.v.’s.

Facing with the issue of non-stationarity of the embedded chain (4)—required for

the computation of the extremal index—we study a stationary version/modification

denoted (Sk)k∈Z and defined by

Sk =
k�

i=−>
Wihi(Tk − Ti), k > 0. (5)

We now introduce the condition (D1), under which the stationary sequence (5) is

well defined.

(D1) The random function hi satisfy

•
�>

i=0 E[h1(Ti)] < >, ³ < 1.

• There exists � > 0 such that
�>

i=0 E[h³−�
1 (Ti)] < >, ³ ≤ 2.

•
�>

i=0 E[h2
1(Ti)] < >, ³ > 2.

Theorem 1 Assume Model (5) holds. Under Conditions (C1)–(C3) and (D1), the

extremal index » is given by

» =
E
�
maxig0 h

³
i (Ti)

�
�>

i=0 E[h³i (Ti)]
. (6)

We do not raise the question of the estimation of the extremal index in this work.

In many cases, the jump process (3) is a PDMP (Piecewise-Deterministic Markov

Process) and [4] propose a robust estimator for the extremal index; see also [5] and

the application in Sect. 3 for an illustrative example.
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2.1 Proof of Theorem 1

For reader’s convenience, the definitions of the main notions, namely the tail index,

the anti-clustering, and the strong mixing conditions are postponed in the Appendix.

Let us first define the intermediate stationary sequences {S(m)k , k g 0}mg0 such that

S
(m)
k =

k�

i=k−m
Wihi(Tk − Ti). (7)

The extremal index » of the stationary sequence {Sk}kg0 will be deduced from the

extremal index »m of {S(m)k , k g 0}mg0 in the following way. In [3, Theorem 4.5],

the authors show that if a jointly regularly varying (see the definition of “jointly

regularly varying” in Definition 1 in the Appendix) stationary sequence (Zi)i∈Z is

strongly mixing and satisfies the anti-clustering condition, then (Zi)i∈Z admits an

extremal index »̃ given by

»̃ = P

�
max
kg1

Yk ≤ 1

�
, (8)

where (Yi)i∈N is the tail process of (Zi)i∈Z. Using this result, we obtain the extremal

index »m for each m g 1. Next, we show that the assumptions of Proposition 1.4

in [9] hold to conclude that limm³> »m = » . We start by characterizing the tail

process of sequence {S(m)k }k∈N in the following lemma.

Lemma 1 Assume that Conditions (C1)–(C3) and (D1) hold. For each m g 1, the

tail process of {S(m)k }k∈N denoted by {Y (m)
k }k∈N is defined by

Y (m)
n =

�
hNm (Tn+Nm )
hNm (TNm )

Y
(m)
0 , 0 ≤ n ≤ m,

0 for n > m,

with P
�
Y
(m)
0 > y

�
= y−³ and Nm is an integer-valued random variable such that

P(Nm = n) = E[h³n(Tn)]�m
i=1 E[h³i (Ti)]

, 0 ≤ n ≤ m.

Besides, for any random variable U measurable with respect to (hj , Tj )j∈Z, we

have

E[U | Nm = i] =
E[h³i (Ti)U ]
E[h³i (Ti)]

, 0 ≤ i ≤ m.
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Proof (Proof of Lemma 1) For clarity of notation, we omit the superscript (m) and

we assume that hk c 0 if k > m and we denote X1
d= X2 when two random

variables X1,X2 share the same distribution. Then, for a fixed n, we have

P

�
max

i=0,...,n
Si/yi ≤ x | S0 > x

�
= 1 − P

�
max

i=0,...,n
Si/yi > x | S0 > x

�

= 1 −
P
��

maxi=0,...,n Si/yi
�
' S0 > x

�

P(S0 > x)
.

Under the two conditions (C1) and (C2), (Wk)k∈Z is an i.i.d. sequence and Ti−Tk
d=

Ti−k for i g 0 and k ≤ 0. It follows that

lim
x³>

P

�
max

i=0,...,n
Si/yi > x, S0 > x

�
>

x³>

>�

k=0

P

�
Wk

�
max

i=0,...,n
hk(Ti − Tk)/yi

�
' hk(−Tk) > x

�

>
x³>

>�

k=0

E

�
n�

i=0

h³k (Tk+i)

yi
' h³k (Tk)

�
P(W1 > x),

and

S0 =
0�

i=−>
Wihi(T0 − Ti)

d=
>�

i=0

Wihi(Ti),

under (C3). Moreover, since the two sequences (hi)i∈Z and (Ti)i∈Z are mutually

independent, the results in Section 3 of [15] imply that the series S0 is almost surely

convergent under Condition (D1) and we have

lim
x³>

P(S0 > x)

H(x)
=

>�

i=0

E
�
h³1 (Ti)

�
< >. (9)

From Eq. (9), we have proved that S0 is regularly varying at infinity with the same

index ³ than the jumps (Wi)ig0. It also follows that

lim
x³>

P

�
max

i=0,...,n
Si/yi ≤ x | S0 > x

�
= 1 −

E
��n

i=0

h³k (Tk+i)
yi

' h³k (Tk)
�

�>
k=0 E[h³k (Tk)]

.

Setting

pk =
E[h³k (Tk)]�>
j=0 E[h³j (Tj )]

,
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we obtain

lim
x³>

P

�
max

i=0,...,n
Si/yi ≤ x | S0 > x

�
= 1 −

>�

k=0

pk
E
��n

i=0 h
³
k (Tk+i)/yi ' h³k (Tk)

�

E[h³k (Tk)]

= 1 −
>�

k=0

pkE

�
n�

i=0

h³N (TN+i)

yih
³
N (TN )

' 1 | N = k

�

= 1 − E

�
n�

i=0

h³N (TN+i)

yih
³
N (TN )

' 1

�

= 1 − P

�
Y0

n�

i=0

h³N (TN+i)

yih
³
N (TN )

> 1

�
,

where Y0 is a Pareto random variable independent of {hi , Ti}i∈Z. This proves our

claim.

For each m g 1, the strong mixing condition holds for each sequence {S(m)k , k g
0} since it is m-dependent. Indeed, by independence ³h = 0 for all h g m +
1. Likewise, since {S(m)k , k g 0} is m-dependent, the anti-clustering condition is

satisfied with rnP(Z1 > an) = o(1); see Section 4.1 in [2]. As a first consequence,

we obtain in the following lemma the expression of the extremal index »m of the

intermediate sequence {S(m)k }kg0.

Lemma 2 Assume that Conditions (C1)–(C3) and (D1) hold. For each m g 1, the

extremal index »m of the intermediate sequence {S(m)k , k g 0} defined in (7) is given

by

»m =
E
��m

j=0 h
³
j (Tj )

�

�m
i=0 E[h³1 (Ti)]

. (10)

Proof (Proof of Lemma 2) Fixm g 1 throughout the proof. By Eq. (8), sinceP(Y0 >

x) = x−³ , we have

»m = P

�
max
kg1

Y
(m)
k ≤ 1

�

= P

�
max
kg1

Y0�
(m)
k ≤ 1

�

= 1 − P

�
max
kg1

Y0�
(m)
k g 1

�

= 1 − E

�
max
kg1

�
�

(m)
k

�³
' 1

�
,
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where
�
�

(m)
k

�
kg0

refers to the spectral tail process of the intermediate sequence

{S(m)k , k g 0} defined in [3]. Applying Lemma 1, we obtain

»m = P

�
Y0 max

1≤k≤m

hk+N (Tk+N )

hN (TN )
≤ 1

�

= 1 − E

�
max

1≤k≤m

h³k+N (Tk+N )

h³N (TN )

�
1

�

= 1 −
m�

n=0

E

�
max

1≤k≤m

h³k+N (Tk+N )

h³N (TN )

�
1 | N = n

�
P(N = n)

= 1 −
�m

n=0 E
�
(max1≤k≤m h³n+k(Tn+k)) ' h³n(Tn)

�
�m

j=0 E[h³j (Tj )]

=
�m

n=0 E
�
h³n(Tn)− (max1≤k≤m h³n+k(Tn+k)) ' h³n(Tn)

�
�m

j=0 E[h³j (Tj )]
. (11)

Observe that using the identity max(a, b) = a + b − min(a, b) for any a, b in R+,

one can show that for any sequence (an)n∈N of nonnegative real numbers such that�>
n=0 an < >, we have

max
n∈N

an =
�

n∈N

�
an − max

kg1
an+k ' an

�
. (12)

Under (D1), from Eq. (9),
�>

n=0 E[h³n(Tn)] < > and we can apply the relation (12)

to the last equality (11). This proves Lemma 2.

Up to now, we have characterized the extremal index »m from the tail process of

{S(m)k }k∈N. To conclude, it remains to prove that the extremal index of (Sk)k∈Z is

given by limm³> »m = » . For this purpose, we apply Proposition 1.4 of [9]. We

must check the following two conditions: for all sequence un such that

nP(S0 > un) ³ ³ ∈ (0,>),

we have

lim
�³0

lim sup
n³>

nP((1 − �)un < S0 ≤ (1 + �)un) = 0 (13)

and

lim
m³>

lim sup
n³>

nP(|S0 − S
(m)
0 | > �un) = 0. (14)
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Since we have already proved in Eq. (9) that S0 is regularly varying with index −³,

³ > 0, we have

lim sup
n³>

nP((1 − �)un < S0 ≤ (1 + �)un) = ³((1 − �)−³ − (1 + �)−³).

Letting � ³ 0 proves Eq. (13). Moreover, by the same arguments which lead to the

expression for the tail behavior of S0, we have

lim
n³>

nP(|S0 − S
(m)
0 | > un�) = �−³³

�>
n=m+1 E[h³1 (Tn)]�>
n=0 E[h³1 (Tn)]

.

Letting m ³ > proves Eq. (14). We finally have

» = lim
m³>

»m =
E
��>

i=0 h
³
i (Ti)

�
�>

i=0 E[h³1 (Ti)]
,

which concludes the proof of Theorem 1.

3 Application

For the sake of application of Theorem 1, we consider a specific dietary risk

assessment model studied in [6] called KDEM for Kinetic Dietary Exposure Model;

see also [7] for the statistical analysis of the model and for more details on dynamic

dietary risk processes. For each i g 0, we assume that the intakes (Wi)ig0 are

pure Pareto distributed with tail index ³ > 0 and we set hi(t) = e−Ëi tI[0,>[(t),
where I[·](·) is the indicator function. Besides, we consider that (Ëi)i∈N is an i.i.d.

sequence of nonnegative r.v.’s with finite expectation. In this context, for each i g 0,

hi is a nonincreasing random elimination function that governs the elimination

process of the i-th intake Wi ingested at time Ti up to time t . Then (Ëi)i∈N is a

random elimination parameter, which permits to take into account fluctuations in

the assimilation process. The model may be written as

S(t) =
N(t)�

i=1

Wie
−Ëi(t−Ti), t > 0, (15)

where t ³ N(t) := #{i g 0 : Ti ≤ t} is a renewal process that counts the numbers

of intakes that occurred until time t > 0. Figure 1 shows how the process (15)

evolves through time.
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Fig. 1 The elimination
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To get an explicit result, we consider that the intakes arise regarding a homo-

geneous Poisson process meaning that the duration between intakes is independent

and exponentially distributed. Applying Theorem 1, we get the following explicit

formulae of the extremal index.

Proposition 1 Assume that Model (15) holds with positive i.i.d. (Ëi)i∈N satisfying

E[Ë1] < >. Assume moreover that H(x) = x−³, ³ > 0 for all x > 0 and N is a

Poisson process with intensity » > 0. Then we have

» = ³

³ + »E[Ë−1] . (16)

Proof Note first that in this setup, this is straightforward that for all ³ > 0,

Assumptions (C1)–(C3) as well as (D1) hold. Indeed, the Pareto distribution is a

particular case of such regularly varying random variables so that (C1) is satisfied.

(C2) holds as a sum of i.i.d. r.v.’s whose distribution is exponential with mean 1/»,

» > 0. Finally, (C3) is satisfied since the random variables (Ëi)i∈N are i.i.d., then

the random functions (hi)i∈N are positive i.i.d. r.v.’s with 0 < E[Ë1] < > implying

(D1). Now, observe first that for the numerator, we have

E

�
max
ig0

{h³i (Ti)}
�

= E

�
max
ig0

{e−³ËiTi I[0,>[(Ti)}
�

≤ 1.

Besides, since T0 = 0 under (C2), we have

E
�
h³0 (T0)

�
= E
�
e−³Ë0

�
= 1,

leading to E
�
maxig0{h³i (Ti)}

�
= 1. It also follows that the denominator may be

written as

>�

i=0

E
�
h³i (Ti)

�
= 1 +

>�

i=1

E
�
h³i (Ti)

�
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with

>�

i=1

E
�
h³i (Ti)

�
=

>�

i=1

� >

0

�� >

0

e−³ËtdF 7i
�T (t)

�
dFW (Ë)

=
� >

0

� >�

i=1

E
�
e−³Ë�T

�i
�
dFW (Ë)

=
� >

0

E
�
e−³Ë�T

�

1 − E
�
e−³Ë�T

�dFW (Ë)

=
� >

0

»

³Ë
dFW (Ë)

= »

³
E[Ë−1],

where “7” refers to the convolution operator. This concludes the proof.

To conclude this part, we briefly discuss the veracity of Proposition 1. In this regard,

assume Model (15) holds with the assumptions of Proposition 1. Assume moreover

that the elimination parameter Ë > 0 is constant. Observe now that its embedded

chain, namely

S(Tk) =
k�

i=1

Wie
−Ë(Tk−Ti ), k > 0

may be expressed as

S(Tk) = e−Ë�TkS(Tk−1)+ Wk, k > 0. (17)

The latest equation is nothing else than a particular case of the so-called SRE for

Stochastic Recurrence Equation. It has been studied for a while. In particular, [21]

showed that its extremal index is given by » = 1−E[e−³Ë�T1 ]. In the specific setup

of Proposition 1 where the (�Ti)i∈N7 are exponentially distributed, the Laplace

transform E[e−�T1] is explicit. It follows that the extremal index is given by

» = ³

³ + »Ë−1
.

We retrieve the result of Proposition 1 with constant Ë > 0.
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Appendix

For reader’s convenience, we recall in this part important notions involved in the

proof of Theorem 1. We start by the definition of the so-called “tail process”

introduced recently by Basrak and Segers [3].

Definition 1 (The Tail Process) Let (Zi)i∈Z be a stationary process in R+ and let

³ ∈ (0,>). If (Zi)i∈Z is jointly regularly varying with index −³, that is, all vectors

of the form (Xk, . . . , Xl), k ≤ l ∈ Z are multivariate regularly varying, then there

exists a process (Yi)i∈Z in R+, called the tail process such that P(Y0 > y) = y−³ ,

y g 1 and for all (n,m) ∈ Z2, n g m

lim
z³>

P((z−1Zn, · · · , z−1Zm) ∈ · | Z0 > z) = P((Yn, · · · , Ym) ∈ ·).

We recall now the strong mixing and anti-clustering conditions.

Definition 2 (Strong Mixing Condition) A stationary sequence (Zk)k∈Z is said to

be strongly mixing with rate function ³h if

sup |P(A + B)− P(A)P(B)| = ³h ³ 0, h ³ >, (18)

where the supremum is taken over all sets A ∈ Ã(· · · , Z−1, Z0) and B ∈
Ã(Zh, Zh+1, · · · )
Definition 3 (Anti-clustering Condition) A positive stationary sequence (Zk)k∈Z
is said to satisfy the anti-clustering condition if for all u ∈ (0,>),

lim
k³>

lim sup
n³>

P

�
max

k≤|i|≤rn
Zi > anu | Z0 > anu

�
= 0. (19)

“with (an) a sequence such that limn³> nP(|Z0| > an) = 1” and rn ³ > is an

integer sequence such that rn = o(n).
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Subsampling for Big Data: Some Recent
Advances

P. Bertail, O. Jelassi, J. Tressou, and M. Zetlaoui

Abstract The goal of this contribution is to develop subsampling methods in the

framework of big data and to show their feasibility in a simulation study. We

argue that using different subsampling distributions with different subsampling sizes

brings a lot of information on the behavior of statistical procedures: subsampling

allows to estimate the rate of convergence of different procedures and to construct

confidence intervals for general parameters including the generalization error of an

algorithm in machine learning.

1 Introduction

Collecting data is becoming faster and faster but standard statistical tools are not

adapted to analyze such big datasets. Because optimization methods are too time

consuming even for polynomial complexities and most of the time standard methods

(for instance, maximum likelihood estimations) require too many access to the data.

As consequences, maximum likelihood estimations or general methods based on

contrast minimization may be difficult to implement on large scale. Subsampling

techniques is a well-known remedy to the apparent intractability of learning from

databases of explosive size. Such an approach has been implemented in many

applied problems and has been, for instance, developed in [22]. It is also at the

core of some recent developments on survey sampling method in the framework of

big data (see [6–8]).
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One of the main theoretical ideas underlying subsampling related methods is

to use the universal validity of the subsampling method as proved in [25] and

further by Bertail et al. [9, 11] for general converging or diverging statistics. We

recall that these authors proved, under the minimal assumptions that the statistics

of interest has a nondegenerate distribution (for some potentially unknown rate

of convergence) which is continuous at the point of interest that a subsampling

distribution constructed with a much smaller size than the original one is a correct

approximation of the distribution of the statistics of interest. This result allows then

to extrapolate repeated inferential methods from smaller sizes to bigger size. Such

ideas are not new (see [16] or even the first works of Mahalanobis in the 1930s).

They have also been developed in some earlier works by Bickel and Yahav [13]

about bootstrap and Richardson extrapolation, when the computer capacities were

not sufficient to treat even moderate sample size. Such methods are themselves

related to well-known numerical methods (see, for instance, [21]). However, most

of these methods rely on an adequate standardization of the statistics of interests

(see the discussion about interpolations and extrapolations in [4, 10] and Bickel

et al. [14]). Such standardization may be hard to obtain for complicated procedure

(including statistical learning procedure) and even more difficult to extrapolate to

very large sample size.

Indeed to extrapolate the value of statistics from smaller scales to a large one,

we need first to be able to determine or estimate Çn, the rate of convergence

of the procedure of interest (a statistic or a statistical learning algorithm) : in

many situations, this task is difficult, because this rate depends itself on the true

data generating mechanism. We will present a variant of the subsampling rate

estimation methodology of [9, 11] to derive a consistent estimator of the rate Ç.
for moderate sizes. It is, then, possible to extrapolate its value to large datasets

and construct confidence intervals for many difficult to analysis procedures. The

underlying idea is that it is possible to construct several subsampling distributions of

the statistics/procedure of interest Tn (without standardization). The speed at which

it diverges or degenerates to a Dirac measure as n ³ > is directly related to the

adequate standardization Çbn . As a consequence, constructing several subsampling

distributions for different choices of bn gives valuable information on the shape of

Çn as a function of n which allows to extrapolate to bigger size.

In this chapter, we show that subsampling gives invaluable information on

possible Variability (or robustness toward the possible Values) of the procedure of

interest. We will prove the validity of the method and show how it can be practically

efficiently implemented. We will also discuss how to implement the method when

the size of the dataset evolves in time (a fact linked to the Velocity problem).

In Sect. 1, we present the state of the art of the subsampling methods. Then,

we demonstrate how we estimate the convergence rate of the samples statistics

distribution. In Sect. 3, we give our mathematical results and the subsamples sizes.

We show how we integrate the dynamic aspect of the big data environments

(specially in case of streaming and IoT) in our method. Section 5 presents our

results on simulated data. We implemented subsampling techniques on potentially

time-consuming procedures.
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2 Subsampling Methods for Big Data

2.1 Definition

In [9, 11, 25], a general subsampling methodology has been put forth for the

construction of large-sample confidence regions for a general unknown parameter

» = »(P ) ∈ Rq under very minimal conditions. Consider Xn = (X1,...,Xn) an

i.i.d. sample. To construct confidence intervals for » , we require an approximation to

the (generally unknown) sampling distribution (under P ) of a standardized statistic

Tn = Tn(Xn) that is consistent for » at some known rate Çn. In the statistical

learning methodology, » may be the Bayes Risk and Tn the estimated risk linked

to a given algorithm. Or in the framework of prediction, » may be a value to predict

and Tn a predictor.

To fix some notations, assume that there is a nondegenerate asymptotic distri-

bution for the centered “dilated” statistic Çn(Tn − »), i.e., there is a distribution

K(x, P ), continuous in x, such that for any real number x,

Kn(x, P ) c Pr P {Çn(Tn − ») ≤ x} −³
n³>

K(x, P ) (1)

then the subsampling distribution with subsampling size bn is defined by

Kbn(x | Xn, Ç.) c q−1

q�

i=1

1{Çbn(Tbn,i − Tn) ≤ x}, (2)

where q =
�
n
bn

�
and Tbn,i is a value of the statistic of interest calculated on a subset of

size bn chosen from Xn = {X1, . . . , Xn}. Using very simple U-statistics arguments,

it was shown in [25] that the subsampling methodology “works”, provided that

bn −³
n³>

> (3)

and

bn

n
−³
n³>

0. (4)

and

Çbn

Çn
−³
n³>

0, (5)

meaning that, under these assumptions, we have

Kbn(x | Xn, Ç.)−Kn(x, P ) −³
n³>

0,
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uniformly in x over neighborhoods of continuity points of K(x, P ). The key

point is that when Tn is replaced by » in (2) we obtain a U-statistics of degree

bn whose variance is of order bn
n
, condition (3) ensures that the mean of this U-

statitics Kbn(x, P ) converges to a limiting distribution, condition (4) ensures that

the variance of the U-statistics converges to 0, whereas conditions (1) and (5) ensure

that we can replace the re-centering Tn by the true value of the parameter. When

choosing an adequate re-centering (for instance, the median of the subsampling

distribution) then condition (5) may be completely dropped as discussed below.

This method may be generalized to dependent data in a weakly mixing context

but even for long range dependent series by constructing blocks of contiguous

observations of length bn. Since for large databases, computing q values of

the statistics Tbn,i may be unfeasible it is recommended to use its Monte-Carlo

approximation

K
(B)
bn

(x | Xn, Ç.) = B−1
B�

j=1

1{Çbn(Tbn,j − Tn) ≤ x},

where now {Tbn,j }j=1,...,B are the values of the statistic calculated on B subsamples

of size bn taken without replacement from the original population. It can be easily

shown by incomplete U-statitics arguments that if B is large then the error induced

by the Monte-Carlo step is only of size

K
(B)
bn

(x | Xn, Ç.)−Kbn(x | Xn, Ç.) = 0P

�
1:
B

�
,

so that if one controls the error induced by Kbn(x | Xn, Ç.) on the true distribution,

it is always possible to find a value of B (eventually linked to n) so that the Monte-

Carlo approximation is negligible.

This approach may also be used to infer on the generalization capability of

a given algorithm or an estimation method by estimating some risk » by some

empirical counterpart. Moreover, the centering by Tn may not be adapted for big

data, since calculation of Tn itself may be too complicated (either because the exact

size is unknown or because the complexity of the algorithm and the cost induced by

retrieving all the information are too high).

The main reason for using the centering by Tn (which converges to the true value

» ) is simply due to the fact that under (5)

Çbn(Tbn,j − Tn) = Çbn(Tbn,j − »)+ Çbn(» − Tn)

= Çbn(Tbn,j − »)+OP

�
Çbn

Çn

�

= Çbn(Tbn,j − »)+ oP (1).
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This suggests to use any centering whose convergence rate is actually faster

than Çbn . This is, for instance, the case if one constructs a subsampling distribution

without any centering nor standardization with a subsampling size mn >> bn such

that bn
mn

³ 0 and
Çbn
Çmn

³ 0. In this case we have that 1
B

�B
j=1 Tmn,j which is a

proxy of 1
q

�q
j=1 Tmn,j (with an error of size 1/

:
B) converges to » at a rate as fast

as Çmn (provided that the expectation of these quantities exists). The same results

hold if one chooses the median rather than the mean (as considered in [9, 11]),

this avoid additional assumption (existence of expectation) which may be difficult

to check in practice. In the following, we will denote by�»mn any centering based on

a subsampling distribution mn such that

Çbn(Tbn,j −�»mn) = Çbn(Tbn,j − »)+OP

�
Çbn

Çmn

�

= Çbn(Tbn,j − »)+ oP (1).

For simplicity, we use the same notation as before and define the subsampling

distribution as

Kbn(x | Xn, Ç.) c q−1

q�

i=1

1{Çbn(Tbn,i −�»mn) ≤ x},

and its Monte-Carlo approximation

K
(B)
bn

(x | Xn, Ç.) = B−1
B�

j=1

1{Çbn(Tbn,j −�»mn) ≤ x}.

3 Estimating the Convergence Rate

The main drawback of this approach which is also inherent to the methods proposed

in [22] is the knowledge of the standardization (or rate) Çn. However, this rate may

be easily estimated at least when the rate of convergence is of the form Çn = n³L(n)

where ³ is unknown and L is a normalized slowly varying function that is such that

L(1) = 1 and for any » > 0, limx³>
L(»x)
L(x)

= 1 (see [15]).

For this, we will first construct the subsampling without any standardization.

Denote by

Kbn(x | Xn) c Kbn(x | Xn, 1) = q−1

q�

i=1

1{Tbn,i −�»mn ≤ x}

the subsampling distribution of the root (Tn − »).
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Given a distribution F on the real line and a number t ∈ (0, 1), we will let

F−1(t) denote the quantile transformation, i.e., F−1(t) = inf {x : F(x) g t},
which reduces to the regular inverse of the function F if F happens to be continuous

non-decreasing. Note that we have

Kbn(x Ç−1
bn

| Xn) = Kbn(x | Xn, Ç.) (6)

and thus it is easy to see as in [10] that

K−1
bn
(t | Xn, Ç.) = Çbn K

−1
bn

(t | Xn) (7)

= K−1(t, P )+ oP (1). (8)

If Çn = n³L(n) where L is a positive normalized slowly varying function , by the

Karamata representation theorem, there exists �(.), �(u) −³
u³>

0 such that L(n) =
exp
� n

1 u−1�(u)du, and (8) may be written

log
�
|K−1

bn
(t | Xn)|

�
= log

�
|K−1(t, P )|

�
− ³ log(bn)

+
� bn

1

u−1�(u)du+ o(1)

It follows that if we choose two different subsampling sizes satisfying the

conditions stated before and such that bn1/bn2 = e, then we have

log
�
|K−1

bn1
(t | Xn)|

�
− log

�
|K−1

bn2
(t | Xn)|

�
(9)

= ³ +
� bn1

bn1

u−1�(u)du+ o(1)

= ³ + o(1)

uniformly in t . The last equality relies on the property of the Karamata distribution

and slowly varying functions. Indeed, we have
L(bn1

)

L(bn2)
= L(ebn2

)

L(bn2)
³ 1 as bn2 ³ >.

This trick based on using sample sizes of the same order avoids the complicated

constructions used in [9]. This suggests that the parameter ³ may be simply esti-

mated by averaging this quantity over several quantiles and/or several subsampling

distributions even in presence of a slowly varying functions.

Since computing these three subsampling distributions requires mainly the

computation of B 7 (bn1(1 + e) + mn) values of the statistic of interest (whose

calculus may be easily parallelized), we will essentially have to choose a resampling

size which does not perturb too much the subsampling distributions (which is big

enough) but sufficiently small so that the cost in computing these quantities is small
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in comparison with the global cost of computing a single statistic over the whole

database.

Another solution is to consider regression of log range on the log of the

subsampling size by remarking that we also have for any 0 < t1 < 1/2 < t2 < 1,

log
�
K−1
bn

(t2 | Xn)− K−1
bn
(t1 | Xn)

�

= log
�
K−1(t2, P ) −K−1(t1, P )

�
− ³ log(bn)

+
� bn

1

u−1�(u)du+ o(1)

The main interest in this version is that it does not depend on the re-centering

of the subsampling distribution. One may choose, for instance, t1 = 0.75 and

t2 = 0.25 , corresponding to the log of inter-quartiles, that will be used in our

simulations. Then we may choose two different sizes bn,1 and bn,2 = bn,1/e then

we have similarly that

log

�
K−1
bn,1

(t2 | Xn)−K−1
bn,1

(t1 | Xn)

K−1
bn,2

(t2 | Xn)−K−1
bn,2

(t1 | Xn)

�
= ³ + o(1) (10)

By looking simply at two subsampling distributions, we are able to estimate the

parameter ³.

4 Main Results

4.1 A General Subsampling Theorem

For simplicity, we will now assume that Çn = n³ . The general case Çn = n³L(n)

may be treated similarly with a few additional assumptions on the slowly varying

function (see [11]). For a given estimator of Çn, typically�Çn = n�³ , we will use

�Kn(x, P ) = Pr P {�Çn(Tn − ») ≤ x}

Theorem 1 Assume that (1) holds for Çn = n³, for some ³ > 0 and some K(x, P )

continuous in x; also assume (3) and (4). Let Æ³ = ³ + oP ((logn)−1), and put

�Çn = n Æ³ . Then

sup
x

|Kbn(x | Xn,�Ç.)− �K(x, P )| = oP (1). (11)
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Let ³ ∈ (0, 1), and let cn(1 − ³) = K−1
bn

(1 − ³ | Xn,�Ç.) be the 1 − ³th quantile of

the subsampling distribution Kbn(x | Xn,�Ç.). Then

Pr P { ÆÇn(Tn − ») g cn(1 − ³)} −³
n³>

³. (12)

Thus with an asymptotic coverage probability of 1 − ³, we have

−ÆÇ−1
n cn(1 − ³) ≤ » − Tn

and by symmetry

» − Tn ≤ ÆÇ−1
n cn(³).

Recall that K−1
bn
(1−³ | Xn,�Ç.) is the 1−³ quantile of the rescaled subsampling

distribution. Assuming that B is such (B + 1)³ is an integer (for instance, for ³ =
5% ³ = 1% then B = 999 is fine). Then, it is simply given by Çbn(T

((B+1)(1−³))
bn

−
�»mn) where T

((B+1)(1−³))
bn

is the (B+1)(1−³) largest value over the B sub-sampled

values. It then follows that the bound is given by

�Bn = �ÇbnÆÇn
(T

((B+1)(1−³)
bn

−�»mn). (13)

A straightforward utilization of this result is to compare generalization capability

of statistical learning algorithm, when n is so large that most algorithms, even with

polynomial complexity, may be hardly used in a reasonable time.

This result also allows to build confidence intervals for » . For this, assume that

(B + 1)³/2 is an integer. In that case, by combining (12) and (13) and choosing
�»mn = Tn, a confidence interval for » is simply given by

�»mn − �ÇbnÆÇmn

�
T
((B+1)(1−³/2))
bn

−�»mn

�
≤ »

≤ �»mn − �ÇbnÆÇmn

�
T
((B+1)³/2)
bn

−�»mn

�

which unfortunately is not on the right scale. However, if Tn may be computed on

the whole database, a scalable confidence interval is simply given by

Tn − �ÇbnÆÇn

�
T
((B+1)(1−³/2))
bn

− Tn

�
≤ »

≤ Tn − �ÇbnÆÇn

�
T
((B+1)³/2)
bn

− Tn

�
.



Subsampling for Big Data: Some Recent Advances 193

In our simulation study, it is seen that the variability of the data may be so high that

somehow there is very little difference between confidence interval even if the first

one should be larger.

Example 1 (Estimating a Parameter on a Large Database: Logistic Regression)

We consider here a very simple parametric model to highlight some inherent

difficulties with subsampling. Consider a linear logistic regression model with

parameter » = (³0, ³) ∈ R × Rd . Let X be a d-dimensional marginal vector

of the input random variables. The linear logistic regression model related to a pair

(X, Y ) can be written as

P» {Y = +1 | X} = exp(³0 + ³TX)/(1 + exp(³0 + ³TX)).

In high-dimension, i.e. when d is very large and for large n, the computation of the

full parametric maximum likelihood estimator (MLE) of » may be difficult to obtain

in a reasonable time. We assume that d << n but also that the subsampling sizes

which will be used are such that d << bn. For unbalanced populations (a lot of 1’s

in comparison with 0’s and vice versa), the probability to get a subsample with only

unit values (or zeros) may be high and the MLE will not be convergent (a similar

problem appears if the labels are fully separated). This is by no means contradictory

with the asymptotic validity of subsampling in this case: actually it has been shown

in [23] that the true variance of the MLE in a finite population is +>. Subsampling

simply reproduces this fact on a smaller scale. In that case, one should condition on

the fact that the ratio of the numbers of 1’s to the number of 0’s is not too small (or

not too close to 1). Else, the subsample should be eliminated.

Even on reasonable sizes, this estimation procedure may be useful. For instance

in R, with 1 GB of memory, the usual libraries (sampleSelection, glm) fail to

estimate the model with a size of n = 107 observations (for capacity reasons),

whereas it takes only 12 s to get a bound with B = 999 replications of the procedure

and a subsampling size of the order bn = n1/3. First, we do not estimate the rate of

convergence since we know that the rate will be of order Çn = n1/2. The true

extrapolated bound obtained by subsampling is of the same order as the true one,

with an error on the variance less than 10−5, for all simulations. If we estimate the

rate of convergence with J = 29 subsampling distributions based on subsampling

sizes equal n1/3+j/(3(J−1)), j = 0, . . . 28,, the largest subsampling size is of order

n2/3, we then get similar results but we need in that case 999 × 29 simulations : it

then takes 6 min to complete these tasks on the same computer.

Example 2 (Pattern Recognition) It is assumed that ((X1, Y1), . . . , (XN , YN ) is a

sample of i.i.d. random pairs taking their values in some measurable product space

X × {−1,+1}. In this standard binary classification framework, the r.v. X models

some observations are used to predict the binary label Y . The distribution P can

also be described by the pair (F, ·) where F(dx) denotes the marginal distribution

of the input variable X and ·(x) = P{Y = +1 | X = x}, x ∈ X , is the conditional
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distribution. The goal is to build a measurable classifier Ç : X �³ {−1,+1} with

minimum risk defined by

L(Y, Ç(X))
def= I{Ç(X) �= Y } (14)

where I{.} is the indicator function. It is well known that the Bayes classifier

Ç7(x) = 2I{·(x) > 1/2} − 1 is a solution of the risk minimization problem over

the collection of all classifiers, F , defined on the input space X . In that case we

define the minimizer

�Çn = arg min
Ç∈F

1

n

n�

i=1

I{Ç(Xi) �= Yi}. (15)

The statistics of interest is now the empirical error on a test set of this optimal

classifier. It is now possible to apply the subsampling procedure to different classes

of functions (algorithm) to estimate their prediction capability.

4.2 How to Choose the Subsampling Sizes

The choice of the subsampling size is a delicate subject which has been discussed

in very few papers including [5, 12, 12, 19]. The main idea underlying most

propositions is to construct several subsampling distributions by using two different

subsampling sizes, say bn and bn,2 = qbn for q ∈]0, 1[. It is easy to see that

when the subsampling distribution is a convergent estimator of the true distribution

then the distance d between the subsampling distribution and the true one is

stochastically equivalent to

d(Kbn,Kqbn).

The idea is then to find the largest bn, which minimizes this quantity. Several

distances (Kolmogorov distance, Wasserstein metrics, etc.) may be used.

Of course, for large datasets such method is very computationally expensive, so

that we recommend only to choose a limited range of values for bn and to discretize

this range so as to compute the distance d(Kbn,Kqbn) only on a limited number of

points and to select the ones which minimize this quantity.

Another empirical approach has been proposed in [5] based on the bad behavior

(high volatility) of subsampling distributions for too large subsampling sizes.

Indeed, up to the re-centering which converges quickly to the true value of the

parameter, a subsampling distribution may simply be seen as a U-statistic with

varying kernel of size bn. The main tools for studying the behavior of subsampling

distribution are Hoeffding decomposition of the U-statistics and empirical process

theory as considered in [1] and [20]. A subsampling distribution may be roughly
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seen as a U-statistic with increasing size bn so that quantiles may also themselves

be seen as U-quantiles. The difficulty for choosing the subsampling size is that in

comparison with U-statistics with fixed degree, the linear part of the U-statistic is

not always the dominating part in the Hoeffding decomposition. For rather small

or moderate bn, it can be shown that the U-statistic is asymptotically normal

with a convergence rate of order
�

n
bn

. However, when bn becomes too large, the

remainder in the Hoeffding decomposition dominates and the U-statistic behaves

very erratically (we conjecture that the limiting distribution belongs to linear

combination of Wiener Chaos). Nevertheless, this idea gives a very easy and

practical way of choosing the optimal subsampling size for the problem of interest.

The idea is simply to look at the quantiles of subsampling distributions and to find

the largest value such that the quantile remains stable.

5 Subsampling Algorithm Versus Velocity and Variability

5.1 Subsampling in a Growing Environment

The size of some database may evolve quickly in time so that we may wish

to implement simple subsampling techniques based on previous observations of

subsamples without having to access to the whole database again. How is it possible

to use the techniques exposed before when the size of the database is large and

increase so fast that taking new subsamples may be too computer expensive? To

solve this problem, we present a very simple sequential algorithm.

The idea is as follows: assume that at time t , we have obtained a subsample

without replacement of size bn (uniformly) from the original population n. That is,

the probability of a given subsample is
�
n
bn

�−1
. At time t + 1, the new sample size is

n+ 1. Then for this newcomer proceed as follows:

• keep the original subsample with probability 1−bn/(n+1) , that is simply draw a

Bernoulli rvsB1 with parameter 1−bn/(n+1) and stay with the same subsample

if one gets a 1,

• else with probability bn/(n + 1), choose one element of the current subsample

(without replacement, uniformly with probability 1/bn) and replace it by this

newcomer.

If several newcomers arrive at the same date, then use sequentially the same

algorithm by increasing the size of the population. Notice that this algorithm may

be easily implemented sequentially to update all the subsamples already obtained at

some given time.

The arguments below show that the resulting algorithm is the realization of

subsampling without replacement from the total new population.
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It may be simply proved by recurrence. Indeed, assume that the probability of

the sample is
�
n
bn

�−1
then

• if B1 = 1 , the probability of the new sample is
�
n
bn

�−1 7 (1 − bn
n+1

) =
�
n+1
bn

�−1

• if B1 = 0, the probability of the new sample is
�
n
bn

�−1 7 bn
n+1

( 1
bn

+ (n−bn)/bn) =
�
n+1
bn

�−1
.

Such result is fully proved in [24]. It follows that the corresponding subsample

at any step is actually a subsample obtained without replacement from the total

population.

If we want to increase the size of subsample, starting from a subsample of size

bn in a population of size n then we simply draw uniformly in the n−bn remaining

observation an individual (with probability 1/(n−bn)). It may be sometimes easier

(for instance, using Apache Spark) to use sampling with replacement. It is known

in that case that when bn is small enough such that bn:
n

³ 0 , then the probability

to draw the same individual twice converges to 0, for large n . Indeed when bn:
n

³

0, by Stirling formula we have
( nbn)
nbn

³ 1, so that with and without replacement

methods are asymptotically equivalent under this condition.

5.2 Subsampling to Assess Variability and Stability (Veracity)

of Learning Algorithms (on the Data)

One question which is also of interest is whether the method of interest is stable

over the whole database especially if its size becomes more and more important.

This question is of prime importance when the data itself is indexed by time.

A first approach hardly applicable with big data is to test for structural changes

in the parameter of interest. This problem has been extensively studied in the

econometric literature in the case of a single break-point and has been extended to

various econometric specification (nonlinear regression model, time series models,

nonlinear simultaneous equations models, etc. . . ) and different stability problems

(tests of finite multiple structural changes, tests of cross sectional consistency), see,

for instance, [17, 18] and the references therein. The intuition behind the proposed

tests is that if we split the sample into two subsamples, the set of observations

before and after a date t , then the difference between estimations (or monotone

transformations) should be equal to 0 if there is no structural change.

A simple generalization of this idea is to base the estimation of the parameter of

interest » or a risk indicator over subsamples of growing sizes. The intuition behind

this idea is that, under the hypothesis of global stability, all the estimations over

subsets of observations must be close to the true parameter. This approach is closely

related to Jackknife techniques, used, for instance, in the detection of outliers (see

[3]). Subsampling can actually be seen as the (N − bn out of n)-jackknife.
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The algorithm that we propose is the following :

In a population of size n, consider B subsamples of size bn , denoted by

S
n,bn
j , j = 1 . . . , B and compute the corresponding statistics of interest Tbn,j =
T (S

n,bn
j ). Then to evaluate the impact of a new small set of observation of size

l (with l << bn) say sl , we now consider all the new samples of size bn+l by includ-

ing sl , S
n+l,bn+l
j = S

n,l
j * sl and compute the corresponding statistics Tbn+l,j =

Tbn+l(S
n+l,bn+l
j ).

If the observation comes from the same distribution as before (the model is

stable) or if the procedure is robust (in terms of quantitative robustness), then the

corresponding subsampling distributions defined by (for any re-centering�»mn)

K
(B)
bn

(x | Xn,�Ç.) = B−1
B�

j=1

1{�Çbn(Tbn,j −�»mn) ≤ x}

K
(B)
bn+l(x | Xn+l ,�Ç.) = B−1

B�

j=1

1{�Çbn+l(Tbn+l,j −�»mn) ≤ x}

should be close. In particular, we should have, following the preceding argument

that for any t1 and t2 , the ratio of the ranges of the two distributions close to 0 that

is the ratio

rbn,l =
K

(B)−1
bn

(t2 | Xn,�Ç.)−K
(B)−1
bn

(t1 | Xn,�Ç.)
K

(B)−1
bn+l (t2 | Xn,�Ç.)−K

(B)−1
bn+l (t1 | Xn+l ,�Ç.)

³ 1

Notice that this quantity is independent of the choice of the centering�»mn . Thus

a simple graphical diagnostic for ensuring that the model is stable or the estimator

robust is to plot this quantity for some given values of t1 and t2, for instance t1 =
1 − ³/2, t2 = ³/2, for ³ = 0.01, 0.02, . . . .0.25.

It may be difficult to control the rate of convergence of this quantity to one in

the general case with unknown Çbn . In the following, we will assume for simplicity

that the rate of convergence Çn = n1/2 and give some hint on the optimal choice

of bn, when dealing with simple linear statistics, often encountered when dealing

with empirical risks. Indeed from Babu and Singh [2], for any statistics which

are a function of moments, and provided that we have sufficient moments (and a

absolutely continuous part for this statistics) then we have an Edgeworth expansion

(uniform in x)

Kbn(x, |Xn, Ç.) = §(
x

Ã>
)+OP (

1:
bn
)+O(

bn

n
)
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where Ã 2
> is the asymptotic variance of the quantity of interest. This result holds

almost surely up to O(
log(bn):

bn
) + O( bn

n
). It follows that in that case by simple

inversion of this expansion that we have

rbn,l =
Ã>(§−1(t2)−§−1(t1))+ O(

log(bn):
bn

)+O( bn
n
)

Ã>(§−1(t2)−§−1(t1))+ O(
log(bn+l):

bn+l
)+O( bn+l

n+l )

= 1 +O(
log(bn):

bn
)+O(

bn

n
) a.s.

It follows that the optimal subsampling size in that case, which equilibrates the two

errors is of size bn = (n log(n))2/3 yielding an a.s. approximation of order
log(n)

n1/3 a.s.

Thus we can construct an as. confidence interval for testing the equality of rbn,l to 1

and detect variability in the data.

6 Some Empirical Results

In this section, the implementations were executed under R on a standard PC with a

5 GHz Intel processor and 2G of Ram.

6.1 Maximum Likelihood Estimation for a Simple Probit

Model (See Example 1)

We consider the framework of Example 1. For this we simulate the toy probit model

Yi =
�

1 if 3Xi + ·i > 0

0 if else

with Xi and ·i independentN(0, 1) random variables. We choose, respectively, n =
106 and n = 107.

The mean of the estimations of ³ (and the variances) over the 999 repetitions

with the subsampling procedure are given in table for different subsampling sizes

n1/3, n1/2, n2/3 and on the whole sample with the corresponding execution time

(Table 1).

Notice that even with a size of n1/3 we are able to get the correct order for the

variance, the bias may be important for small subsampling size but almost vanish

for n = n2/3. With a subsampling size of order n2/3 = 46,415 even if the model

is true, we get the same order as the one on the m.l.e. on the whole database: but in

terms of calculus n2/3 is too big, since in that case we are able to proceed the m.l.e
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Table 1 MLE for a probit model with n = 106, 107 and variance estimations

Subsample (B = 999 replications) Whole sample

n bn Æ³bn Ævar(³bn )1/2 T ime

Æ³n
( Ævar(³n)1/2 )

time

106 n1/3 3.19 0.0064 13 s 2.992

n1/2 3.022 0.0063 36 s (0.0061)

n2/3 2.996 0.0060 3.26 min 28.75 s

107 n1/3 3.10 0.0020 41 s 2.998

n1/2 3.009 0.0020 1.25 min (0.0019)

n2/3 2.998 0.0019 12 min 4.69 min

on the whole database in less than 5 min (whereas it takes 12 min to replicate 999

times the procedure on the n2/3 sample size). But for n1/2 we get a gain of 4 for a

similar accuracy : of course this strongly depends on the degree of accuracy that one

wishes to obtain on the parameter of interest.

6.2 Estimation of the Out-of-Sample Error with knn (See

Example 2)

Considering the preceding example we now use the subsampling method to estimate

the out-of-sample errors of k-nearest neighbor estimators on several subsampling

sizes and compare them to the one obtained on the full database. We consider a

training set equal to 0.7n and a test set of size 0.3n (similar results have been

obtained for other test sets). The computation times in Table 2 clearly show the

computation gains. A striking result is for n = 107 because it takes almost 5 h to get

an estimator of this quantity on the whole sample whereas the subsampling method

takes at the worst 15 min with n2/3. It seems that even with a size of order n1/3

we still get a good approximation in less than 45 s. With the subsampling method

by using an extrapolated variance, we are also able to estimate the variance of the

Table 2 Estimation of the out-of-sample error by subsampling and on the whole sample

KNN Subsample (B = 999 replications) Whole sample

n bn Out-of-samp. error Time Out-s. err Time

106 n1/3 0.1177 4.79 s 0.1158 5.252 min

n1/2 0.1165 5.76 s (0.008)

n2/3 0.1167 43.5 s

107 n1/3 0.1166 44.7 s 0.114082 4 h 57 min

n1/2 0.1163 50.7 s (0.006)

n2/3 0.1161 15.35 min
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out-of-sample error (in parenthesis in the table), which shows that the estimation is

quite accurate.

Notice that, for this data, the out-of-sample error of the probit model is better

(of order 0.050 for both size) : it is because of the way in which the data has been

simulated. For real data, these simulations show that it is possible to compare in

a reasonable time the out-of-sample errors for several competing methods (with

confidence intervals).

7 Technical Proofs

Proof of Theorem 1 Let � > 0; assuming asymptotic convergence of Tn , we have

that

Pr P {|Kbn(x | Xn, Ç.)− K(x, P )| g �} ³ 0,

uniformly in x. Define the quantile z = K−1
bn
(t − � | Xn, Ç.), then we have with

probability tending to one that

Kbn(z | Xn, Ç.) g t − � ó K(z, P ) g t − 2�

ó z g K−1(t − 2�, P ).

Similarly, define y = K−1(t, P ), thus with probability tending to one, we get

K(y, P ) g t ó Kbn(y | Xn, Ç.) g t − �

ó y g K−1
bn

(t − �| Xn, Ç.).

Hence, for any t and any � > 0, we have the inequality

K−1(t − 2�, P ) ≤ K−1
bn

(t − � | Xn, Ç.) ≤ K−1(t, P ).

so that by letting � ³ 0+, we obtain that

K−1
bn
(t | Xn, Ç.) = K−1(t, P )+ oP (1).

Now, let x be a real number and note that

Kbn(x | Xn,�Ç.) c q−1

q�

i=1

1{b Æ³
n(Tbn,i −�»mn) ≤ x}

= q−1

q�

i=1

1{b Æ³
n(Tbn,i − »)− b Æ³

n (
�»mn − ») ≤ x}.
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Now, define Un(x) = q−1
�q

i=1 1{b Æ³
n(Tbn,i − ») ≤ x} and the set En = {b Æ³

n |�»mn −
» | ≤ �}, for some � > 0. Since Æ³ = ³ + oP ((logn)−1), it follows that n Æ³ =
n³(1 + oP (1)) and b Æ³

n = b³n (1 + oP (1)).

Equations (3) and (4) imply that P(En) −³
n³>

1; hence, with probability tending

to one, we get that

Un(x − �) ≤ Kbn(x | Xn,�Ç.) ≤ Un(x + �).

We will first show that Un(x) converges to K(x, P ) in probability. For this we

introduce the U-statistics with varying kernel defined by

Vn(x) = q−1

q�

i=1

1{b³n(Tbn,i − ») ≤ x},

that is the equivalent of Un(x), with the true rate rather than the estimated one. Note

that since Vn(x) is a U-statistics of degree bn, such that bn
n

³ 0, by Hoeffding

inequality we have Vn(x) ³ K(x, P ) in probability.

Now, for any �1 > 0, we have that

Un(x) = q−1

q�

i=1

1{b³n(Tbn,i − ») ≤ x
b³n

b Æ³
n

} ≤ Vn(x + �1)

where the above inequality holds with probability tending to one. A similar

argument shows that Un(x) g Vn(x − �1) with probability tending to one.

But we have Vn(x + �1) ³ K(x + �1, P ) and Vn(x − �1) ³ K(x − �1, P )

in probability. Therefore, letting �1 ³ 0, we have that Un(x) ³ K(x, P ) in

probability as required.

Proving that we have

�Kn(x, P )−K(x, P ) ³ 0 as n ³ >

follows now by the same arguments as before by recalling that

�Kn(x, P ) = P(Çn(Tn − ») ≤ x
Çn

�Çn
)

= P(Çn(Tn − ») ≤ x(1 + oP (1))

and using the continuity of the limiting distribution.

The second part of the theorem is a straightforward consequence of the uniform

convergence of Kbn(x | Xn,�Ç.) − �Kn(x, P ) to 0, for any point of continuity of the

true limiting distribution.
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Probability Bounds for Active Learning
in the Regression Problem

A.-K. Fermin and C. Ludeña

Abstract In this contribution we consider the problem of active learning in

the regression setting. That is, choosing an optimal sampling scheme for the

regression problem simultaneously with that of model selection. We consider a

batch type approach and an on-line approach adapting algorithms developed for

the classification problem. Our main tools are concentration-type inequalities which

allow us to bound the supreme of the deviations of the sampling scheme corrected

by an appropriate weight function.

1 Introduction

Consider the following regression model

yi = x0(ti)+ ·i, i = 1, . . . , n (1)

where the observation noise ·i are i.i.d. realizations of a random variable ·.

The problem we consider in this chapter is that of estimating the real-valued

function x0 based on t1, . . . , tn and a subsample of size N < n of the observations

y1, . . . , yn measured at a well-chosen subsample of t1, . . . , tn. This is relevant when,

for example, obtaining the values of yi for each sample point ti is expensive or time

consuming.
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In this work we propose a statistical regularization approach for selecting a

good subsample of the data in this regression setting by introducing a weighted

sampling scheme (importance weighting) and an appropriate penalty function over

the sampling choices.

We begin by establishing basic results for a fixed model, and then the problem

of model selection and choosing a good sampling set simultaneously. This is what

is known as active learning. We will develop two approaches. The first, a batch

approach (see, for example, [7]), assumes the sampling set is chosen all at once,

based on the minimization of a certain penalized loss function for the weighted

sampling scheme. The second, an iterative approach [1], considers a two-step

iterative method choosing alternatively the best new point to be sampled and the

best model given the set of points.

The weighted sampling scheme requires each data point ti to be sampled

with a certain probability p(ti) which is assumed to be inferiorly bounded by a

certain constant pmin. This constant plays an important role because it controls the

expected sample size E (N) =
�n

i=1 p(ti) > npmin. However, it also is inversely

proportional to the obtained error terms in the batch procedure (see Theorems 2.1

and 2.2), so choosing pmin too small will lead to poor bounds. Thus essentially, the

batch procedure aims at selecting the best subset of data points (points with high

probability) for the user chosen error bound. In the iterative procedure this problem

is addressed by considering a sequence of sampling probabilities {pj } where at each

step j pj (ti) is chosen to be as big as the greatest fluctuation for this data point over

the hypothesis model for this step.

Following the active learning literature for the regression problem based on

ordinary least squares (OLS) and weighted least squares learning (WLS) (see, for

example [5–7] and the references therein) in this chapter we deal mainly with a

linear regression setting and a quadratic loss function. This will be done by fixing

a spanning family {Çj }mj=1 and considering the best L2 approximation xm of x0

over this family. However, our approach is based on empirical error minimization

techniques and can be readily extended to consider other models whenever bounds

in probability are available for the error term.

Our results are based on concentration-type inequalities. Although variance

minimization techniques for choosing appropriate subsamples are a well-known

tool, giving adequate bounds in probability allowing for optimal non-asymptotic

rates has been much less studied in the regression setting.

This is also true for the iterative procedure, where our results generalize previous

ones obtained only in the classification setting for finite model spaces.

This chapter is organized as follows. In Sect. 2 we formulate the basic problem

and study the batch approach for simultaneous sample and model selection. In

Sect. 3 we study the iterative approach to sample selection and we discuss effective

sample size reduction. All the proofs are available in the extended arXiv version [3].
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2 Preliminaries

2.1 Basic Assumptions

We assume that the observations noise ·i in (1) are i.i.d. realizations of a random

variable · satisfying the moment condition

MC Assume the r.v. · satisfies E· = 0, E(|·|r/Ã r ) ≤ r!/2 for all r > 2 and

E(·2) = Ã 2.

It is important to stress that the observations depend on a fixed design t1, . . . , tn.

For this, we need some notation concerning this design. For any vectors u, v r , we

define the normalized norm and the normalized scalar product by

�u�2
n,r = 1

n

n�

i=1

ri(ui)
2, and < u, v >n,r=

1

n

n�

i=1

riuivi .

We drop the letter r from the notation when r = 1. With a slight abuse of notation,

we will use the same notation when u, v, or r are functions by identifying each

function (e.g. u) with the vector of values evaluates as ti (e.g. (u(t1), . . . , u(tn)). We

also require the empirical max-norm �u�> = maxi |ui |.

2.2 Discretization Scheme

To start with we will consider the approximation of function x0 over a finite-

dimensional subspace Sm. This subspace will be assumed to be linearly spanned

by the set {Çj }j∈Im
¢ {Çj }jg1, with Im a certain index set. Moreover, we shall, in

general, be interested only in the vector (x0(ti))
n
i=1 which we shall typically denote

just by x0 stretching notation slightly.

We will assume the following properties hold:

AB There exists an increasing sequence cm such that �Çj�> ≤ cm for j ≤ m.

AQ There exist a certain density q and a positive constant Q such that q(ti) ≤
Q, i = 1, . . . , n and

�
Çl(t)Çk(t)q(t) dt = ·k,l,

where · is the Kronecker delta.
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We will also require the following discrete approximation assumption. Let

Gm = [Çj (ti)]i,j be the associated empirical n × m Gram matrix. We assume that

Gt
mDqGm is invertible and moreover that 1

n
Gt
mDqGm ³ Im, where Dq is the

diagonal matrix with entries q(ti), for i = 1, . . . , n and Im the identity matrix of

size m. More precisely, we will assume

AS There exist positive constants ³ and c, such that

�Im − 1

n
Gt
mDqGm� ≤ cn−1−³.

Given [AQ], assumption [AS] is a numerical approximation condition which is

satisfied under certain regularity assumptions over q and {Çj }. To illustrate this

condition we include the following example.

Example 2.1 Haar Wavelets: let Ç(t) = 1[0,1](t), Ë(t) = Ç(2t) − Ç(2t − 1) (see,

for example, [4]), with q(t) = 1[0,1](t). Define

Çj,k(t) = 2j/2Ç(2j t − k) , t ∈ [0, 1] , j g 0 and k ∈ Z ;
Ëj,k(t) = 2j/2Ë(2j t − k) , t ∈ [0, 1] , j g 0 and k ∈ Z .

For all m g 0, Sm denotes the linear space spanned by the functions (Çm,k, k ∈ Z).

In this case cm ≤ 2m/2 and condition [AS] is satisfied for the discrete sample ti =
i/2m, i = 0, · · · , 2m−1.

We will denote by Æxm ∈ Sm the function that minimizes the weighted norm

�x − y�2
n,q over Sm evaluated at points t1, . . . , tn. This is,

Æxm = arg min
x∈Sm

1

n

n�

i=1

q(ti)(yi − x(ti))
2 = Rmy,

with Rm = Gm(G
t
mDqGm)

−1Gt
mDq the orthogonal projector over Sm in the q-

empirical norm � · �n,q .

Let xm := Rmx0 be the projection of x0 over Sm in the q-empirical norm

� · �n,q , evaluated at points t1, . . . , tn. Our goal is to choose a good subsample

of the data collection such that the estimator of the unobservable vector x0 in

the finite-dimensional subspace Sm, based on this subsample, attains near optimal

error bounds. For this we must introduce the notion of subsampling scheme and

importance weighted approaches (see [1, 7]), which we discuss below.

2.3 Sampling Scheme and Importance Weighting

In order to sample the data set we will introduce a sampling probability p(t) and a

sequence of Bernoulli(p(ti)) random variables wi, i = 1, . . . , n independent of ·i
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with p(ti) > pmin. Let Dw,q,p be the diagonal matrix with entries q(ti)wi/p(ti).

So that E
�
Dw,q,p

�
= Dq . Sometimes it will be more convenient to rewrite wi =

1ui<p(ti) for {ui}i an i.i.d. sample of uniform random variables, independent of {·i}i
in order to stress the dependence on p of the random variables wi .

The next step is to construct an estimator for xm = Rmx0, based on the

observation vector y and the sampling scheme p. For this, we consider a modified

version of the estimator Æxm.

Consider a uniform random sample u1, . . . , un and let wi = wi(p) = 1ui<p(ti)
for a given p. For the given realization of u1, . . . , un, Dw,q,p will be strictly positive

for those wi = 1. Moreover, as follows from the singular value decomposition, the

matrix (Gt
mDw,q,pGm) is invertible as long as at least one wi �= 0. Set Rm,p =

Gm(G
t
mDw,q,pGm)

−1Gt
mDw,q,p . Then Rm,p is the orthogonal projector over Sm in

the wq/p-empirical norm � · �n,wq/p and it is well defined if at least one wi �= 0. If

all wi = 0, the projection is defined to be 0.

As the approximation of xm, we then consider (for a fixedm, p and (u1, . . . , un))

the random quantity

Æxm,p = arg min
x∈Sm

�x − y�2
n,

qw
p

= arg min
x∈Sm

1

n

n�

i=1

wi

p(ti)
q(ti)(yi − x(ti))

2.

Note that

Æxm,p = Rm,py, (2)

This estimator depends on yi only if wi = 1. However, as stated above, this depends

on p(ti) for the given probability p.

2.4 Choosing a Good Sampling Scheme

To begin with, given n, we will assume that Sm is fixed with dimension |Im| = dm
and dm = o(n). Remark that the bias �x0 − xm�2

n,q is independent of p so for our

purposes it is only necessary to study the approximation error �xm− Æxm,p�2
n,q which

does depend on how p is chosen.

Let P := {pk, k g 1} be a numerable collection of [0, 1] valued functions over

{t1, . . . , tn}. Set pk,min = mini pk(ti). We will assume that mink pk,min > pmin. The

way the candidate probabilities are ordered is not a major issue, although in practice

it is sometimes convenient to incorporate prior knowledge (certain sample points are

known to be needed in the sample, for example) letting favourite candidates appear

first in the order. To get the idea of what a sampling scheme may be, consider the

following toy example:
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Example 2.2 Let £ = {0.1, 0.4, 0.6, 0.9} and set P = {p,p(ti ) = Ãj ∈ £, i =
1, . . . , n} which is a set of |£ |n functions. In this example, any given p will tend to

favour the appearance of points ti with p(ti) = 0.9 and disfavour the appearance of

those ti with p(ti) = 0.1.

A good sampling scheme p, based on the data, should be the minimizer over P of

the non-observable quantity �xm− Æxm,p�2
n,q . In order to find a reasonable observable

equivalent we start by writing,

[ Æxm,p − xm] = Rm,p[x0 − xm] + Rm,p·

= E
�
Rm,p

�
[x0 − xm] + (Rm,p − E

�
Rm,p

�
)[x0 − xm] + Rm,p·. (3)

Consider first the deterministic term E
�
Rm,p

�
[x0 −xm] in (3). We have the next

lemma which is proved in the extended arXiv version.

Lemma 2.1 Under condition [AS] if m = o(n), then

�E
�
Rm,p

�
[x0 − xm]�n,q = O(

n−1−³�x0 − xm�n,q
pmin

).

From Lemma 2.1, we can derive that the deterministic term is small with respect

to the other terms. Thus, it is sufficient for a good sampling scheme to take into

account the second and third terms in (3). We propose to use an upper bound with

high probability of those two last terms as in a penalized estimation scheme and to

base our choice on this bound.

Define

�B1(m, pk, ·) = �x0 − xm�2
n,q (
�³m,k(1 + �³1/2

m,k))
2 (4)

with

�³m,k = cm(
:

17 + 1)

2

�
dmQ

npk,min

�
2 log(27/4dmk(k + 1)/·). (5)

The second square root appearing in the definition of �³m,k is included in order to

give uniform bounds over the numerable collection P .

In the following, the expression tr(A) stands for the trace of the matrix A. Set

Tm,pk = tr((Rm,pkD
1/2
q )tRm,pkD

1/2
q ) and define

�B2(m, pk, ·) = Ã 2r(1 + »k)
Tm,pk +Q

n
+ Ã 2Q

log2(2/·)

dn
, (6)

with r > 1 and d = d(r) < 1 a positive constant that depends on r . The sequence

»k g 0 is such that
�

k e
−

:
dr»k(dm+1) < 1 holds.
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It is thus reasonable to consider the best p as the minimizer

Æp = argmin
pk∈P

�B(m,pk, ·, ³, n), (7)

where, for a given 0 < ³ < 1,

�B(m,pk, ·, ³, n) = {(1 + ³ )�B1(m, pk, ·)+ (1 + 1/³ )�B2(m, pk, ·)}.

The different roles of �B1 and �B2 appear in the following lemmas:

Lemma 2.2 Assume that the conditions [AB], [AS], and [AQ] are satisfied and that

there is a constant pmin > 0 such that for all i = 1, . . . , n, p(ti) > pk,min > pmin.

Assume �B1 to be selected according to (4). Then for all · > 0 we have

P

�
sup
P

{�(Rm,p − E
�
Rm,p

�
)[x0 − xm]�2

n,q − �B1(m, p, ·)} > 0

�
≤ ·/2

Lemma 2.3 Assume the observation noise in Eq. (1) is an i.i.d. collection of

random variables satisfying the moment condition [MC]. Assume that the condition

[AQ] is satisfied and assume that there is a constant pmin > 0 such that p(ti) >

pmin for all i = 1, . . . , n. Assume �B2 to be selected according to (6) with r > 1,

d = d(r) and »k g 0, such that the following Kraft inequality
�

k e
−

:
dr»k(m+1) < 1

holds. Then,

P(sup
P

{�Rm,p·�2
n,q − �B2(m, p, ·)} > 0) < ·/2.

Those two lemmas together with Lemma 2.1 assure that the proposed esti-

mation procedure, based on the minimization of �B, is consistent establishing

non-asymptotic rates in probability.

We may now state the main result of this section, namely, non-asymptotic

consistency rates in probability of the proposed estimation procedure. The proof

follows from Lemmas 2.2 and 2.3 and is given in the extended arXiv version along

with the proof of the lemmas.

Theorem 2.1 Assume that the conditions [AB], [AS], and [AQ] are satisfied.

Assume Æp to be selected according to (7). Then the following inequality holds with

probability greater than 1 − ·

�xm − Æxm, Æp�2
n,q ≤ inf

p∈P
6

�
�E
�
Rm,p

�
(xm − x0)�2

n,q + �B(m,p, ·, ³, n)
�
.

Remark 2.1 In the minimization scheme given above it is not necessary to know the

term �x0 −xm�2
n,q in �B1 as this term is constant with regard to the sampling scheme

p. Including this term in the definition of �B1, however, is important because it leads
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to optimal bounds in the sense that it balances pmin with the mean variation, over

the sample points, of the best possible solution xm over the hypothesis model set

Sm. This idea shall be pursued in depth in Sect. 3.

Moreover, minimizing �B1 essentially just requires selecting k such that pk,min is

largest and doesn’t intervene at all if pk,min = pmin for all k. Minimization based on

pk(ti) for all sample points is given by the trace Tm,pk which depends on the initial

random sample u independent of {(ti, yi), i = 1, . . . , n}. A reasonable strategy in

practice, although we do not have theoretical results for it, is to consider several

realizations of u and select sample points which appear more often in the selected

sampling scheme Æp.

Remark 2.2 Albeit the appearance of weight terms which depend on k both in the

definition of �B1 and �B2, actually the ordering of P does not play a major role. The

weights are given in order to assure convergence over the numerable collection P .

Thus in the definition of �³m,k any sequence of weights » �
k (instead of [k(k + 1)]−1)

assuring that the series
�

k »
�
k < > is valid. Of course, in practice P is finite.

Hence for M = |P| a more reasonable bound is just to consider uniform weights

» �
k = 1/M instead.

Remark 2.3 Setting Hm,pk := (Gt
mDw,q,pkGm)

−1Gt
mDw,q,pk we may write

Tm,pk = tr(Gt
mDqGmHm,pkH

t
m,pk

) in the definition of �B2. Thus our convergence

rates are as in Lemma 1, [5]. Our approach, however, provides non-asymptotic

bounds in probability as opposed to asymptotic bounds for the quadratic estimation

error.

Remark 2.4 As mentioned at the beginning of this section, the expected “best”

sample size given u is ÆN =
�

i Æp(ti), where u is the initial random sample

independent of {(ti, yi), i = 1, . . . , n}. Of course, a uniform inferior bound for

this expected sample size is E
�

ÆN
�
> npmin, so that the expected size is inversely

proportional to the user chosen estimation error. In practice, considering several

realizations of the initial random sample provides an empirical estimator of the non-

conditional “best” expected sample size.

2.5 Model Selection and Active Learning

Given a model and n observations (t1, y1), . . . , (tn, yn) we know how to estimate

the best sampling scheme Æp and to obtain the estimator Æxm, Æp. The problem is that

the model m might not be a good one. Instead of just looking at fixed m we would

like to consider simultaneous model selection as in [7]. For this we shall pursue a

more global approach based on loss functions.

We start by introducing some notation. Set l(u, v) = (u − v)2 the squared loss

and let Ln(x, y, p) = 1
n

�n
i=1 q(ti)

wi

p(ti)
l(x(ti), yi) be the empirical loss function

for the quadratic difference with the given sampling distribution. Set L(x) :=
E (Ln(x, y, p)) with the expectation taken over all the random variables involved.
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LetLn(x, p) := E· (Ln(x, y, p))whereE· () stands for the conditional expectation

given the initial random sample u, that is the expectation with respect to the random

noise ·. It is not hard to see that

L(x) = 1

n

n�

i=1

q(ti)E (l(x(ti), yi)) ,

and

Ln(x, p) = 1

n

n�

i=1

q(ti)
wi

p(ti)
E (l(x(ti), yi)) .

Recall that Æxm,p = Rm,py is the minimizer of Ln(x, y, p) over each Sm for given p

and that xm = Rmx0 is the minimizer of L(x) over Sm. Our problem is then to find

the best approximation of the target x0 over the function space S0 :=
�

m∈I Sm. In

the notation of Sect. 2.2 we assume for each m that Sm is a bounded subset of the

linearly spanned space of the collection {Çj }j∈Im with |Im| = dm.

Unlike the fixed m setting, model selection requires controlling not only the

variance term �xm − Æxm,p�n,q but also the unobservable bias term �x0 − xm�2
n,q

for each possible model Sm. If all samples were available this would be possible just

by looking at Ln(x, y, p) for all Sm and p, but in the active learning setting labels

are expensive.

Set em := �x0−xm�>. In what follows we will assume that there exists a positive

constant C such that supm em ≤ C. Remark this implies supm �x0 − xm�n,q ≤ QC,

with Q defined in [AQ].

As above pk ∈ P stands for the set of candidate sampling probabilities and

pk,min = mini(pk(ti)).

Define

pen0(m, pk, ·) = QC2

pk,min

�
1

2n
ln(

6dm(dm + 1)

·
), (8)

pen1(m, pk, ·) = QC³2
m,k(1 + ³

1/2
m,k)

2, (9)

with

³m,k = cm(
:

17 + 1)

2

�
dmQ

npk,min

�

2 log(
3 7 27/4d2

m(dm + 1)k(k + 1)

·
),

and finally setting Tpk,m = tr((Rm,pkD
1/2
q )tRm,pkD

1/2
q ), define

pen2(m, pk, ·) = Ã 2

�
r(1 + »m,k)

Tpk,m +Q

n
+ Q ln2(6/·)

dn

�
(10)
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where »m,k g 0 is a sequence such that
�

m,k e
−
:

dr»m,k(dm+1) < 1 holds.

We remark that the change from · to ·/(dm(dm+1)) in pen0 and pen1 is required

in order to account for the supremum over the collection of possible model spaces

Sm.

Also, we remark that introducing simultaneous model and sample selection

results in the inclusion of term pen0 > C2/pk,min

:
1/n which includes an L> type

bound instead of an L2 type norm which may yield non-optimal bounds. Dealing

more efficiently with this term would require knowing the (unobservable) bias term

�x0−xm�n,q . A reasonable strategy is selecting pk,min = pk,min(m) g �x0−xm�n,q
whenever this information is available.

In practice, pk,min can be estimated for each model m using a previously

estimated empirical error over a subsample if this is possible. However this yields a

conservative choice of the bound. One way to avoid this inconvenience is to consider

iterative procedures, which update on the unobservable bias term. This course of

action shall be pursued in Sect. 3.

With these definitions, for a given 0 < ³ < 1 set

pen(m,p, ·, ³, n) = 2p0(m, p, ·) + (
1

pmin

+ 1

³
)pen1(m, p, ·)

+(
1

p2
min

(
2

³
+ 1)+ 1

³
)pen2(m, p, ·)+ 2((c + 1)

n−(1+³)QC

pmin
)2.

and define

Ln,1(x, y, p) = Ln(x, y, p)+ pen(m,p, ·, ³, n).

The appropriate choice of an optimal sampling scheme simultaneously with that

of model selection is a difficult problem. We would like to choose simultaneously

m and p, based on the data in such a way that optimal rates are maintained. We

propose for this a penalized version of Æxm, Æp, defined as follows.

We start by choosing, for each m, the best sampling scheme

Æp(m) = arg min
p

pen(m,p, ·, ³, n), (11)

computable before observing the output values {yi}ni=1, and then calculate the

estimator Æxm, Æp(m) = Rm, Æp(m)y which was defined in (2).

Finally, choose the best model as

Æm = arg min
m

Ln,1(y, Æxm, Æp(m), Æp(m)). (12)

The penalized estimator is then Æx Æm := Æx Æm, Æp( Æm). It is important to remark that for

each model m, Æp(m) is independent of y and hence of the random observation error

structure. The following result assures the consistency of the proposed estimation
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procedure, although the obtained rates are not optimal as observed at the beginning

of this section.

Theorem 2.2 With probability greater than 1 − ·, we have

L( Æx Æm) ≤ 1 + ³

1 − 4³
[L(xm)+ min

m,k
(2p0(m, pk, ·)+ 1

pmin
pen1(m, pk, ·)

+ 1

p2
min

(1 + 2/³ )pen2(m, pk, ·))]

≤ 1 + ³

1 − 4³
min
m

[L(xm)+ min
k

pen(m,pk, ·, ³, n)]

Remark 2.5 In practice, a reasonable alternative to the proposed minimization pro-

cedure is estimating the overall error by cross-validation or leave one out techniques

and then choose m minimizing the error for successive essays of probability Æp.

Recall that in the original procedure of Sect. 2.5, labels are not required to obtain

Æp for a fixed model. Cross-validation or empirical error minimization techniques

do, however, require a stock of “extra” labels, which might not be affordable in

the active learning setting. Empirical error minimization is specially useful for

applications where what is required is a subset of very informative sample points,

as for example when deciding what points get extra labels (new laboratory runs, for

example) given a first set of complete labels is available. Applications suggest that Æp
obtained with this methodology (or a threshold version of Æp which eliminates points

with sampling probability Æpi ≤ · a certain small constant) is very accurate in finding

“good” or informative subsets, over which model selection may be performed.

3 Iterative Procedure: Updating the Sampling Probabilities

A major drawback of the batch procedure is the appearance of pmin in the

denominator of error bounds, since typically pmin must be small in order for the

estimation procedure to be effective. Indeed, since the expected number of effective

samples is given by E (N) := E
��

i p(ti)
�
, small values of p(ti) are required in

order to gain in sample efficiency.

Proofs in Sect. 2.5 depend heavily on bounding expressions such as

1

n

n�

i=1

q(ti)
wi

p(ti)
·i(x − x �)(ti)

or

1

n

n�

i=1

q(ti)(
wi

p(ti)
− 1)(x − x �)2(ti)
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where x and x � belong to a given model family Sm. Thus, it seems like a

reasonable alternative to consider iterative procedures for which at time j , pj (ti) >
maxx,x �∈Sj |x(ti) − x �(ti)| with Sj the current hypothesis space. In what follows

we develop this strategy, adapting the results of [1] from the classification to the

regression problem. Although we continue to work in the setting of model selection

over bounded subsets of linearly spanned spaces, results can be readily extended to

other frameworks such as additive models or kernel models. Once again, we will

require certain additional restrictions associated to the uniform approximation of x0

over the target model space.

More precisely, we start with an initial model set S(= Sm0) and set x7 to be the

overall minimizer of the loss function L(x) over S. Assume additionally

AU supx∈S maxt∈{t1,...,tn} |x0(t)− x(t)| ≤ B

Let Ln(x) = Ln(x, y, p) and L(x) be as in Sect. 2.5. For the iterative procedure

introduce the notation

Lj (x) := 1

nj

nj�

i=1

q(tji )
wi

p(tji )
(x(tji )− yji )

2, j = 0, . . . , n

with nj = n0 + j for j = 0, . . . , n− n0.

In the setting of Sect. 2 for each 0 ≤ j ≤ n, Sj will be the linear space spanned

by the collection {Ç�}�∈Ij
with |Ij | = dj , dj = o(n).

In order to bound the fluctuations of the initial step in the iterative procedure we

consider the quantities defined in Eqs. (4) and (6) for r = ³ = 2. That is,

�0 = 2Ã 2Q

�
2(d0 + 1)

n0
+ log2(2/·)

n0

�

+2(�³m0(1 + �³m0))
2B2.

with

�³m0 = cm0(
:

17 + 1)

2

�
d0Q

n0pmin

�
2 log(27/4m0/·).

As discussed in Sect. 2.4, �0 requires some initial guess of �x0 − xm0�2
n,q . Since

this is not available, we consider the upper bound B2. Of course this will possibly

slow down the initial convergence as �0 might be too big, but will not affect the

overall algorithm. Also remark we do not consider the weighting sequence »k of

Eq. (6) because the sampling probability is assumed fixed.
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Next set Bj = supx,x �∈Sj−1
maxt∈{t1,...,tn} |x(t)− x �(t)| and define

�j =

�
Ã 2Q[(2(dj + 1)

nj
)+ log2(4nj (nj + 1)/·)

nj
]

+

�

log(4nj (nj + 1)/·)
16B2

j (2Bj ' 1)2Q2

nj
+ 4

�
4
(dj + 1) logn

nj
.

The iterative procedure is stated as follows:

1. For j = 0:

• Choose (randomly) an initial sample of size n0, M0 = {tk1, . . . , tkn0
}.

• Let Æx0 be the chosen solution by minimization of L0(x) (or possibly a

weighted version of this loss function).

• Set S0 ¢ {x ∈ S : L0(x) < L0( Æx0)+�0}
2. At step j :

• Select (randomly) a sample candidate point tj , tj �∈ Mj−1.

Set Mj = Mj−1 * {tj }
• Set p(tj ) = (maxx,x �∈Sj−1

|x(tj )−x �(tj )|'1) and generatewj > Ber(p(tj )).

If wj = 0, set j = j + 1 and go to (2) to choose a new sample candidate.

If wj = 1 sample yj and continue.

• Let Æxj = arg minx∈Sj−1 Lj (x)+�j−1(x)

• Set Sj ¢ {x ∈ Sj−1 : Lj (x) < Lj ( Æxj )+�j }
• Set j = j + 1 and go to (2) to choose a new sample candidate.

Remark that, such as it is stated, the procedure can continue only up until time n

(when there are no more points to sample). If the process is stopped at time T < n,

the term log(n(n + 1)) can be replaced by log(T (T + 1)). We have the following

result, which generalizes Theorem 2 in [1] to the regression case.

Theorem 3.1 Let x7 = arg minx∈S L(x). Set · > 0. Then, with probability at least

1 − · for any j ≤ n

• |L(x)− L(x �)| ≤ 2�j−1, for all x, x � ∈ Sj
• L( Æxj ) ≤ [L(x7)+ 2�j−1]
Remark 3.1 An important issue is related to the initial choice of m0 and n0. As the

overall precision of the algorithm is determined by L(x7), it is important to select a

sufficiently complex initial model collection. However, if dm0 >> n0, then �0 can

be big and pj > 1 for the first samples, which leads to a more inefficient sampling

scheme.
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3.1 Effective Sample Size

For any sampling scheme the expected number of effective samples is, as already

mentioned, E
��

i p(ti)
�
. Whenever the sampling policy is fixed, this sum is not

random and effective reduction of the sample size will depend on how small

sampling probabilities are. However, this will increase the error bounds as a conse-

quence of the factor 1/pmin. The iterative procedure allows a closer control of both

aspects and under suitable conditions will be of order
�

j

�
L(x7)+�j . Recall

from the definition of the iterative procedure we have pj (ti) > maxx,x �∈Sj |x(ti) −
x �(ti)|, whence the expected number of effective samples is of the order of�

j maxx,x �∈Sj |x(ti) − x �(ti)|. It is then necessary to control supx,x �∈Sj−1
|x(ti) −

x �(ti)| in terms of the (quadratic) empirical loss function Lj . For this we must

introduce some notation and results relating the supremum and L2 norms [2].

Let S ¢ L2 +L> be a linear subspace of dimension d , with basis § := {Çj , j ∈
mS}, |mS | = d . Set r := inf� r�, where � stands for any orthonormal basis of S.

We have the following result

Lemma 3.1 Let Æxj be the sequence of iterative approximations to x7 and pj (t)

be the sampling probabilities in each step of the iteration, j = 1, . . . , T . Then,

the effective number of samples, that is, the expectation of the required samples

Ne = E

��T
j=1 pj (tj )

�
is bounded by

Ne ≤ 2
:

2r(
�
L(x7)

T�

j=1

�
dj +

T�

j=1

�
dj�j ).
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Elemental Estimates, Influence,
and Algorithmic Leveraging

K. Knight

Abstract It is well-known (Subrahmanyam, Sankhya Ser B 34:355–356, 1972;

Mayo and Gray, Am Stat 51:122–129, 1997) that the ordinary least squares estimate

can be expressed as a weighted sum of so-called elemental estimates based on

subsets of p observations where p is the dimension of parameter vector. The

weights can be viewed as a probability distribution on subsets of size p of the

predictors {xi : i = 1, · · · , n}. In this contribution, we derive the lower dimensional

distributions of this p dimensional distribution and define a measure of potential

influence for subsets of observations analogous to the diagonal elements of the “hat”

matrix for single observations. This theory is then applied to algorithmic leveraging,

which is a method for approximating the ordinary least squares estimates using a

particular form of biased subsampling.

1 Introduction

Given observations {(xi, yi) : i = 1, · · · , n}, we define the ordinary least squares

(OLS) estimate�β as the minimizer of

n�

i=1

(yi − xTi β)2.

We are implicitly assuming that �β estimates a p-dimensional parameter β in the

model yi = xTi β +·i (i = 1, · · · , n) for some errors {·i}. However, we will not use

this assumption in the sequel.
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The OLS estimate can be written as a weighted sum of so-called elemental

estimates, which are based on subsets of observations of size p. If s = {i1 < · · · <
ip} is a subset of {1, · · · , n}, then we can define the elemental estimate�βs satisfying

xTij
�βs = yij for j = 1, · · · , p

provided that the solution �βs exists. Subrahmanyam [16] showed that the OLS

estimate can be written as

�β =
�

s

|Xs |2�

u

|Xu|2
�βs

where the summation is over all subsets of size p, |K| denotes the determinant of a

square matrix K and

Xs =
�
xi1 xi2 · · · xip

�
. (1)

Therefore, we can think of the OLS estimate �β as an expectation of elemental

estimates with respect to a particular probability distribution; that is,

�β = EP (�βS)

where the random subset S has a probability distribution

P(s) = P(S = s) = |Xs |2�

u

|Xu|2
(2)

where Xs is defined in (1). Hoerl and Kennard [10] note that the OLS estimate can

also be expressed as a weighted sum of all OLS estimates based on subsets of k > p

observations.

An analogous result holds for weighted least squares (WLS) where we minimize

n�

i=1

wi(yi − xTi β)2

for some non-negative weights {wi}. Again in this case, the WLS estimate�β can be

written as�β = E(�βS) where now S has the probability distribution

P(S = s) =

|Xs |2
�

j∈s
wj

�
u

�
|Xu|2

�
j∈uwj

� =

P(s)
�

j∈s
wj

�
u

�
P(u)

�
j∈uwj

� .



Elemental Estimates, Influence, and Algorithmic Leveraging 221

Henceforth, we will focus on the distribution P(s) defined in (2) for the OLS

estimate where the results for the WLS estimate will follow mutatis mutandis.

The probability P(s) defined in (2) describes the weight and therefore the

potential influence of a subset s (of size p) on the OLS estimate �β. In particular,

greater weight is given to subsets where the vectors xi1 , · · · , xip are more dispersed;

for example, if xi = (1, xi)
T , then |(xi xj )|2 = (xi − xj )

2. We can also use the

probability distribution P to define measures of influence of arbitrary subsets of

observations.

In Sect. 2, we will derive the lower dimensional distributions of P defined in (2)

while in Sect. 3, we will discuss the potential influence of a subset of observations.

In situations where n and p are large, the OLS estimate �β may be difficult to

compute in which case one can attempt to approximate �β by sampling m � n

observations from {(xi , yi)} leading to a subsampled estimate�βss = EQ(�βS) where

S has a distribution Q. The goal here is to find a subsampling scheme so that Q j
P in some sense. This will be explored further in Sect. 4.

2 Lower Dimensional Distributions of P

The probability distribution P defined in (2) describes the weight given to each

subset of p observations in defining the OLS estimate. It is also of interest to

consider the total weight given to subsets of k < p observations. It turns out that

these lower dimensional distributions depend on the elements of the so-called “hat”

matrix. (The “hat” matrix is the orthogonal projection onto the column space of the

matrix X whose rows are xT1 , · · · , xTn .)

We start by re-expressing P(s). Since

�

u

|Xu|2 =
�����

n�

i=1

xix
T
i

�����

[14], it follows that

P(s) =

������
XT
s

�
n�

i=1

xix
T
i

�−1

Xs

������
=

�������

»
¿¿
hi1i1 hi1i2 · · · hi1ip
...

...
. . .

...

hip i1 hip i2 · · · hip ip

¿
¿£

�������

where {hij : i, j = 1, · · · , n} are the elements of the “hat” matrix [9]:

hij = hji = xTi

�
n�

i=1

xix
T
i

�−1

xj .
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Henceforth, unless specified otherwise, all probabilities and expected values are

based on the probability distribution P .

If S is a random subset of size p drawn from {1, · · · , n} with probability

distribution P , it is convenient to describe the distribution of S using the equivalent

random vector W = (W1, · · · ,Wn) where Wj = I (j ∈ S) and W1 +· · ·+Wn = p.

The moment generating function ×(t) = E[exp(tT W )] of W is given by

×(t) =
�����
n�

i=1

xix
T
i

�����

−1�

s

|Xs |2
§
«
«
�

ij∈s
exp(tij )

«
¯
¯ =

�����

n�

i=1

exp(ti)xix
T
i

�����
�����
n�

i=1

xix
T
i

�����

.

Thus for k ≤ p,

P({i1, · · · , ik} ¢ S) = E

»
¿

k�

j=1

Wij

¿
£ = "k

"ti1 · · · "tik
×(t)

����
t1=t2=···=tn=0

.

The following result gives the lower dimensional distributions of P .

Proposition 1 Suppose that S has the distribution P defined in (2). Then for

k ≤ p,

P({i1, · · · , ik} ¢ S) =

�������

»
¿¿
hi1i1 hi1i2 · · · hi1ik
...

...
. . .

...

hik i1 hik i2 · · · hik ik

¿
¿£

�������
.

Proof Define the k × k matrix

Hi1···ik (t) = exp(ti1 + · · · + tik )

»
¿¿

xTi1
...

xTik

¿
¿£
�

n�

i=1

exp(ti)xix
T
i

�−1 �
xi1 · · · xik

�

and define for 1 ≤ i, j ≤ n,

hij (t) = xTj

�
n�

i=1

exp(ti)xix
T
i

�−1

xi .

It suffices to show that

"k

"ti1 · · · "tik
×(t) = ×(t)

��Hi1···ik (t)
�� . (3)
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We will prove (3) by induction using Jacobi’s formula [8]

d

dt
|K(t)| = trace

�
adj(K(t))

d

dt
K(t)

�
= |K(t)|trace

�
K−1(t)

d

dt
K(t)

�

where adj(K(t)) is adjugate (the transpose of the cofactor matrix) of K(t) as well

as the identity

����
�
D v

vT a

����� = a|D| − vT adj(D)v (4)

where a is a real number, v a vector of length k, and D a k × k matrix. For k = 1,

we have

"

"ti1
×(t) = ×(t)trace

§
«
«

�
n�

i=1

exp(ti)xix
T
i

�−1

exp(ti1)xi1x
T
i1

«
¯
¯

= ×(t) exp(ti1)x
T
i1

�
n�

i=1

exp(ti)xix
T
i

�−1

xi1

= ×(t) exp(ti1)hi1i1(t)

= ×(t)
��Hi1(t)

�� .

Now suppose that (3) holds for some k < p and set � = k + 1. Then

"�

"ti1 · · · "ti�
×(t) = "

"ti�

�
×(t)
��Hi1···ik (t)

���

=
��Hi1···ik (t)

�� "

"ti�
×(t)+ ×(t)

"

"ti�

��Hi1···ik (t)
�� .

First,

"

"ti�
×(t) = ×(t)

��Hi�(t)
�� = ×(t) exp(ti�)hi�i�(t).

Second,

×(t)
"

"ti�

��Hi1···ik (t)
�� = ×(t)

�
trace

�
adj(Hi1···ik (t))

"

"ti�
Hi1···ik (t)

��
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with

"

"ti�
Hi1···ik (t) = − exp(ti1 + · · · + tik + ti�)

»
¿¿
hi1i�(t)

...

hik i�(t)

¿
¿£

�
hi1i�(t) · · · hik i�(t)

�
.

Applying (4) with

a = hi�i�(t), D = Hi1···ik (t), and v =

»
¿¿
hi1i�(t)

...

hik i�(t)

¿
¿£ ,

we get

"�

"ti1 · · · "ti�
×(t) = ×(t)

��Hi1···i�(t)
��

and the conclusion follows by setting t = 0.

3 Measuring Influence for Subsets of Observations

The diagonal elements {hii} of the “hat” matrix are commonly used in regression

analysis to measure the potential influence of observations [9]. Similar influence

measures for subsets of observations have been proposed; see [2] as well as [15] for

surveys of some of these methods.

From Proposition 1, it follows that P(Wi = 1) = hii = E(Wi), which suggests

that an analogous measure of the influence of a subset of observations whose indices

are i1, · · · , ik might be based on the distribution of Wi1 , · · · ,Wik .

Suppose that A is a subset of {1, · · · , n} and define

N(A) =
�

j∈A
Wj . (5)

Given that E(Wi) = hii and P(Wi = 1,Wj = 1) = E(WiWj ) = hiihjj −h2
ij from

Proposition 1, it follows that

E[N(A)] =
�

j∈A
hjj

Var[N(A)] =
�

j∈A
hjj −

�

i∈A

�

j∈A
h2
ij .
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More generally, the probability distribution of N(A) in (5) can be determined from

the probability generating function

E
�
tN(A)

�
=

������
t
�

j∈A
xjx

T
j +

�

j /∈A
xjx

T
j

������
�����

n�

i=1

xix
T
i

�����

.

This gives, for example, if A = {i1, · · · , ik},

P (N(A) = 0) =

������

�

j /∈A
xjx

T
j

������
�����

n�

i=1

xix
T
i

�����

=

������
I −

�
n�

i=1

xix
T
i

�−1 �

j∈A
xjx

T
j

������

=

���������

»
¿¿¿¿

1 − hi1i1 −hi1i2 · · · −hi1ik
−hi2i1 1 − hi2i2 · · · −hi2ik

...
...

. . .
...

−hik i1 −hik i2 · · · 1 − hik ik

¿
¿¿¿£

���������
. (6)

In the case where hi1i1 , · · · , hik ik are uniformly small and k � n then

P (N(A) = 0) j exp

»
¿−

k�

j=1

hij ij − 1

2

k�

j=1

k�

�=1

h2
ij i�

¿
£ .

Also note that (6) can also be computed as

P (N(A) = 0) =
k�

j=1

§
⎪«
⎪«

1 − xTij

»
¿ �

i∈A\{i1,··· ,ij−1}
xix

T
i

¿
£

−1

xij

«
⎪̄

⎪̄
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where the quadratic form

xTij

»
¿ �

i∈A\{i1,··· ,ij−1}
xix

T
i

¿
£

−1

xij

is a diagonal of the “hat” matrix with observations i1, · · · , ij−1 deleted.

Suppose that �βA is the OLS estimate of β based on {(xi, yi) : i �∈ A} and

define PA to be the probability distribution on subsets S so that �βA = EPA
(�βS).

If PA is close to P , then we would expect �βA to be close to �β—in other words,

the influence of the subset A on estimation of β is small. More generally, if we

delete the observations in A, we may want to define an estimate based on elemental

estimates from subsets s with s +A = ' using a different probability distribution Q

(with Q(s) = 0 if s + A �= ') so that

�βA =
�

s

�βsQ(s).

The following result provides a simple formula the total variation (TV) distance

between PA and P as well as giving a condition on Q that minimizes the TV

distance between Q and P .

Proposition 2 (a) Define PA(s) = P(s)/P (N(A) = 0) for subsets s with s+A =
'. Then

dtv (PA,P) = sup
B

|PA(B) − P(B)| = P (N(A) g 1)

where P (N(A) g 1) can be evaluated using (6). (b) Suppose that Q is a probability

distribution on subsets s with Q(s) = 0 if s + A �= '. Then dtv (Q,P) g
P (N(A) g 1) where the lower bound is attained if Q(s) = »(s)P(s) (for s +A =
') where »(s) g 1.

Proof

(a) We can compute the TV distance as

dtv (PA,P) = 1

2

�

s

|PA(s) − P(s)|.

If s + A = ', then

PA(s) = P(s)

P (N(A) = 0)
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with PA(s) = 0 when s + A �= '. Thus

dtv (PA,P) = 1

2

�

s

|PA(s)− P(s)|

= 1

2

§
«
«

�

s+A='
|PA(s)− P(s)| +

�

s+A�='
|PA(s)− P(s)|

«
¯
¯

= P (N(A) g 1) .

(b) For probability distributions Q concentrated on subsets s satisfying s +A = ',

we have

�

s+A�='
|Q(s)− P(s)| = P (N(A) g 1) ;

thus it suffices to minimize

�

s+A='
|Q(s) − P(s)|

subject to

�

s+A='
Q(s) = 1.

The first order condition implies that the minimizer Q7 must satisfy Q7(s) g P(s)

for all s and so Q7(s) = »(s)P(s) where »(s) g 1 and

�

s+A='
»(s)P(s) = 1.

Now

dtv
�
Q

7,P
�

= 1

2

�

s

|Q7(s) − P(s)|

= 1

2

§
«
«

�

s+A='
|Q7(s) − P(s)| +

�

s+A�='
|Q7(s) − P(s)|

«
¯
¯

= 1

2

§
«
«

�

s+A='
(»(s) − 1)P(s)+

�

s+A�='
P(s)

«
¯
¯

= P (N(A) g 1) ,

which completes the proof.
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Part (a) of Proposition 2 suggests that P (N(A) g 1) is a natural analogue of the

“hat” diagonals for measuring the potential influence of observations with indices in

A. More precisely, we can define the leverage lev(A) of the subset A = {i1, · · · , ik}
as

lev(A) = P (N(A) g 1) = 1 −

���������

»
¿¿¿¿

1 − hi1i1 −hi1i2 · · · −hi1ik
−hi2i1 1 − hi2i2 · · · −hi2ik

...
...

. . .
...

−hik i1 −hik i2 · · · 1 − hik ik

¿
¿¿¿£

���������
. (7)

As before, if hi1i1, · · · , hik ik are uniformly small and k � n, then we can

approximate lev(A) in (7) by

lev(A) j 1 − exp

»
¿−

k�

j=1

hij ij − 1

2

k�

j=1

k�

�=1

h2
ij i�

¿
£ j

k�

j=1

hij ij + 1

2

k�

j=1

k�

�=1

h2
ij i�

.

As noted in [4], the matrix in Eq. (7) as well as its determinant (that is, 1 − lev(A))

plays a role in a number of diagnostic tests (for example, those of [1] and [3]) for

assessing the influence of observations whose indices lie in A; see also [11].

Part (b) of Proposition 2 implies that when P (N(A) g 1) < 1, any probability

distribution of the form Q7(s) = »(s)P(s) where »(s) g 1 for s+A = ' attains the

minimum TV distance to P; this condition is always satisfied by PA. In particular,

as P (N(A) g 1) decreases, the family of distributions attaining the minimum TV

distance becomes richer. (If we replace the TV distance by the Hellinger distance in

part (b), then the minimum is attained uniquely at PA.)

4 Application: Algorithmic Leveraging

In least squares problems where n and p are very large, it is often useful to

solve a smaller problem where m � n observations are sampled (possibly using

some weighting scheme) with β estimated using OLS or WLS estimation on the

sampled observations. For example, algorithmic leveraging [6, 7, 12, 13] samples

observations using biased sampling where the probability that an observation

(xi, yi) is sampled is proportional to its leverage hii or an approximation to

hii ; efficient methods for approximating {hii} are discussed in [5]. The sampled

observations are then used to estimate β using OLS or some form of WLS. In

addition, the observations may also be “pre-conditioned”: If y is the vector of

responses and X is the n × p matrix whose i row is xTi , then we can transform

y �³ V y and X �³ VX for some n × n matrix; V is chosen so that the “hat”

diagonals of VX are less dispersed than those of X.
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Suppose that a given subsample does not include observations with indices in A;

in the case of leveraging, these observations more likely have small values of hii
and so P (N(A) g 1) will be smaller than if the observations were sampled using

simple random sampling. We now estimate β by minimizing

�

i �∈A
wi(yi − xTi β)2

for some weights {wi > 0 : i �∈ A}. The resulting estimate �βss can be written as

�βss =
�

s+A='
Q(s)�βs

where

Q(s) =

P(s)
�

j∈s
wj

�

u+A='
P(u)

�

j∈u
wj

.

From Proposition 2, Q attains the lower bound on the TV distance to P if

Q(s) = »(s)P(s) for some »(s) g 1 when s + A = '; in other words, we require

�

j∈s
wj g P (N(A) = 0)

�

u+A='

§
«
«

P(u)

P (N(A) = 0)

�

j∈u
wj

«
¯
¯ (8)

for all s with s + A = '. The condition (8) is always satisfied if all the weights

{wi} are equal, in which case, �βss is an OLS estimate. For non-equal weights, the

situation becomes more complicated. For example, if wi = 1/hii and the variability

of {hii : i �∈ A} is relatively large, then (8) may be violated for some subsets s,

particularly when P (N(A) = 0) is close to 1 (so that the lower bound for the TV

distance is close to 0). This observation is consistent with the results in [12] as

well as [13] where unweighted estimation (setting wi = 1) generally outperforms

weighted estimation. Proposition 2 also suggests that it may be worthwhile selecting

m observations so as to maximize P (N(A) = 0) and thereby minimizing the TV

distance. This effectively excludes low-leverage observations from the sample,

which may not be desirable from a statistical point of view; moreover, determining

the exclusion set A will be computationally expensive for large p and n.

To illustrate, we consider a simple linear regression with xTi = (1 xi) for i =
1, · · · , n = 1000 where {xi} are drawn from a two-sided Gamma distribution with

shape parameter ³ = 0.5; this produces a large number of both large (hii > 4p/n =
0.008) and small (hii j 1/n = 0.001) leverage points. We then draw a sample of

200 (unique) observations using leverage sampling and compute the TV distance
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Fig. 1 TV distance as a function of ³ for a leverage sample of size m = 200
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Fig. 2 TV distance as a function of ³ for a sample of m = 200 where the exclusion set A is

chosen to (approximately) maximize P (N(A) = 0)

for WLS with wi = h
−³
ii for 0 ≤ ³ ≤ 1; a plot of the TV distance as a function of

³ is shown in Fig. 1.

A second sample of 200 (unique) observations is obtained by excluding a set

A of 800 observations to maximize (approximately) P (N(A) = 0); a plot of the

TV distance as a function of ³ is shown in Fig. 2. In both cases, the TV distance

is minimized (that is, condition (8) is satisfied) for values of ³ between 0 and

approximately 0.5 with the minimum TV distance being smaller (0.82 versus 0.87)

for the second sample.
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Bootstrapping Nonparametric
M-Smoothers with Independent Error
Terms

Matúš Maciak

Abstract On the one hand, nonparametric regression approaches are flexible

modeling tools in modern statistics. On the other hand, the lack of any parameters

makes these approaches more challenging when assessing some statistical inference

in these models. This is crucial especially in situations when one needs to perform

some statistical tests or to construct some confidence sets. In such cases, it is

common to use a bootstrap approximation instead. It is an effective alternative to

more straightforward but rather slow plug-in techniques. In this contribution, we

introduce a proper bootstrap algorithm for a robustified version of the nonparametric

estimates, the so-called M-smoothers or M-estimates, respectively. We distinguish

situations for homoscedastic and heteroscedastic independent error terms, and

we prove the consistency of the bootstrap approximation under both scenarios.

Technical proofs are provided and the finite sample properties are investigated via a

simulation study.

1 Introduction

Let us consider a simple situation where we have some random sample

{(Xi, Yi); i = 1, . . . , n} of size n ∈ N, drawn from some unknown two dimensional

population (X ,Y ), where the following association structure is assumed to be

valid within the data:

Yi = m(Xi)+ Ã(Xi)·i, for i = 1, . . . , n; (1)
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The random error terms {·i}ni=1 are assumed to be independent and identically

distributed (i.i.d.) with some symmetric distribution function G. The expression

in (1) is commonly used for a standard heteroscedastic regression model. If, in

addition, we assume that the unknown scale function Ã(·) is constant over the

whole domain, for instance, interval [0, 1], the scenario above reduces to a simple

homoscedastic regression case. The unknown regression functionm(·) is, in general,

used to model the dependence of the mean of some generic random variable Y on

some random covariateX. The random sample (Xi , Yi), for i = 1, . . . , n is assumed

to be drawn from the joint distribution of (X, Y ). The main task is to estimate the

unknown dependence function m(·). Alternatively, if the model is heteroscedastic,

a simultaneous estimation of both, m(·) and Ã(·), is performed instead.

There is a huge body of literature available on how to estimate the unknown

regression function and the scale function, respectively. The simplest approach is

to assume some well-defined parametric shape for m(·) (and Ã(·), respectively),

and to use the least squares approach to estimate the parameters defining the

shape. The whole inference is later based on the estimated parameters only. More

flexible approaches are mostly represented by semi-parametric techniques where

there are still parameters involved in the estimation, but these parameters do

not directly restrict the shape of the unknown regression function. They rather

represent some alternative expression of the estimate using, for instance, fractional

polynomials, splines, or wavelets. The estimate of m(·) is then defined as some

linear combination of the estimated parameters and some, let’s say, basis functions.

Any consequent inference needs to target the corresponding linear combination.

Finally, the nonparametric estimation is considered to be the most flexible modeling

technique, but the resulting estimate usually cannot be expressed explicitly any

more. This makes any inference in the nonparametric regression model more

challenging and also more difficult to prove. This is also the case that we focus

on in this work.

In addition to the overall model flexibility we also introduce some robust flavor

in the estimation process: we would like to obtain an estimate of the unknown

regression function m(·) which will be robust with respect to the distribution

of the random error terms, the distribution G. In fact, beside no parametric

assumptions on m(·) and Ã(·), we also assume no specific distribution family for

G. It is only required to be symmetric and continuous, with a unit scale, such that

G(1) − G(−1) = 1
2

. Thus, the resulting estimate is robust with respect to outlying

observations and heavy-tailed random error distributions. The asymptotic properties

of the final estimate, however, depend on some unknown quantities; therefore, for

practical utilization, either some plug-in techniques need to be adopted to do the

proper inference or one can also try some bootstrap approximation instead.

This chapter is organized as follows: local polynomial M-smoothers are briefly

discussed in the next session. Some important theoretical properties summarized as

well. In Sect. 3, the bootstrap algorithm is introduced for the M-smoother estimates
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under both scenarios, the homoscedastic and heteroscedastic random error terms.

Finite sample properties of the bootstrap approximation are investigated in Sect. 4,

and technical details and proofs are given in the appendix part at the end.

2 Asymptotics for the M-Smoothers

For the purposes of this work we only limit our attention to situations where the

unknown regression function is continuous, and moreover, it is considered to be

smooth up to some specific order, p ∈ N. Under this smoothness assumption the

local polynomial M-smoother estimates are defined as higher order generalizations

of the local linear M-smoother introduced in [15] and also discussed in [8]. Robust

approaches in nonparametric regression are also presented in [5] and briefly also in

[1]. Considering the given data, the local polynomial M-smoother of m(·), at some

given point x ∈ (0, 1), which is considered to be the domain of interest, is defined

as a solution of the minimization problem

�βx = Argmin
(b0,...,bp)�∈Rp+1

n�

i=1

Ã

�
Yi −

p�

j=0

bj (Xi − x)j
�

·K
�
Xi − x

hn

�
, (2)

where �βx = (�³0,�³1, . . . ,�³p)�. Function K(·) stands for a classical kernel function

common for the nonparametric regression estimation (e.g., [13, 17]), and hn > 0

is some bandwidth parameter. Function Ã stands for a general loss function and it

is assumed to be symmetric and convex, such that for its derivative (or one-sided

derivatives at least) it holds that Ã� = Ë almost everywhere (a.e.).

The M-smoother estimate �m(x) of the regression function m at the given point

x ∈ (0, 1) is defined as �m(x) = �³0. In general, it holds that �m(¿)(x) = ¿!�³¿ , where

¿ = 0, . . . , p stands for the order of the corresponding derivative ofm(·). Unlike the

classical nonparametric regression where Ã(·) = (·)2 and m(x) = E[Y |X = x], the

functional representation of the unknown regression function for some general loss

function depends now on a specific choice of Ã(·)—the parameter estimates are not

given in explicit forms by default and the asymptotic mean squared error (AMSE),

which is commonly used to define a right value for the bandwidth parameter, can

now lead to a biased bandwidth selection once some outlying observations are

present (see [9, 10]). Instead, one needs to find an asymptotic representation for

the vector of unknown parameter estimates and to use alternative methods to choose

the optimal value of the bandwidth parameter (for instance, robust cross-validation

criterion). Similarly, there is also a broad discussion on how to choose the degree

of the polynomial approximation p ∈ N * {0}, or the kernel function K . We do not

discuss these issues here in this chapter. If the reader is interested, more details can

be found, for instance, in [3].
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The M-smoother estimate of the unknown regression functionm(·) at some given

point x ∈ (0, 1) is not explicit; however, under some rather mild conditions, it

can be shown that it is asymptotically normal with zero mean and some unknown

variance. Before we state the asymptotic properties we provide a set of assumptions

which are needed for the theoretical results to hold. For brevity, we only present

the assumptions for the heteroscedastic scenario and the assumptions for the

homoscedastic case follow as a straightforward simplification.

A.1 The marginal density function f (·) of the i.i.d. random variables Xi , for i =
1, . . . , n, is absolutely continuous, positive, and bounded on interval [0, 1],
which is considered to be the support of X. In addition, the scale function Ã(·)
is Lipschitz and positive on [0, 1];

A.2 The random error terms ·1, . . . , ·n are assumed to be i.i.d., mutually indepen-

dent of Xi , for i = 1, . . . , n, with a symmetric and continuous distribution

function G(·), such that G(1)−G(−1) = 1
2
;

A.3 The regression function m(·) and its derivatives m(1)(x), . . . ,m(p+1) for p ∈
N being the degree of the local polynomial approximation are Lipschitz on

(0, 1). In addition, the loss function Ã(·) is symmetric, convex, and absolutely

continuous. Moreover, it holds that Ã� = Ë almost everywhere (a.e.);

A.4 Function »G(t, v) = −
�
Ë(ve − t)dG(e) is Hölder of the order ³ > 0 in

argument v > 0. The partial derivative »�
G(t, v) = "

"t
»G(t, v) exists and it is

continuous in t for some neighborhoods of t = 0 and v = Ã(x), for given x ∈
(0, 1). Moreover, it holds that

�
|Ë(Ã(x)e)|2dG(e) < > and »�

G(0, Ã (x)) =
"
"t
»G(t, Ã (x))|t=0 �= 0. Finally, the following

�

R

���Ë(Ã(x)e − �N ) − Ë(Ã(x)e)

���
2
dG(e) < K · |�N |, (3)

�

R

���Ë(Ã(x + �N )e)− Ë(Ã(x)e)

���
2
dG(e) < K · |�N |, (4)

holds for the given x ∈ (0, 1), any sequence �N ³ 0, and some K > 0.

A.5 Function K(·) is a kernel function which is assumed to be a symmetric density

with its support on [−1, 1], such that
� 1
−1

K2(u)du < >. The bandwidth

parameter hn satisfies the following: hn ³ 0 as n ³ >, such that hn > n−¿ ,

for ¿ ∈
�

1+·
5
, 1

1+·

�
, where · > 0 small enough.

The assumptions stated above are derived as a straightforward combination of

the assumptions required for the classical local polynomial regression (see, for

instance, [3]) and the robust M-estimates introduced in [16]. Expression (3) and (4)

in A.4 can be seen as generalized versions of the Lipschitz condition and they are

trivially satisfied, for example, for Ë and Ã being Lipschitz. Assumption A.5 can

be markedly simplified for the homoscedastic case: function »G(ve − t) does not

depend on v > 0 and thus, all statements regarding this argument can be omitted.
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Let us also introduce some necessary notation which will be needed for the

formulation of the results and the consecutive proofs: for K being some arbitrary

density function which satisfies A.5, we define (p+1)×(p+1) type matrices S1 =�� 1
−1 u

j+lK(u)(d)u
�
j,l

and S2 =
�� 1

−1 u
j+lK2(u)(d)u

�
j,l

, for j, l = 0, . . . , p.

Theorem 1 (Asymptotic Normality for the Heteroscedastic Model) Let the

model in (1) hold and let the assumptions in A.1–A.5 be all satisfied. Then the M-

smoother estimate of the unknown regression function m(·), at some given point

x ∈ (0, 1), is consistent and moreover, it holds that

�
NhN ·

�
�m(x)−m(x)

�
D−³

N³>
N

�
0,

E[Ë(Ã(x)·1)]2 · v11

[»�
G(0, Ã (x))]2 · f (x)

�
,

with v11 being the first diagonal element of matrix V = S−1
1 S2S

−1
1 = {vij }(p+1)

i,j=1 .

Proof A detailed proof of Theorem 1 is given in [11] where the homoscedastic and

heteroscedastic scenarios are considered separately. �

Remark 1 For the homoscedastic scenario the scale function Ã(x) can be consid-

ered to be equal to a constant (e.g., one) over the whole domain [0, 1], therefore, the

asymptotic variance reduces to
EË2(·1)·v11

[»�
G(0)]2·f (x) , which now only depends on x via the

density function f (x). For completeness, we used the notation »�
G(0) c »�

G(0, 1).

Remark 2 The result in Theorem 1 can be generalized for an arbitrary ¿-order

derivative m(¿)(x) of m(x), for ¿ ∈ {1, . . . , p} and the given x ∈ (0, 1). In such

case the convergence rate changes to

�
Nh1+2¿

N and the asymptotic variance equals

¿!E[Ë(Ã(x)·1)]2

[»�
G(0,Ã (x))]2f (x)

· e�
¿ V e¿ , where e¿ ∈ Rp+1 denotes a unit vector with value one on

the position (¿ + 1) (and zeros otherwise).

It is easy to see that under both scenarios the asymptotic variance depends

on some unknown quantities—indeed, in many practical applications the design

density f (·) is usually left unknown and the same also holds for the distribution

G(·) which plays the role in the expectation term in the nominator and also in

»G(0, Ã (x)) in the denominator. In addition, for the heteroscedastic models, the

scale function Ã(·) is usually unknown as well. One can either use some plug-

in techniques to consistently estimate the unknown quantities firstly and to plug

these estimates into the variance expression to obtain the asymptotic distribution.

This distribution can be further used for making statistical tests of constructing

confidence intervals. The plug-in techniques, however, are well known for their

rather slow convergence, therefore, it is usually recommended to use some bootstrap

approximation if possible. The asymptotic normality result stated above is, however,

crucial for proving the bootstrap consistency. In the next section we present two
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algorithms which can be used to mimic the asymptotic distribution of interest under

both scenarios—the homoscedastic and heteroscedastic model—and we prove the

bootstrap consistency for the proposed algorithms.

3 Smooth Bootstrapping of M-Smoothers

The bootstrap approaches are, in general, used to mimic some distribution of

interest—either the true distribution is unknown and the bootstrap simulations are

used to estimate it or the distribution of interest is too complicated to be used directly

and thus, bootstrapping is employed to get an approximated distribution, which is

simpler and more straightforward to be used for the statistical inference procedures.

This is also the situation presented in this contribution. The asymptotic distribu-

tion of the M-smoothers presented in Theorem 1 is unknown (in terms that unknown

quantities are needed to specify the exact normal distribution) and thus, it cannot

be used directly to run any inference on the M-Smoothers estimates. However, the

bootstrap approximation can be effectively used to mimic this distribution. In the

following we provide two versions of the bootstrapping algorithm (homoscedastic

and heteroscedastic cases) and we prove the bootstrap consistency for both.

The bootstrap algorithms proposed below are based on the idea presented in [14].

The notion of the smooth bootstrap comes from the step B3 in both algorithms:

this step firstly ensures the right centering of the bootstrapped residuals, while

the second part—the smoothing element introduced by aNZi—ensures a proper

convergence of the bootstrapped distribution to an unknown distribution of the

true random errors. Another advantage of this approach relies in the fact that no

additional over-smoothing is needed (see [14] and also [6]) and, at the same time, the

bootstrap distribution is automatically centered and symmetric. Using the smooth

version of the bootstrap algorithm one can conveniently handle both, a proper

centering of bootstrapped residuals in order to eliminate the systematic bias and

also preserving the robust flavor of the whole procedure.

The centering of the bootstrapped residuals is usually done by subtracting their

empirical mean, e.g., average 1
n

�n
i=1 ·̃i from each ·i , however, bearing in mind

the robust flavor of the whole M-smoother estimation framework, where we also

allow for outlying observations or heavy-tailed distributions of random errors, such

centering would not be computationally stable because of the outliers and heavy-

tailed error distributions.

The proposed version of the smooth residual bootstrap can preserve the robust

flavor of the M-smoother and, therefore, it nicely suits our model scenario(s).
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Smooth residual bootstrap under homoscedasticity

B1 Calculate the set of residuals {�·i; i = 1, . . . , n}, where �·i = Yi − �m(Xi), for �m(Xi) being

the M-smoothers estimate of m(Xi) defined by (2);

B2 Resample with replacement from the set of residuals {�·i; i = 1, . . . , n} in order to obtain

new residuals ·̃i , for i = 1, . . . , n;

B3 Define new bootstrapped residuals as ·�i = Vi · ·̃i + an · Zi , where P [Vi = −1] = P [Vi =
1] = 1

2
, and Zi > N(0, 1) are i.i.d. standard normal random variables and an = o(1) is a

bootstrap bandwidth parameter, such that nhna
2
n/ logh−1

n ³ >, and a2
n/h

1+·
n = o(1) as

n ³ >, for some · > 0 small enough;

B4 Define a new dataset—the bootstrapped sample {(Xi , Y
�
i ); i = 1, . . . , n}, where Y �

i =
�m(Xi) + ·�i ;

B5 Re-estimate the unknown regression function m(x) at the given point x ∈ (0, 1) based on the

new data sample {(Xi , Y
�
i ); i = 1, . . . , n} using (2) and obtain �m�(x);

B6 Repeat the steps in B2–B5 to get multiple copies of the M-smoother estimates �m�
b(x), for

b = 1, . . . , B, where B ∈ N is sufficiently large, and use these quantities to mimic the

asymptotic distribution of interest;

Smooth residual bootstrap under heteroscedasticity

B1 Calculate residuals {�·i; i = 1, . . . , n}, where �·i = Yi−�m(Xi)
�Ã (Xi)

, for �m(Xi) being the M-

smoother estimate of m(Xi) defined by (2) and �Ã(Xi) is the corresponding estimate of the

scale function Ã(·), given at the point Xi ;

B2 Resample with replacement from the set of residuals {�·i; i = 1, . . . , n} in order to obtain

new residuals ·̃i , for i = 1, . . . , n;

B3 Define new bootstrapped residuals as ·�i = Vi · ·̃i + an · Zi , where P [Vi = −1] = P [Vi =
1] = 1

2
, and Zi > N(0, 1) are i.i.d. standard normal random variables and an = o(1) is

a bootstrap bandwidth parameter, such that nhna
2
n/ logh−1

n ³ >, Na
2(p+1)
N ³ 0, and

a2
n/h

1+·
n = o(1) as n ³ >, for · > 0 small enough;

B4 Define a new bootstrapped sample {(Xi, Y
�
i ); i = 1, . . . , n}, where now we have Y �

i =
�m(Xi) + �Ã(Xi)·

�
i ;

B5 Re-estimate the unknown regression function m(x) at the given point x ∈ (0, 1) based on the

new data sample {(Xi , Y
�
i ); i = 1, . . . , n} using (2) and obtain �m�(x);

B6 Repeat the steps in B2–B5 to get multiple M-smoother estimates �m�
b(x), for b = 1, . . . , B,

where B ∈ N is sufficiently large, and use these quantities to mimic the underlying

asymptotic distribution;

Comparing the bootstrap algorithm for the heteroscedastic model with the

previous version for the homoscedastic model one can see some minor difference:

indeed, in the later version one needs to deal with the scale function Ã(·) in addition.

On the other hand, it is easy to see that for the scale function being constant

the heteroscedastic algorithm reduces to the homoscedastic version. There were

many different methods proposed on how to estimate the scale function in the

nonparametric regression models (see, for instance, [4, 12]). However, in order to

keep the robust flavor of the whole estimation process, the scale function Ã(·) should
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be also obtained in some robust manner. The M-estimator of the scale function

which is suitable for this situation was proposed in [2] and it is defined as

�Ã(x) = inf

�
z > 0;

n−1�

i=1

wni(x) · Ç
�
Yi+1 − Yi

³1 · z

�
≤ ³2

�
, (5)

where wni(x) are some weights, Ç(·) is some score function, and ³1, ³2 > 0 are

some constants, such that EÇ(Z1) = ³1 and EÇ
�
Z2−Z1

³1

�
= ³2, for Z1 and Z2

being some independent random variables with the distribution which corresponds

with the distribution or the random error terms {·i}ni=1. For the score function Ç(·) it

is additionally assumed that it is continuous, bounded, and strictly increasing, such

that Ç(0) = 0 and 0 < supx∈R Ç(x). Under some regularity conditions (see [2] for

further details and exact proofs) it was derived that the estimate of the scale function

Ã(·) defined by (5) for some given point x ∈ (0, 1) yields a strong consistency once

the number of the sample size n tends to infinity. In addition, it can be shown that

the obtained estimate is also asymptotically normal.

Theorem 2 (Bootstrap Consistency) Let the model in (1) hold with Assumptions

A.1–A.5 being satisfied, and let the bootstrap bandwidth parameter an ³ 0 satisfy

the conditions in B3. Then the proposed smooth residual bootstrap algorithm is

consistent and it holds that

sup
z∈R

�
P �

��
nhn

�
�m�(x)− �m(x)

�
≤ z

�
− P

��
nhn (�m(x)−m(x)) ≤ z

��
P−³

n³>
0,

where P �[ · ] stands for a conditional probability given data {(Xi, Yi); i =
1, . . . , n}.
Proof The proof of the theorem is given in Appendix. �

Having the consistency result stated in Theorem 2 we have an efficient tool for

performing practically any statistical inference in the models being estimated within

the M-smoothers regression framework. The bootstrapped distribution can be used

to construct confidence intervals for m(x), for some x ∈ (0, 1), or it can be used to

draw critical values to decide about some set of hypothesis, again related to m(x),

at some given point from the domain.

Remark 3 Theorem 2 can be only used to make inference about the unknown

regression function m(·) at some given point from the domain. If one is interested

in providing a confidence bound for the whole regression function m(·), there has to

be more advanced methods used to do so—see, for instance, [6].

Remark 4 Similarly as in Theorem 1 and Remark 2 the statement in Theorem 2

can be again generalized for ¿ ∈ {0, 1, . . . , p}. In such case m(¿)(x) stands for the

corresponding ¿-order derivative of m at the given point x ∈ (0, 1).
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Let us briefly mention that it is also possible to deal with data sequences

which are not independent. Under some mild assumptions (for instance, an ³-

mixing structure of the error terms {·i}) one can prove the consistency results of

the M-smoother estimate of m(x) at some given point x ∈ (0, 1) (see [7] for

details). However, when performing the inference based on the bootstrap approach,

it is not possible to rely on the simple version of the smooth residual bootstrap

presented in this work. The reason is that the independent resampling in B2 step (of

both algorithms) is not capable of preserving the covariance structure in the data.

Instead, some block bootstrap modification needs to be employed to obtain a valid

approximation of the true distribution function (see [7]).

4 Finite Sample Properties

For the simulation purposes we considered a simple regression function of the

form m(x) = (−8x) sin(Ãx), for x ∈ (0, 1), and we run the simulations for

various settings: three different sample sizes n ∈ {50, 100, 500}; three different loss

functions (squared loss, absolute loss, Huber loss); three degrees of the polynomial

approximation p ∈ {0, 1, 3}, and also three different distribution functions for the

random error terms were considered:

D1—standard Gaussian;

D2—mixture of the standard Gaussian with 5% of N(0, Ã 2 = 625);

D3—Cauchy C(0, 1).

For each combination of the sample size, error distribution, loss function, and

the approximation degree p, we generated the data for 100 times and we ran the M-

smoothers estimation to reconstruct the “unknown” regression function. Out of these

100 independent repetitions the empirical behavior of the M-smoother estimate at

some given point was investigated (see histograms in Fig. 1).

Later, for one specific data scenario we employed the bootstrap resampling

and we obtained the bootstrapped distribution based on 500 independent bootstrap

resamples (according to the algorithms stated in Session 3). The bootstrapped

distributions are plotted as solid red lines in Fig. 1. The M-smoother behavior

together with the bootstrap performance is summarized in Tables 1, 2, and 3 below.

As the bootstrap consistency result stated in Theorem 2 is meant to be used for some

given point x ∈ (0, 1), which is the domain of m(·), we only considered the value of

x = 0.2 and the results are stated for m(0.2) = −1.5217. However, quite analogous

results can be obtained for any other choice of x ∈ (0, 1).

From the simulations results in Tables 1, 2, and 3 it is clear that the robust flavor

of the M-smoothers estimates is crucial especially in situations when the random

error terms have some distribution with heavy tails (e.g., Cauchy distribution).

The classical squared loss based estimation is not able to handle this scenario and

the variance of the estimates even increases as the sample size tends to infinity
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(which is indeed, an expected behavior). On the other hand, the absolute loss and

the Huber function can still provide consistent estimates and valid inference.

5 Conclusion

In this contribution, we consider a standard nonparametric regression scenario,

however, with a set of very weak assumptions. The error terms are assumed to be

independent but the distribution is free of any moment conditions. Thus, the model

and the M-smoother estimation approach both allow for some outlying observations

in the data or, even, some heavy-tailed random error distribution. The M-smoother

estimation approach is stated to be consistent and asymptotically normal but the

limiting distribution depends on a few unknown quantities. Instead of using some

rather slow plug-in techniques we introduce two versions of the smooth residual

bootstrap algorithm which can be used to mimic the underling distribution.

The proposed bootstrap approaches are proved to be consistent and finite sample

properties are investigated via an extensive simulation study and the results are

shown to correspond with the theory.

The proposed smooth residual bootstrap for nonparametric and robust M-

smoother estimates can be considered as an effective alternative to more straight-

forward, however, less reliable plug-in techniques.

The proposed model scenarios can be further extended in account, for instance,

for dependent error terms (such as various mixing sequences) but the bootstrap

algorithm needs to be modified accordingly. The smooth residual bootstrap cannot

capture the true variance–covariance structure in the data, and therefore, more

appropriate block bootstrap version needs to be used instead.

Acknowledgements The author’s research was partly supported by the Grant P402/12/G097.

Appendix

In this section we provide some technical details and the proof of the bootstrap

consistency result stated in Theorem 2. Let {(Xi, Y
�
i ); i = 1, . . . , n} be the

bootstrapped data where Y �
i = �m(Xi)+�Ã(Xi)·

�
i , for �m(Xi) being the M-smoother

estimate ofm(Xi), �Ã(Xi) the estimate of Ã(Xi) in sense of (5), and the random error

terms {·�i }ni=1 are defined in B3 step of the bootstrap algorithm in Sect. 3. Then, we

can obtain the bootstrapped version of �m(x), for some x ∈ (0, 1), given as a solution

of the minimization problem

�β�

x = Argmin
(b0,...,bp)�∈Rp+1

n�

i=1

Ã

�
Y �
i −

p�

j=0

bj (Xi − x)j
�

·K
�
Xi − x

hn

�
, (6)
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where �β�

x = (�³�0, . . . , �³�p)�, and �m�(x) = �³�0 . Using the smoothness property of

m(·)we can apply the Taylor expansion of the orderp and given the model definition

in (1) we can rewrite the minimization problem as an equivalent problem given by

the following set of equations:

1:
nhn

n�

i=1

Ë

�
�Ã (Xi)·

�
i −

p�

j=0

bj

�Xi − x

hn

�j�
·
�
Xi − x

hn

��

K

�
Xi − x

hn

�
= 0,

for � = 0, . . . , p, where Ë = Ã�. Next, for any � ∈ {0, . . . , p} and b ∈ Rp+1 let

us define an empirical process Mn(b, �) and its bootstrap counterpart M�
n(b, �) as

follows:

Mn(b, �) = 1:
nhn

n�

i=1

�
Ë

�
Ã(Xi)·i −

p�

j=0

bj ¿
j

i (x)

�
− Ë

�
Ã(Xi)·i

��
K(¿1

i (x))¿
�
i (x),

(7)

and

M�
n(b, �) = 1:

nhn

n�

i=1

�
Ë

�
�Ã (Xi)·

�
i −

p�

j=0

bj ¿
j
i (x)

�
− Ë

�
�Ã(Xi)·

�
i

��
K(¿1

i (x))¿
�
i (x),

(8)

where for brevity we used the notation ¿�i (x) =
�
Xi−x
hn

��
. We need to investigate

the behavior of M�
n(b, �), conditionally on the sample {(Xi, Yi); i = 1, . . . , n)},

and we will compare it with the behavior of Mn(b, �).

Let G�(·) be the distribution function of the bootstrap residuals {·�i }ni=1 defined

in B3. It follows from the definition that

G�(e) = P �[·�i ≤ e] = P �[Vi · ·̃i + an · Zi ≤ e]

= 1

2n

� �

R

n�

i=1

I{�·i≤e−anu}Ç(u)du +
�

R

n�

i=1

I{�·iganu−e}Ç(u)du

�

= 1

2n

n�

i=1

�
§

�
e −�·i
an

�
+§

�
e +�·i
an

��
,

where Ç(·) and §(·) stand for the density and the distribution function of Zi’s,

which are assumed to be normally distributed with zero mean and unit variance.

It is easy to verify that G�(·) is continuous, symmetric, and moreover, it satisfies

Assumption A.2. Thus, for E� being the conditional expectation operator when
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conditioning by the initial data sample, we obtain the following:

E�M�
n(b, �) = 1:

nhn

n�

i=1

E�
�
Ë

�
�Ã(Xi)·i −

p�

j=0

bj ¿
j
i (x)

��
·K(¿1

i (x))¿
�
i (x)

= −1:
nhn

n�

i=1

»G�

� p�

j=0

bj ¿
j
i (x),�Ã(Xi)

�
· K(¿1

i (x))¿
�
i (x),

where we used the symmetric property of the distribution function G�. Next, we

obtain

»G�

� p�

j=0

bj¿
j
i (x),�Ã(Xi)

�
= −

�

R

Ë

�
�Ã(Xi)e −

p�

j=0

bj ¿
j
i (x)

�
dG�(e)

= »G

� p�

j=0

bj ¿
j
i (x),�Ã(Xi)

�
(9)

−
�

R

Ë

�
�Ã(Xi)e −

p�

j=0

bj ¿
j
i (x)

�
d(G� −G)(e),

where the last term can be shown to be asymptotically negligible due to the

properties of Ë(·) and the fact that supx∈R |G�(x)−G(x)| ³ 0 in probability (see

Lemma 2.19 in [14]). For (9) we can use the Hölder property of »G(·) (Assumption

A.4) and we get that

����»G
� p�

j=0

bj ¿
j
i (x),�Ã(Xi)

�
− »G

� p�

j=0

bj ¿
j
i (x), Ã (Xi)

����� = o(1),

and

����»G
� p�

j=0

bj ¿
j
i (x), Ã (Xi)

�
− »G

� p�

j=0

bj ¿
j
i (x), Ã (x)

����� = o(1),

where the first equation follows from the fact that �Ã(Xi) is a consistent estimate of

Ã(Xi) and the second follows from the fact that |Xi − x| ≤ hn. Both equations hold

almost surely.

Putting everything together we obtain that

E�M�
n(b, �) = EMn(b, �)+ oP (1),
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and, moreover, repeating the same steps also for the second momentE�
�
M�

n(b, �)
�2

and applying (3) and (4) we also obtain that E�
�
M�

n(b, �)
�2 ³ 0 in probability.

To finish the proof we need the following lemma.

Lemma 1 Let the model in (1) hold and let Assumptions A.1–A.5 be all satisfied.

Then the following holds:

sup
�b�≤C

����M�
n(·nb, �)+ ·n:

nhn
»�
G(0, Ã (x))

n�

i=1

�
Xi − x

hn

��

×

×

»
¿

p�

j=0

bj

�
Xi − x

hn

�j

¿
£ · K

�
Xi − x

hn

�������
= oP (1) ,

where � = 0, . . . , p, C > 0, �b� = |b0| + · · · + |bp|, ·n = (nhn)
−³ /2, and

³ ∈ (³0, 1], for some 0 < ³0 ≤ 1.

Proof Lemma 1 is a bootstrap version of Lemma 4 in [11] or a more general

Lemma A.3 in [7]. The proof follows the same lines using the moment properties

derived for M�
n(·nb, �). ��

Lemma 4 in [11] allows us to express the classical M-smoother estimates �³x in

terms of the asymptotic Bahadur representations as

1

(nhn)1/2
�³x = (nhn)

−1/2

»�
G(0, Ã (x))

·
�
X�
n WnXn

�−1

· X�
n Wn

»
¿¿
Ë(Ã(X1)·1)

...

Ë(Ã(Xn)·n)

¿
¿£ + oP (1),

while Lemma 1 allows us to express the bootstrapped counterparts �³�x in a similar

manner as

1

(nhn)1/2
�³�x = (nhn)

−1/2

»�
G(0, Ã (x))

·
�
X�
n WnXn

�−1

· X�
n Wn

»
¿¿
Ë(�Ã (X1)·

�
1)

...

Ë(�Ã (Xn)·
�
n)

¿
¿£ + oP (1),

where Wn = Diag

�
K

�
X1−x
hn

�
, . . . ,K

�
Xn−x
hn

��
, and Xn =

��
Xi−x
hn

�j
�n,p

i=1,j=0

.

To finish the proof one just needs to realize that the sequences of random

variables {¿ni}ni=1 and {¿�ni}ni=1 for ¿ni = 1:
nhn

Ë(Ã(Xi )·i)
�
Xi−x
hn

��
K

�
Xi−x
hn

�
and

¿�ni = 1:
nhn

Ë(�Ã (Xi)·
�
i )

�
Xi−x
hn

��
K

�
Xi−x
hn

�
both comply with the assumptions of the

central limit theorem for triangular schemes and thus, random quantities
�n

i=1 ¿ni
and

�n
i=1 ¿

�
ni both converge in distribution, conditionally on Xi ’s and the original
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data {(Xi, Yi); i = 1, . . . , n}, respectively, to the normal distribution with zero

mean and the same variance parameter. �
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Extension Sampling Designs for Big
Networks: Application to Twitter

A. Rebecq

Abstract With the rise of big data, more and more attention is paid to statistical

network analysis. However, exact computation of many statistics of interest is

of prohibitive cost for big graphs. Statistical estimators can thus be preferable.

Model-based estimators for networks have some drawbacks. We study design-based

estimates relying on sampling methods that were developed specifically for use on

graph populations. In this contribution, we test some sampling designs that can be

described as “extension” sampling designs. Unit selection happens in two phases:

in the first phase, simple designs such as Bernoulli sampling are used, and in the

second phase, some units are selected among those that are somehow linked to the

units in the first-phase sample. We test these methods on Twitter data, because the

size and structure of the Twitter graph is typical of big social networks for which

such methods would be very useful.

1 Introduction

1.1 Problem

With more and more businesses and public administrations producing larger raw

datasets every day, statistical analysis of the so-called big data has risen. Conse-

quently, more research in computer science and statistics have focused on methods

to tackle such problems. However, a significant part of datasets that fall under the

general “big data” framework are actually graphs. Graph-specific data analysis has

applications in domains as diverse as social networks, biology, finance, etc. Since

the rise of the web, statistical literature for networks has been growing rapidly,

especially in the field of model-based estimation. In the past 20 years, models

such as Barabási–Albert [1], Watts–Strogatz [33], stochastic block models [22],
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and many others have induced huge progress in understanding probabilities and

statistics for various cases of networks. Yet, model-based estimation is sometimes

inconvenient. First, models cannot possibly perform well on all statistics of real-life

graphs. Second, model-based estimation obviously requires a fine tuned choice of

model before being able to produce statistics. Finally, even when a specific model

exists and fits the analysis of a specific graph, computation can be cumbersome.

This is a motivation for developing design-based estimates, which have received

little attention from a purely statistical point of view. One of the most efficient tools

for statistical graph analysis, snap—which has a very convenient Python interface

[17]—uses sampling methods to compute various statistics of interest [16].

There are some domains in computer science and social sciences that focus

exclusively on social network analysis. A large part of this literature analyzes

published content rather than estimates regarding quantification or qualification

of accounts engaged in the analyzed content. On Twitter, this means the focus is

more on tweets than on who tweets. Most recent analysis and inference based on

Twitter data used the Streaming API1 [3]. Tweets matching a research criterion

were collected in real time for a few days, and then analyzed. Many studies perform

sentiment analysis on the harvested tweets. Some studies try to unravel political

sentiment based on their Twitter data [4, 32], for example, to try and predict election

outcomes. Very recently, election prediction based on Twitter data was proven not

more accurate than traditional quota sampling, when trying to predict the outcome

of the UK 2015 general election [3]. Other topics are very diverse and include, for

example, stock market prediction [2]. Non-academic studies based on tweets data

are also numerous. Most are made by market research companies, often to measure

“engagement” by users to a brand.

However, such analyses are based on biased estimates. First, the Streaming API

is often preferred by researchers over the Rest API.2 The Streaming API provides

tweets in real-time matching a certain query, thus allowing collection of a huge

amount of data. However, when the data size exceeds a certain threshold, only a

fraction of tweets are selected, but Twitter does not disclose the sampling design

used to select these tweets. The Rest API allows the collection of a much more

limited number of tweets, but the selection is made by account and not by a query

on tweets. A statistical analysis using the Rest API is thus much closer to the survey

sampling paradigm. In fact, it is possible to derive unbiased estimators using the

Rest API. Using the Streaming API to perform a global analysis on the scope of the

Twitter users (or a fortiori if estimates are to be extrapolated to a larger population,

such as in the case of the prediction of election outcomes) can lead to unbalanced

profiles of users. When the selection is made by tweets, users tweeting much less

about a certain subject have a much lower probability of being selected than users

who tweet a lot about the same subject. This is even more telling when the so-

called bots (automated accounts set up to regularly write tweets about a pre-defined

1https://dev.twitter.com/streaming/overview.
2https://dev.twitter.com/rest/public.

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/rest/public
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subject) account for a non-negligible fraction of the total tweets [8]. When selection

is made using a search query, it is very difficult to assess the selection probability,

and when not all the tweets are output a large number of probabilities can be equal

to 0. As [19] noticed, in many cases the users that precisely have a low selection

probability account for the greater variability in estimates. Sloan et al. [26] study

precisely these difference in user profiles used in Twitter-based estimations.

The goal of our work is to perform an estimate of the number of accounts

tweeting on a specific subject, focusing on the accounts behind the tweets instead of

the tweets themselves. We chose to work on the release of the trailer of the movie

“Star Wars: the Force awakens” that occurred on October 19, 2015. According to

“Twitter Reverb” data, this event generated 390,000 tweets in less than 3 h.3

This study is meant to be a proof of concept for further study. Regarding specific

analysis on social networks, we think our analysis could be used jointly with

analyses based on tweets to shed a new light on data structures. For example, in

the case of election prediction, it could be used to balance selection probabilities

that are naturally skewed away from people who’re less likely to participate in

Internet debates (which, unfortunately, is correlated to political opinions). In any

other marketing context, this method could be used to weight tweets according

to methods extending the “generalized weights share method” such as proposed

by Rivers [14, 23]. More generally, understanding how different sampling schemes

behave on a huge graph that exhibits many of the particular properties of web and

social graphs (see, for example, Sect. 1.2) could help us understand the benefits and

disadvantages of these schemes. Estimation by sampling could be used to improve

computation time and precision for descriptive statistics or even machine learning

algorithms on graphs.

Here, we test two different methods of sampling adapted to graph populations.

These two methods are in fact extensions of simple sampling designs. Each of these

methods yields unbiased estimates. Theoretically, the precision of the estimates can

be spectacularly improved with these extension designs. However, their practical

use can be limited by our ability to collect the data on the graph. In this chapter,

no inference is made on any population outside the scope of Twitter users (i.e., the

vertices of the Twitter graph).

1.2 The Twitter Graph

In computer science, the Twitter graph is said to show both “information network”

and “social network” properties (see, for instance, [20]). The degree distributions

(both inbound and outbound) are heavy-tailed, resembling a power law distribution

and the average path length between two users is short. Thus, in the context of

model-based estimation, the Twitter graph should be modelized by both a scale-free

network (Barabási-Albert [1]) and a small-world network (Watts-Strogatz [33])

3http://reverb.guru/view/597295533668271595.

http://reverb.guru/view/597295533668271595
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Let’s denote :

U = population of interest = vertices of the graph

N = #U = population size

n = sample size

yk = number of times user k tweeted about the Star Wars trailer

zk = 1{k ∈ U , yk g 1}
NC = #{k ∈ U , yk g 1}
nC = #{k ∈ s, yk g 1} = number of people in s who tweeted about Star Wars

T (Y ) =
�

k∈U

yk

We use graph-specific notations to make some formulas clearer: V =
set of vertices (= U ), Eij = set of edges linking vertices i and j. The goal is

to estimate NC = T (Z), the number of users who have tweeted about the Star Wars

trailer during the time span of the study.

For the sake of simplicity, we chose a very simple definition of our sub-

population of interest, the Twitter users that tweeted about the Star Wars trailer.

In our study, the “Star Wars fans” are detected because the tweets they wrote during

the selected time span match a pre-defined list of words, mentions to other accounts,

or hashtags. However, a more realistic setting would be to imagine that we have at

our disposal a complex classifier f able to identify a broader definition of a “Star

Wars fan” (for example, a machine learning classifier based on natural language

processing or a community detection algorithm). Therefore our goal would be to

estimate NC = 1{k, f (k) = 1}, which is statistically speaking identical to the

problem we deal with here. It is also worth noting that exhaustive computation of

such a classifier would be very computationally intensive, even with a full access

to the Twitter graph. Thus the use of a sample also makes practical computation of

such statistical objects easier.

2 Sampling Designs

2.1 Notations

Notations for sets and networks :

s0 = initial sample

C =
�

i

ri = sub-population of units bearing the characteristic of interest



Extension Sampling Designs for Big Networks: Application to Twitter 255

sc = s + C

s = total sample, i.e., s0 inflated with units of C that can be reached

sri = s + ri

Ck = "k ∈ s, Ck = 1{k ∈ C}
· = Graph geodesic distance between two units in the network

r0
i = {k, ·(k, ri)}, “side” of ri

s0 =
�

i

r0
i = {k ∈ s, ·(k, sC ) = 1}

sex = elements which are neither in a network nor a side = {k ∈ s, ·(k, sC ) g 2}

In this work, s0 is selected using stratified Bernoulli sampling.

2.2 Bernoulli Sampling

Poisson sampling consists in selecting in the sample s each unit k ∈ U with

a Bernoulli experiment of parameter Ãk, the first-order inclusion probability of

unit k. Second-order inclusion probabilities thus have a very simple expression

"k �= l ∈ U , Ãkl = P(k, l ∈ s) = ÃkÃl . Bernoulli sampling is Poisson sampling

with equal probabilities ("k ∈ U , Ãk = p). Bernoulli sampling design is the

most simple design that can be used and thus gives very simple formulae for

estimators and variance estimators. One can refer to Särndal [24] for a more detailed

presentation of Poisson and Bernoulli sampling. For the remainder of this work,

we will use Bernoulli sampling as the primary sampling design on which we’ll

base other more complicated (and more efficient in terms of precision) designs:

a stratified design, an adaptive design, and a one-stage snowball design. We write p

the selection probability for each unit in the frame (each Twitter user) and q = 1−p.

Poisson sampling is seldom used in survey sampling (at least in national statistics

institutes), because it yields samples of variable size (#s is a random variable). A

variable size can be problematic when data collection is costly (in most surveys by

official statistics institutes, interviewers set up meetings with selected individuals

either by phone or face-to-face). In our present case, it doesn’t matter because the

final goal is to use adaptive or snowball sampling, which will eventually yield a

random final sample size. More, the cost of data collection is uniform across all

units. We thus chose Poisson designs over simple random sampling, because the

expressions for adaptive estimation and Rao–Blackwell estimates are much simpler.

On Twitter, users are assigned an id, ranging from 1 to N j 3.3 · 109 (as of

December, 2015). Some of the ids in this range are not assigned, but every new user

is given an id greater than the last. In result, when selecting a Poisson sample using

the ids in [[1, N]], part of the ids selected (j 30%) will not be assigned to a Twitter
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user. Our sample is thus selected in a set greater than the population. Moreover, we

are interested in only people who are active on Twitter, i.e., users who tweeted in

the last month. There are two reasons for which we consider these units: first we

have a population margin to calibrate on (see Sect. 3.4) and second, it is the scope

that is generally considered when stats on Twitter users are discussed for business

purposes. Consequently, our frame over-covers our scope. But as out-of-scope units

are perfectly identified, the over-coverage can be treated very simply (see [25]) by

using the restriction to a domain of the usual estimators. Two strategies can be used

to produce estimates. If the total population on the domain Ud is unknown, we use

Hájek estimators:

ÆT (Y )d =
�

k∈U

ykd , Ǣyd =

�

k∈U

ykd

�

k∈U

zkd

with: ykd = yk · 1{k ∈ Ud }, zkd = 1{k ∈ Ud }

In our case, we know the total of the population on the domain Nd (see Sect. 3.4),

so it is preferable to use ÆT (Y )d =
�

k∈Ud

yk, which means all the estimators will work

just like a restriction of the sample data frame on the scope. From now on, all the

estimators are implicitly restricted to the scope domain unless stated otherwise.

The fact that some of the units sampled are finally out of scope leads to a

final true sample size that can vary, which is another argument for not using

fixed-size sampling design. For the simple Bernoulli design, our initial expected

sample size (i.e., not taking the scope restriction into account) is 20000: p =
20000/3300000000 j 6.1 · 10−6

2.3 Stratified Bernoulli Sampling

A usual way to improve the precision of the estimates is to stratify the population.

We write U = U1·U2 and draw two independent samples in Uh, h = 1, 2 (in our

case, two Bernoulli samples). With this design, the variance of the estimators writes

Var( ÆT ) =
�

h

fh(S
2
h). If strata are wisely selected, they should be homogeneous

so that the S2
h are much reduced in comparison to the S2 which determines the

variance of the Horvitz–Thompson estimator under the simple Bernoulli design (see

Sect. 4.1). Here, we try to estimate a proportion (alternatively a sub-population size),

so we have:

fh(S
2
h) = (1 − nh

Nh

)
Nh

Nh − 1

ph(1 − ph)

nh
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The goal is thus to constitute strata where the probability of tweeting about the

“Star Wars : The force awakens” trailer is more or less equal among users.

We divide the population of Twitter users into two strata: U1, the users who

follow the official Star Wars account (“@starwars”) (1654874 followers as of

October, 21, 2015) and U2, the users who don’t. We use Bernoulli sampling on

each stratum independently, but with different inclusion probabilities, so that users

who follow the official Star Wars account are “over-represented” in the final sample.

By doing this, we hope to increase nC the number of units who tweeted about Star

Wars in s, because users who follow the official Star Wars account are more likely

to be interested in tweeting about the new trailer.

In order to be able to compare the precision of the stratified design with the

simple Bernoulli, we keep an expected final sample size of n = n1 + n2 = 20000.

But we have to think about how to allocate these 20000 units between the two

strata. We choose (again, in expected sample sizes) 9700 units in stratum 1 and

10300 units in stratum 2, which corresponds to a Neyman allocation [21] supposing

that approximately half of the people who tweeted were following the official

@starwars account and that each person who tweeted about “The force awakens”

did it three times. This gives nsw1 = nsw2 = 50000 and thus p1 = 3.3, p2 =
0.15. Then, the Neyman allocation writes n1 = n

N1S1

N1S1 +N2S2
j 9700 and

n2 = n
N2S2

N1S1 +N2S2
j 10300. The quantities in these equations determining the

allocations are approximations, but this does not matter much, as it is well known

that the Neyman optimum is flat (see, for example, [18] for an illustration of this

property). Thus, even if the approximated allocation is slightly shifted from the

optimal one, the variance of the Horvitz–Thompson estimator will still be very close

from the optimal variance.

2.4 One-Stage Snowball Sampling

For a vertex i, let’s denote:

Bi = {i} * {j ∈ V,Eji �= '}
Ai = {i} * {j ∈ V,Eij �= '}

Bi is called the set of vertices adjacent before i, andAi the set of vertices adjacent

after i. In the case of the Twitter graph, Bi is the set of the users following user i

and Ai is the set of users followed by user i.

The snowball design consists in selecting s = A(s0). Contrary to adaptive

sampling (see Sect. 2.5), the sample is enhanced with the friends of every user

k ∈ s0, even if k /∈ C. In this design, we also do not care about symmetric

relationships. Another difference with the adaptive design is that we cannot remove
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Fig. 1 (a) Graph population

U . Elements of community

C are depicted in yellow. (b)

Sample s0. (c) Addition of

1-stage snowball A(s0)

(a) (b) (c)

out-of-scope units prior to the sample enhancement, as out-of-scope units may have

in-scope units in their friends. Figure 1a–c describe the snowball sampling design.

As described in Sect. 1.2 and in [20], the Twitter graph is highly central and

clustered. Thus, the number of reachable units via the edges of the units in s0

is huge. Mean number of friends for every unit is estimated from the stratified

sample to be approximately 75 for units in stratum 2 and a little more than 400

for units in stratum 1. In order to obtain final samples s of comparable sizes, we

base the snowball design on a smaller stratified Bernoulli sample of expected size

1000 units, with an allocation proportional to the Neyman described in Sect. 2.3:

pS1 = 485/1654874 j 2.9 · 10−4 and pS2 = 515/33000000 j 1.6 · 10−8. The

final sample size is 159957, which is much higher than we expected, probably due

to the large tail distribution of the degree for units of stratum 1. With such a degree

distribution, mean number of contacts is not very informative about the distribution

of the sample size. Also, sample size has a very high variability.

This definition of one-stage snowball sampling can easily be generalized to n-

stage snowball sampling by including in the sample all units that have a shorter

path than n to any unit in s0. n-stage snowball sampling, although fairly simple

to implement, can lead to very complex estimators for n g 2 (see [13] for a

more general discussion). But even more problematic in our case is that we saw in

Sect. 1.2 that the average path length for the Twitter is very small (j 4.5). A precise

analysis of characteristics of the Twitter graph [20] even shows that the distribution

of path length is somewhat platykurtic. Thus, selecting an n-snowball sample could

lead to huge sample sizes, reaching almost every units for very small values of n.

For these reasons, we limit ourselves to one-stage snowball sampling (see Sect. 3.2).

2.5 Stratified Adaptive Cluster Sampling

In our problem, the population is made of the vertices of a graph bearing a dummy

characteristic. One modality of the characteristic is supposed to be rather rare in the

population, and the units bearing it should be more likely to be linked to one another.

In other terms, we suppose that users who follow people who tweet about Star

Wars have a higher propensity of also tweeting about Star Wars. Adaptive cluster

sampling (first described in [27]) consists in enhancing the initial sample s0 with all

units for which y > 0 (i.e., who tweeted about the Star Wars Trailer) among the
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(a) First sampling phase for

the stratified adaptive design
(b) Extension sampling

phase for the stratified

adaptive design

Fig. 2 Illustration of stratified adaptive sampling. The population is described as a 20 × 20 grid

(and two strata partitioning the population in two, marked with the vertical red line). The networks

of units are represented by aggregated little dots. In the first sampling phase (a), five squares are

selected in each stratum (marked in light blue). In the second phase (b), the sample is extended

with the networks (and their sides) that could be reached using the first-phase sample

units who are connected to the units of s0. Adaptive sampling is a particular case

of cluster sampling, with the clusters being the networks of units having tweeted

about the Star Wars trailer (each unit of interest that is friends with a unit in s0 will

be added in the final sample). Units of s0 who didn’t tweet about Star Wars won’t

have any other unit from their network added to the sample, but they can be seen as

a 1-unit cluster. Once a person who tweeted about Star Wars is found in the initial

sample s0, many more can be discovered, which resembles the gameplay of the

famous “minesweeper” video game, and is often depicted as such in the literature

(see Fig. 2).

The Twitter network is a directed graph. Let us consider a unit i ∈ s0, yi = 1.

Following the logic of adaptive sampling explained in the previous paragraph, we

should look for units who also tweeted about “The force awakens” by searching

the friends and followers of i, and if such units were found, look for other units

among the friends and followers of these units and so on till the entire network is

discovered. But if we did this, the inclusion probabilities for any unit k ∈ s would

not only depend on the units of k’s network but also on other units with edges

leading to k. This typically cannot be estimated from sample data [29], as there is

no reason that any of these units be included in the sample. Thus, we only select

units that show symmetric relationships with units in s0 or in their networks.

For huge networks, we could expect the final sample size to be much greater

than the initial sample size, especially if the network is highly clustered (which is

the case of the Twitter graph, see Sect. 1.2). However, the fact that the Twitter graph

is directed imposes us to only look for symmetric relationship, which will limit the

size of the networks sri added to s0. Finally, in addition to the sri , we also include

in s units who have symmetric relationships to units in sC , but who are not in C
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themselves. These units are called the “sides” s0 of the networks sr . These units can

be described as: {k ∈ s, ·(k, C) = 1}. In general, the sides of the networks also

contain valuable information and should be included in the estimations to improve

precision (see [5]).

In our case, we’ll rely on the Bernoulli stratified design of Sect. 2.3 to select s0:

the final design is thus stratified adaptive cluster sampling [28]. Estimators for this

design are developed in Sect. 3.3.

3 Estimates

3.1 Horvitz–Thompson Estimator

For the simple designs, the privileged estimator is Horvitz and Thompson’s [11],

which weighs the observations with the inverse of the inclusion probabilities:

ÆT (Y )HT =
�

k∈s

yk

Ãk
, ǢyHT = 1

N

�

k∈s

yk

Ãk

For the Bernoulli design, it simply writes ÆT (Y )1 = 1

p

�

k∈s
yk and ÆNC1 = nC

p
.

For the stratified Bernoulli, we get ÆT (Y )2 =
�

s+Ud1

yk

p1
+

�

s+Ud2

yk

p2
and ÆNC2 =

N1

n1
nC1 + N −N1

n2
nC2

3.2 One-Stage Snowball Sampling

3.2.1 Horvitz–Thompson Estimator

Estimation is developed in Frank [9]. The Horvitz–Thompson estimator writes:

ÆT (Y )3 =
�

k∈s

yi

1 − Ã̄(Bi)
, ÆNC3 =

�

k∈s

zi

1 − Ã̄(Bi)

where Ã̄(Bi) = P(Bi ¢ s̄), the probability that no unit of Bi is included in s. As the

sampling design for s0 is stratified Bernoulli (in particular, the event of belonging

or not to s is independent for each unit of U ):

Ã̄(Bi) =
�

k∈Bi
(1 − P(k ∈ s)) (1)

= q
#(Bi+U1)
S1 · q#(Bi+U2)

S2
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The computation of this probability does not use any particular knowledge of the

shape of the graph.

Just like the classic Horvitz–Thompson estimator, the estimator for the one-stage

snowball sampling is linear homogeneous, with weights di = 1

1 − Ã̄(Bi)
. This

property will be particularly useful for calibration on margins (Sect. 3.4).

3.2.2 Rao–Blackwell Estimator

In the case of one-stage snowball sampling, [9] shows that a Rao–Blackwell type

estimator can be written in closed form:

ÆN7
C3 =

�

k∈s

yk

Ãk

£
£££1 −

�

L¢s

(−1)#LÃ̄({k} * B(L * s̄))

�

L¢s

(−1)#LÃ̄(B(L * s̄)

§
§§§ (2)

where the summation is done over all the subsamples L of s.

This Rao–Blackwell estimator is unbiased and as long as selection probabilities

are not ill-defined (meaning that "k ∈ U , Ã̄(Bk) < 1), it performs better than

the Horvitz–Thompson (1). However, there are 2#s − 1 terms in each of two sums

in Eq. (2). Computing each term of the sums implies computing the exclusion

probabilities for as many Bk , which means at least knowing their sizes. This is

extremely costly in time, and in our particular case in number of calls to the Twitter

API. Thus, we prefer using ÆNC3 over ÆN7
C3.

3.3 Estimators for Adaptive Sampling

As explained in Sect. 2.5, the adaptive sample is selected using only units that have

symmetric relationships (so that the graph induced by a unit k ∈ s0 + C can be

considered undirected). We have ÆT (Y )4 =
K�

k=1

y7
kJk

Ãgk
and ÆNC4 =

K�

k=1

n7
CkJk

Ãgk
, where

k = networks in the population , y7
k is the total of Y in the network k, n7

Ck the

number of people with yk g 1 in the network k, Jk = 1{k ∈ C} (i.e., intersection

with sample), and Ãgk is the probability that the initial sample intersects network k:

Ãgk = 1 − (1 − pk)
ng , where ng = #{k ∈ g}.

Other design-unbiased estimators can be used. For example, Hansen–Hurvitz-

like [10] estimators in this case would write: ÆT (Y )HH =
�

h=1,2

1

ph

Nh�

n=1

yifi

mi

where

mi is the number of units in the network that includes unit i and fi is the number
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of units from that network included in the initial sample. This rewrites: ÆT (Y )HH =
�

h=1,2

nh�

i=1

wi

ph
, where the sum is over the elements of s0 +Uh and with wi the average

of y in the network ri , which would give: ÆNHH =
�

h=1,2

1

ph

nh�

i=1

nCi .

3.3.1 Rao–Blackwell

In the case of adaptive sampling, it is very common to use the Rao–Blackwell

estimator. This means using the conditional design P(s|s0) (see, for example, [5]

or [30] for more details on exhaustivity in sampling). In most cases, computing the

Rao–Blackwell is computationally intensive and is achieved using Markov-Chain

Monte-Carlo [30]. However, with Bernoulli stratified sampling it is possible to

derive a closed form of the Rao–Blackwell [5]. Following [29], we write:

ÆT (Y )RB =
�

k∈sex

yk

Ãk
+

�

k∈s0

yk +
�

k∈sr

Yr

Ãr

where Yr =
�

k∈r
yk denotes the total of the variable of interest y in the network r . In

our case, this leads to:

ÆNC5 =
�

s0

1{yk g 1} +
�

sr

nr

Ãr
= n0 +

K�

k=1

nr

1 − (1 − p)nr

with n0 = #s0.

The Rao–Blackwell for the Hansen–Hurvitz estimator also has a simple closed

form that can be found in [5].

3.4 Calibration on Margins

3.4.1 The Calibration Estimator

Let us denote X a matrix of J auxiliary variables:

"j ∈ [[1, J ]],Xj = (Xj1 . . . Xjn)
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whose values can be computed at least for all units of s. Let’s suppose we also know

the totals of these auxiliary variables on the population: T (Xj ) =
�

k∈U

Xjk . We

write T (Xj ) the total of the j -th auxiliary variable and T (X) the column vector of

all the J totals T (X) = (T (X1) . . . T (XJ )).

In the general case, there is no reason that the estimated totals ÆT (X)jÃ using the

Horvitz–Thompson weights match the actual totals T (Xj ). For two main reasons,

one may want to use a linear homogeneous estimator that is calibrated on some

auxiliary variables. First, often in official statistics, a single set of weights is used

to compute estimated totals for many variables. Thus, it is often required that

these weights are calibrated on some margins for the sake of consistency. For

example, X = 1 is often chosen as a calibration variable so that the size of the

population N is estimated with no variance. Other typical calibration variables

include sizes of sub-populations divided into sex and age groups so that the

demographic structure of estimates is similar to the demographic structure of the

population or quantitative variables linked to revenue—which is a main parameter

of interest in most sociological studies, etc. Second, when estimating a variable Y

using the calibrated weights wk , the precision of the estimator will be increased if

Y is correlated to one or more of the auxiliary variables Xj (see Sect. 4.4). This is

the most interesting feature of calibration in the context of this study.

Let us write: Xs the n× j matrix of the values of the auxiliary variables and w a

set of weights of a linear homogeneous estimator. Calibration on margins X1 . . . Xj

consists in searching a linear homogeneous estimator such that :

X�
sw = T (X) (3)

supposing, of course, that this system has at least one solution. In general, when

this linear systems has solutions, their number is infinite. To choose among these

solutions, we look for weights wk that are the closest to the Horvitz–Thompson

weights dk with respect to some distance G. Finally, finding the calibrated weights

is equivalent to solving a linear optimization problem [6]:

§
«
«

min
wk

�

k∈s
dkG(

wk

dk
)

under constraint: X�
sw = T (X)

Proposition 3.1 (Approximately Design Unbiasedness (ADU)) The calibration

estimator is approximately design-unbiased. Its bias tends to 0 as N ³ +>
The Horvitz–Thompson estimator is the most used estimator in survey sampling.

One of its key properties is that it is design-unbiased. The calibration estimator is the

closest estimator to the Horvitz–Thompson estimator (w.r.t a certain distance) that

ensures the calibration equation (3). We can thus hope that it shares some properties

with the Horvitz–Thompson estimator, in particular its unbiasedness. In fact, the

unbiasedness of the calibration estimator holds asymptotically, i.e., when N goes
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with n to infinity (precise definition of the superpopulation model used to prove this

asymptotic property is detailed in Isaki–Fuller, [12]).

3.4.2 Margins Used for Twitter

For the calibration of our estimators ÆNC , we use the following margins (i.e., the

columns of matrix X):

• N = Total number of accounts who tweeted in the last month (quantitative):

• T (Y ) =Total number of tweets about “Star Wars : The Force Awakens” between

10/25, 7:48 PM EST and 10/25, 10:48 PM EST (quantitative): 390000

• Number of verified accounts4

• Structure of users in sample in terms of number of followers

Many other margins could be added to the calibration process. Improvement in

terms of variance of ÆNC is achieved as long as the marginXj correlates with NC and

the calibration algorithm has a solution. Other calibration margins could include the

number of (active) verified users, the number of tweets about “Star Wars: The Force

awakens” per hour, etc. The geographical origin of the tweets is another variable

that might strongly correlate to NC . Twitter does dispose of such a variable, but it

is seldom available. Imputation is not worth considering for this particular variable,

because the number of accounts for which the variable can be used is very low.

However, we could use Time Zones as a proxy for geographical origin, as the Time

Zones are disclosed for every account. In general, in order to facilitate sampling

estimates, Twitter could release calibration margins on a few characteristics.

Finally, we could calibrate on variables accounting for the graph structure, which

probably correlate highly with NC as well as a lot of other characteristics of interest

of the Twitter graph. This could be achieved by finding a method for calibration on

non-linear totals (see [15]).

4 Variance and Precision Estimation

4.1 Simple Designs

For simple designs, we have V ar( ÆT (Y )1) = 1

p
(

1

p
− 1)

�

k∈U

y2
k , which can be easily

estimated by ÆVar1( ÆT (Y )1) = 1

p
(

1

p
− 1)

�

k∈s
y2
k . Once n (which is random) has been

4https://support.twitter.com/articles/119135.

https://support.twitter.com/articles/119135
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drawn, it is common to work with the variance conditional to the sample size [31].

This gives another variance estimator:

ÆVar2( ÆT (Y )1) = ÆVar1( ÆT (Y ) | #s = n) =
1 − n

N

n
ÆÃ(Y )

where ÆÃ (Y ) = 1

n − 1

�

k∈s
(yk − ȳ)2.

For stratified Bernoulli, the total variance is the sum of the variance of the two

independent designs in the strata. If the strata are built correctly, the dispersions
Æ£(Y) will be lower among each strata than in the total population, yielding a lower

variance for the Horvitz–Thompson estimator. For example, using the simple plugin

variance estimator, this writes:

ÆVar( ÆT (Y )2) =
2�

h=1

1

ph
(

1

ph
− 1)

�

k∈sh
y2
k

In our study we chose the variance estimators ÆVar2, which finally write:

ÆVar2( ÆNC1) = N(N − n)(n − nC)

n3(n− 1)

ÆVar2( ÆNC2) = N2

�
(N1 − n1)(n1 − nC1)

n3
1(n1 − 1)N1

+ (N2 − n2)(n2 − nC2)

n3
2(n2 − 1)N2

�

4.2 Snowball Sampling

An unbiased estimator of the variance of the Horvitz–Thompson estimator is given

in [11]. One can easily rewrite the general case formula in the case of snowball

sampling:

ÆVar( ÆNC3) =
�

i∈s

�

j∈s

zizj

Ã̄(Bi * Bj )
³ �
ij

where:

³ �
ij = Ã̄(Bi * Bj )− Ã̄(Bi)Ã̄ (Bj )

[1 − Ã̄(Bi)][1 − Ã̄(Bj )]
(4)

The probabilities in (4) are theoretically easily computed using the formula (1).

However, practically, it means browsing the whole set of vertices B(s), which can
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be huge for highly central and/or clustered graphs (see Sect. 5). This variance

estimator is thus potentially highly intensive in time and computation power. In

the case of the Twitter graph, this means a high number of calls to the API, which

is unfortunately limited in number of calls. For too big sample sizes, we might have

trouble computing the estimation.

4.3 Adaptive Designs

4.3.1 Horvitz–Thompson

We use the variance estimator proposed by Särndal [24]:

ÆVar( ÆNC4) =
K�

k=1

K�

k�=1

ykyk�

Ãgkk�

�
Ãgkk�

ÃgkÃgk�
− 1

�

where:

Ãgkk� = 1 − Ãgk − Ãgk� + (1 − p)ngk+ngk�

Computing this variance estimator only requires the sizes of each network, which

can be stored during the data collection process. In terms of number of calls, the

variance estimator is thus much less demanding than the variance estimator in the

case of the one-stage snowball (Sect. 4.2).

4.3.2 Rao–Blackwell

Although the Bernoulli scheme conveniently yields a closed-form Rao–Blackwell

estimation, it’s not the case for the variance estimator. We have:

Var( ÆNC4) = Var( ÆNC5) + E( ÆNC4 − ÆNC5)
2

The second term can be estimated without bias by selecting m samples. An

unbiased estimator for Var( ÆNC5) then writes:

ÆVar( ÆNC5) = ÆVar( ÆNC4) − 1

m− 1

m�

i=1

( ÆNC5i − ÆNC4)

Of course, this method increases the number of calls needed to the graph API. In

the case of Star Wars, we were already unable to get to the end of s0 (see Sect. 5).

If we’d had to generate several samples to estimate the variance of the estimation, it

would obviously have been even harder.
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4.4 Adjustment for Calibration

Following [6], the variance for a calibrated Horvitz–Thompson for total Y writes:

ÆVarc( ÆT (Y )) =
�

k∈s

�

l∈s

�kl

Ãkl
(gkdkek)(gldlel)

where wk are the weights of the calibrated estimator, dk the weights of the non-

calibrated estimator, gk = wk

dk
and ek = yk − Æb�xk residuals of the weighted

regression (weights: dk) of Y on X1 . . . Xj . . . XJ in s.

We recognize the general form of the Horvitz–Thompson estimator of variance

(see [11]) which is used to construct variance estimators of Sects. 4.1–4.3, applied

to the linear variable gkek . This means that ÆVar( ÆNCi), i = 1 . . .5 can be easily

computed by re-using the formulae from Sects. 4.1–4.3, and replacing the zk by

gk · ek .

5 Results

The variance of all estimators used in this work is bounded by O(
1

n
). It is thus

always possible to reduce variance by increasing the sample size. In order to

compare the sampling designs for their respective merits in reducing the variance

of the estimation, we define the design effect Deff as:

Deff = Var( ÆYdesign)
Var( ÆYdesign)

= Var( ÆYdesign)
(1 − n

N
£(Y)2)

with: £(Y) = 1

N − 1

�

k∈U

(yk − ȳ)2

which compares the variance of the estimator to the variance of the estimator under a

simple random sampling design of same size. The Deff is greater than 1 for designs

that yield worse precision than the simple design (typically cluster or two-degree

sampling), and lesser than 1 for designs that are more precise (typically stratified

designs). Of course, real variance is impossible to compute, so the Deff can be

estimated by:

ÆDeff =
ÆVar( ÆYdesign)
ÆVar( ÆYSAS)

=
ÆVar( ÆYdesign)

(1 − n
N
Ã(Y )2)

with: Ã(Y ) = 1

n − 1

�

k∈s
(yk − ȳ)2
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Table 1 Estimates and characteristics for three different sampling designs

Design n nscope n0
ÆNC

ÆCV ÆDeff

Bernoulli 20,013 3946 354,121 0.231 1.04

Stratified 20,094 9832 316,889 0.097 0.68

1-snowball 159,957 73,570 1000 331,097 0.031 0.60

The results of the estimators are presented in Table 1:

We can also note that the mean number of tweets about Star Wars according to

the one-stage snowball sampling design is 1.18 ± 0.07. This low number suggests

that automatic accounts are responsible for a very small amount, if any, of the total

number of tweets on this subject [7].

It is important to note that the final sample size is random, just like for any

clustered sampling design with non-constant sizes of clusters. When a unit is

selected in s0, there is no way to know in advance what the size of the clusters

(networks) that includes it will be. Therefore, the final sample size #s can be

highly variable. In the case of adaptive sampling, the subject studied featured highly

clustered networks of Star Wars fans. This led to a very large number of users

reached by the adaptive procedure. Due to the limits in number of calls imposed by

the Twitter API, we were not able to finish collecting the stratified adaptive sample

in less than a month. In order to prevent such issues, we could imagine sampling

designs adjusting the selection probabilities as the collection of the units of s0 goes

along. Sampling design and estimation with such sampling designs is one of the

future developments of our research we consider on this subject.

Snowball sampling is unlikely prone to the same flaw, as number of units in final

sample depends on the degree distribution. This distribution is often known a priori,

and well modeled by a power law for all web and social network graphs. Contrary

to adaptive sampling, we are guaranteed that the extension will be complete after

only one browse of the list of users followed by the units in s0.

6 Conclusion

This chapter describes a design-based statistical method to estimate linear quantities

on the Twitter graph based on users rather than queries. The method relies on

sampling theory and in particular on developments of sampling theory for graphs.

We tried two so-called extension designs: snowball sampling and adaptive sampling,

which were first designed in official statistics to measure rare characteristics on a

given population. We use them to try and measure the number of accounts having

tweeted about the trailer of the Star Wars movie on the day of its release. Despite

the event generating 390,000 tweets in approximately 3 h, the users responsible for

these tweets are rare among the 1 billion Twitter users. Despite being unable to get

through the whole adaptive sample because of the number of calls allowed by the
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Twitter API, the stratified snowball proved rather precise. Variance estimators were

also computed, although they required a much higher number of calls.
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Wavelet Whittle Estimation in
Multivariate Time Series Models:
Application to fMRI Data

S. Achard and I. Gannaz

Abstract In many applications such as finance, geophysics or neuroscience, data

are multivariate time series. Identification of correlation between time series is an

important feature. Yet differences in memory properties of the processes can induce

phase-shifts in estimation of correlations. A semiparametric model for multivariate

long-range dependent time series is considered. The coupling between time series

is characterized by the long-run covariance matrix. The multivariate wavelet-

based Whittle estimation is consistent for the estimation of both the long-range

dependence and the covariance matrix. Finally an application to the estimation of a

human brain functional network based on fMRI test-retest data sets is described. Our

study highlights the benefit of the multivariate analysis, namely improved efficiency

of estimation of dependence parameters.

1 Introduction

In many areas such as finance, geophysics or neurosciences, data are multivariate

time series with long-range dependence properties. When analysing multivariate

time series, a challenge is to characterize the coupling between the time series as

well as the long-term dependence properties of the recordings. Many statistical

developments have been proposed to deal with univariate long-memory processes.

Parametric estimates of the long-range memory [4, 5, 7] present the drawback of

being sensitive to short-range dependence modelling. Semiparametric approaches

were proposed to be robust to model misspecification [11]. Semiparametric Fourier-

based procedures were developed such as Geweke–Porter-Hudak [6] and local
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Whittle estimator [11]. Some wavelet-based estimators were also introduced, e.g.

by log-regression on the wavelet coefficients [1] or Whittle procedure [10].

Recently, multivariate estimations of the long-memory parameters were pro-

vided. In [9] and [13], multivariate Fourier-based Whittle estimation has been

studied. Additionally to the estimation of long-range dependence parameters, the

procedure gives an estimation of the long-run covariance, measuring the coupling

between the time series. Long-run covariance can be defined as the limit of the

cross-spectral density at the zero-frequency. Based on the wavelet representation of

the data rather than Fourier, [2] proposes a similar procedure.

Our objective in this manuscript is to give an overview of a phase phenomenon

as stated in [2, 13]. Our contribution is to give practical guidelines for the wavelet-

based Whittle estimation provided in [2]. Our study supports the benefit of the

multivariate approach with respect to a univariate one. Our statement is that

multivariate procedure not only provides an estimation of the long-run covariance

but also improves the quality of estimation of the long-memory parameters. We

finally show the robustness of multivariate estimation on a real data set.

Let X = {X�(k), k ∈ Z, � = 1, . . . , p} be a multivariate process with long-

memory properties. Suppose that the generalized cross-spectral density of processes

X� and Xm can be written as

f�,m(») = 1

2Ã
«�,m(1 − e−i»)−d�(1 − ei»)−dmf S

�,m(»), » ∈ [−Ã, Ã]. (1)

The parameters (d�)�=1,...,p quantify the long-range dependence of the time series

components (X�)�=1,...,p. For given � = 1, . . . , p, parameter d� belongs to

(−0.5; >). When d� � 0.5, the construction is based upon increments of X�,

[2]. The matrix Ω corresponds to the long-run covariance between time series. It

measures the connections between the components of X at low-range frequencies.

The function f S
�,m(·) corresponds to the short memory behaviour of the bivariate

process (X�, Xm). We assume that f S
�,m(0) = 1 for all �,m and that f S ∈

H (³,L, �) with 0 < ³ ≤ 2, O < L and 0 < � ≤ Ã . The space H (³,L, �)

is defined as the class of non-negative symmetric functions g on [Ã, Ã] such that for

all » ∈ (−�, �), �g(») − g(0)�> ≤ L�g(0)�>|»|³ .

This model is semiparametric since the short-range behaviour has a nonpara-

metric form. As stated by Robinson [11], procedures are hence more robust to

model misspecification. Indeed, it is not necessary to define precisely the short-

range dependence. As it is explained in this work, highest frequencies may be

influenced by short-range dependence. We propose a procedure which detects them

by looking at the behaviour of the wavelet correlations. This enables to discard them

in the estimation procedure. Thus, the nonparametric form of f S(·) adds flexibility

to the model and offers a larger scope of applications.

Section 2 illustrates the influence of memory properties on the correlation

between time series, through the behaviour of wavelet coefficients. The next section

recalls the estimation procedure of [2], for both the long-run covariance Ω and the

memory parameters d. In Sect. 4 this procedure is applied on simulated data, and we
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highlight the improvement of multivariate estimation for long-memory parameters.

The last section deals with a real data example, from neuroscience. We estimate

the long-memory parameters on two consecutive recordings of functional magnetic

resonance imaging (fMRI). The result shows that the multivariate estimation is more

robust than the univariate one, since estimations are more reproducible.

All simulations and calculations were done using multiwave1 package.

2 Influence of Long- and Short-Range Memory on

Correlations

The first objective of this contribution is to stress the inherent influence of time

dependencies on long-run correlations between time series. We focus on the

behaviour of the correlation between the wavelet coefficients. Our simulation study

assesses a phase-shift phenomenon caused by long-range dependence properties

which may introduce a bias when looking at the wavelet correlations. This obser-

vation is related with theoretical results. The study also highlights that some scales

should be removed from estimation since their behaviour depends on the short-range

dependence.

Simulations were done using FIVARMA (Fractionally Integrated Vector Auto

Regressive Moving Average) process models. FIVARMA process is an example

of linear processes whose spectral density satisfies (1). FIVARMA corresponds to

Model A of [8] and is also defined in [12] or [2].

2.1 Wavelet Transform

We are interested in the behaviour of the correlation of the wavelet coefficients in

the presence of long- or short-range dependence. Let (Ç(·), Ë(·)) be respectively

a father and a mother wavelets. Their Fourier transforms are given by ÆÇ(») =� >
−> Ç(t)e−i»tdt and ÆË(») =

� >
−> Ë(t)e−i»tdt .

At a given resolution j g 0, for k ∈ Z, we define the dilated and translated

functions Çj,k(·) = 2−j/2Ç(2−j ·−k) andËj,k(·) = 2−j/2Ë(2−j ·−k). The wavelet

coefficients of the processes X�, � = 1, . . . , p, are defined by

Wj,k(�) =
"

R

X̃�(t)Ëj,k(t)dt j g 0, k ∈ Z,

1https://cran.r-project.org/web/packages/multiwave/index.html.

https://cran.r-project.org/web/packages/multiwave/index.html
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where X̃�(t) =
�

k∈ZX�(k)Ç(t − k). We denote by »j (�,m),

»j (�,m) = Cor
�
{Wj,k(�), k ∈ Z}, {Wj,k(m), k ∈ Z}

�

the empirical correlation between wavelet coefficients at scale j g 0 between

components X� and Xm.

The regularity assumptions on the wavelet transform are the following:

(W1) The functions Ç(·) and Ë(·) are integrable, have compact supports,�
R
Ç(t)dt = 1 and

�
Ë2(t)dt = 1;

(W2) There exists ³ > 1 such that sup»∈R | ÆË(»)|(1+|»|)³ < >, i.e. the wavelet

is ³-regular;

(W3) The mother wavelet Ë(·) has M > 1 vanishing moments.

(W4) The function
�

k∈Z k�Ç(· − k) is polynomial with degree � for all � =
1, . . . ,M − 1.

(W5) For all i = 1, . . . , p, (1 + ³)/2 − ³ < di ≤ M .

These conditions are not restrictive, and many standard wavelet bases satisfy them.

They hold in particular for Daubechies wavelet basis with sufficiently large M .

Implementations below were done using Daubechies wavelet with M = 4 vanishing

moments.

2.2 Phase-Shift Phenomenon

Following [3] or [17], the coupling between time series at a given scale can be

measured using the correlation between the wavelet coefficients at this scale. Let

{X1(k), k ∈ Z} and {X2(k), k ∈ Z} be two time series, with long-memory

parameters d1 and d2. Denote {Wj,k(1), k ∈ Z} and {Wj,k(2), k ∈ Z} their wavelets

coefficients at a given scale j .

We first consider a bivariate FIVARMA(0, (d1, d2), 0) with a covariance

matrix Ω =
�

1 Ã

Ã 1

�
and Ã = 0.4. That is, X is defined by

(1 − L)d� X�(k) = u�(k), � = 1, 2, k ∈ Z (2)

with L lag-operator. The process u is a bivariate white noise E[u(t) | Ft−1] = 0 and

E[u(t)u(t)T | Ft−1] = Ω , where Ft−1 is the Ã -field generated by {u(s), s < t}
and the superscript T denotes the transpose operator. The cross-spectral density of

the process (X1,X2) is given by

f (») = Λ(d)ΩΛ(d)7 with Λ(d) = diag((1 − e−i»)−d) .
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Fig. 1 Boxplots of »j (1, 2) at different scales for an FIVARMA(0,d,0), with different values of

d. Number of coefficients available at each scale are given in indexes. The horizontal red line

corresponds to the correlation Ã between the two innovations processes. The horizontal blue line

corresponds to the first order approximation Ã cos(Ã(d1 − d2)/2)CK

When » ³ 0+, this density satisfies the first order approximation f (») > G where

G = Λ̃(d)7ΩΛ̃(d) , with Λ̃(d) = diag(»−de−iÃd/2). (3)

Figure 1 displays the empirical correlations »j (1, 2) at different scales j of

the wavelet coefficients of such a process with various (d1, d2) and Ã = 0.8.

Simulations were done with 212 time points and 1000 repetitions. It highlights that

the behaviour of {»j (1, 2), j g 0} depends on the long-memory parameters. More

precisely, when the difference between the values of d1 and d2 increases (up to 2),

then the bias of {»j (1, 2), j g 0} with respect to Ã increases. This phenomenon is

observed for all scales j , even if it is more important for low frequencies.
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This empirical statement has been quantified theoretically in Proposition 2 of [2].

A similar approximation can be deduced for the correlation :

Proposition 1 Let Ã�,m = «�,m/
�
«�,�«m,m.

Under assumptions (W1)–(W5), when j goes to infinity,

»j (�,m) ³ Ã�,m cos(Ã(d� − dm)/2) CK , (4)

where CK = K(d� + dm)/
:
K(2 d�)K(2 dm) with K(·) =

� >
−> |»|−·| ÆË(»)|2 d».

This approximation corresponds to a first order approximation. A second-order

approximation, depending on the scale, is also possible. Figure 1 illustrates the

quality of this result. The estimation of correlation between two processes with

long-range memory must hence take into account this phase-shift phenomenon.

The phase in our setting is equal to Ã(d� − dm)/2 (due to approximation (5)). A

multiplicative term appears in the approximation of the empirical correlations of the

wavelet coefficients that can lead to a highly biased estimation.

2.3 Short-Range Dependence

In the cross-spectral definition (1), the short-range dependence is nonparametric.

This choice leads to a larger scope of applications and enables procedures more

robust to model misspecification, see [11].

We consider a bivariate FIVARMA(qAR, (d1, d2), qMA) with a correlation

matrix Ω =
�

1 Ã

Ã 1

�
and Ã = 0.4. The bivariate process (X1,X2) is defined by

A(L) diag(1 − L)d X(t) = B(L)u(t).

The sequence {Ak, k = 0, 1, . . . , qAR} is R
p×p-valued matrices with A0 the

identity matrix and
�qAR

k=0 �Ak�2 < >. Let also {Bk, k = 0, 1, . . . , qMA} be

a sequence in R
p×p with B0 the identity matrix and

�qMA

k=0 �Bk�2 < >. Let

A(·) (respectively B(·)) be the discrete Fourier transform of the sequence, that is,

A(») =
�qAR

k=0 Ake
ik». We assume that all the roots of |A(L)| are outside the closed

unit circle. Let u be a p-dimensional white noise with E[u(t) | Ft−1] = 0 and

E[u(t)u(t)T | Ft−1] = Σ , where Ft−1 is the Ã -field generated by {u(s), s < t},
and Σ is a positive definite matrix.

The cross-spectral density satisfies

f�,m(») >»³0+
1

2Ã
«�,me

−iÃ/2(d�−dm)»−(d�+dm), �,m = 1, 2 , (5)

with Ω = A(1)−1B(1)ΣB(1)T A(1)T
−1
. We will denote r12 = «12/

:
«11«22 the

long-run correlation term obtained by normalizing Ω .
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Four cases were simulated :

• FIVARMA(1,(0.1, 0.1),0) with A1 =
�

0.8 0

0 0.6

�
,

• FIVARMA(2,(0.1, 0.1),0) with A1 and with A2 =
�

0.4 0

0.2 0.7

�
,

• FIVARMA(0,(0.1, 0.1),1) with B1 defined equal to matrix A2,

• FIVARMA(1,(0.1, 0.1),1) with A1 and B1.

Numerical results were obtained on 1000 simulations, with 212 time points. Values

of d1 and d2 were taken equal to 0.1 and parameter Ã was fixed to 0.8. Figure 2

represents the boxplots of »j (1, 2) with respect to scales j .
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Fig. 2 Boxplots of »j (1, 2) at different scales for an FIVARMA(p,(0.1, 0.1),q), with different

values of p and q. Number of coefficients available at each scale are given in indexes. The

horizontal red line corresponds to the correlation r12
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As illustrated in Fig. 2, the wavelet correlations »j (1, 2) are a good approxi-

mation of r12 at low frequencies, i.e. for high j . Indeed, no phase phenomenon

appears since d1 equals d2. Yet the presence of short-range dependence disrupts the

behaviour of »j (1, 2) for the highest frequency. The mean of »j (1, 2) is no longer

close to r12. This highlights that removing the first scales will improve the quality of

estimation of r12. Depending on the short-range dependence, in some simulations,

more than one scale can be impacted. The number of scales to remove in estimation

will thus depend on the short-range behaviour. But this can be evaluated by visual

inspection on the plot of wavelet correlations against scales.

3 Estimation Procedure

As illustrated in Sect. 2, measurements of correlation are influenced by parameters

d. A joint estimation of Ω and d thus seems more adapted. We recall briefly the

estimation procedure described in [2]. The wavelet Whittle criterion is defined as

L (G(d),d) = 1

n

j1�

j=j0

�
nj log det

�
Λj (d)G(d)Λj (d)

�
+

nj�

k=0

�
Wj,k(1) . . . Wj,k(p)

�T �
Λj (d)G(d)Λj (d)

�−1 �
Wj,k(1) . . . Wj,k(p)

�
�
,

where nj denotes the number of non zero wavelet coefficients at scale j and j0 ≤ j1

are two given scales.

The estimators minimizing this criterion satisfy:

Æd = argmin
d

log det( ÆG(d))+ 2 log(2)

»
¿1

n

j1�

j=j0

jnj

¿
£

�
p�

�=1

d�

�
,

ÆG(d) = 1

n

j1�

j=j0

Λj (d)
−1I(j)Λj (d)

−1.

The long-run covariance matrix can then be estimated by

Æ«�,m = ÆG�,m( Æd)/(cos(Ã( Æd� − Ædm)/2)K( Æd� + Ædm)). (6)

These estimators are consistent under an additional assumption. We introduce:

Condition (C)

For all �,m = 1, . . . , p, sup
n

sup
jg0

1

nj22j (d�+dm)
V ar

��

k

Wj,k(�)Wj,k(m)

�
< > .



Wavelet Whittle Estimation in Multivariate Time Series Models: Application to. . . 279

The convergence theorem is the following:

Theorem 1 ([2]) Assume that (W1)–(W5) and Condition (C) hold. If j0 and j1 are

chosen such that log(N)2(2−j0³ + N−1/22j0/2) ³ 0 and j0 < j1 ≤ jN then

Æd − d0 = OP(2
−j0³ +N−1/22j0/2),

"(�,m) ∈ {1, . . . , p}2, Æ«�,m − «�,m = OP(log(N)(2−j0³ +N−1/22j0/2)).

Taking 2j0 = N1/(1+2³), Æd achieves the minimax rate since Æd − d0 =
OP(N

−³/(1+2³)).

This result states that the finest frequencies j < j0 in the wavelet procedure

must not be taken into account in the procedure. It is in line with Sect. 2.3. The

optimal choice of j0 depends on the strength of the short-range dependence and it

is thus fixed by the regularity ³ of the density f S(·). A perspective is to develop an

adaptive estimation, where the value of ³ would not be used to calibrate parameters

of estimation. Yet, as it can be seen in Fig. 2 it is possible to handle empirically the

optimal choice of j0: plotting boxplots of wavelet correlations at different scales can

enable to extract scales where the behaviour is perturbed by short-range behaviour.

We illustrate the practical choice of j0 in Sect. 5.

4 Numerical Results

We simulate bivariate FIVARMA processes and assess the quality of estimation on

simulation. First multivariate procedure enables to estimate the long-run covariance

matrix Ω which brings an important information on the structure of multivariate

time series. Second, our aim is also to illustrate that multivariate methods improve

the quality of estimation of d.

We consider 1000 replications of bivariate FIVARMA(0,d,0) processes, that is,

defined by (2), with a covariance matrix Ω =
�

1 Ã

Ã 1

�
between innovations u.

Various values of d and Ã are considered. Results of estimations of Ω and d are

displayed respectively in Table 1 and in Table 2. The quality is quantified by bias

which is the bias of Æd�, � = 1, 2 and std which denotes the standard deviation of
Æd�, � = 1, 2. The RMSE is the root mean squared error, equal to (bias2+std2)1/2.

Table 2 also gives the values of ratio M/U. For a given � = 1, 2, this quantity

corresponds to the ratio of the RMSE of Æd� when estimated by multivariate Whittle

procedure using both components and the RMSE of Æd� when estimated by Whittle

procedure using univariate Whittle procedure only on time series X�.

A good quality of estimation of the long-run covariance matrix Ω and of the

long-run correlation is observed. The quality slightly decreases when the phase

phenomenon occurs, due to correction (6).
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Table 1 Wavelet Whittle estimation of Ω for a bivariate ARFIMA(0,d, 0) with Ã = 0.4, N =
512 with 1000 repetitions

d1 d2 Bias Std RMSE

Ã = 0.4

0.2 0.0 «1,1 0.0309 0.0697 0.0762

«1,2 0.0176 0.0540 0.0568

«2,2 −0.0012 0.0732 0.0733

Correlation 0.0113 0.0417 0.0432

0.2 0.2 «1,1 0.0297 0.0733 0.0790

«1,2 0.0116 0.0518 0.0530

«2,2 0.0282 0.0725 0.0778

Correlation −0.0003 0.0386 0.0386

0.2 0.4 «1,1 0.0356 0.0703 0.0788

«1,2 0.0328 0.0568 0.0655

«2,2 0.0707 0.0728 0.1015

Correlation 0.0106 0.0422 0.0435

d1 d2 Bias Std RMSE

Ã = 0.8

0.2 0.0 «1,1 0.0309 0.0697 0.0762

«1,2 −0.0284 0.0641 0.0701

«2,2 −0.0062 0.0667 0.0670

Correlation −0.0182 0.0236 0.0298

0.2 0.2 «1,1 0.0297 0.0733 0.0790

«1,2 −0.0263 0.0656 0.0706

«2,2 0.0318 0.0731 0.0798

Correlation −0.0013 0.0172 0.0173

0.2 0.4 «1,1 0.0356 0.0703 0.0788

«1,2 −0.0632 0.0659 0.0913

«2,2 0.0708 0.0706 0.1000

Correlation −0.0195 0.0232 0.0303

Table 2 Multivariate Whittle wavelet estimation of d for a bivariate ARFIMA(0,d, 0), N = 512

with 1000 repetitions

d1 d2 Bias Std RMSE ratio M/U

Ã = 0.4

0.2 0.2 −0.0298 0.0428 0.0522 0.9631

0.0 −0.0002 0.0438 0.0438 0.9504

0.2 −0.0330 0.0456 0.0563 0.9713

0.2 −0.0333 0.0443 0.0554 0.9831

0.2 −0.0304 0.0429 0.0526 0.9583

0.4 −0.0571 0.0461 0.0734 0.9701

d1 d2 Bias std RMSE ratio M/U

Ã = −0.8

0.2 0.2 −0.0161 0.0380 0.0413 0.7625

0.0 0.0129 0.0371 0.0393 0.8980

0.2 −0.0334 0.0384 0.0509 0.8780

0.2 −0.0331 0.0391 0.0512 0.8966

0.2 −0.0164 0.0392 0.0425 0.7742

0.4 −0.0439 0.0387 0.0585 0.7836

The procedure also gives good quality estimates of d. The rate of convergence

of Æd in Theorem 1 does not depend on the values of the long-run covariance matrix

Ω . Table 2 stresses that it does influence the quality of estimation. Since all data are

used in the estimation procedure, it is straightforward that the quality of estimation

for d will be improved compared with a univariate estimation. This is confirmed by

numerical results, since the ratio M/U is always smaller than 1. Additionally,

when the correlation between the time series components increases (in absolute

value), the ratio M/U decreases, meaning that the quality of estimation of d

increases. These results illustrate that multivariate estimation improves the quality

of estimation of the long-memory parameters d.
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5 Application in Neurosciences

Noninvasive data recorded from the brain are an example where the proposed

methodology is efficient. The data consist of time series recording signals from

fMRI. These data are intrinsically correlated because of the known interactions of

the brain areas (also called regions of interest). These time series present long-

memory features. Other data sets presenting similar features are coming from

finance, e.g. [15], where time series present long-memory characteristics and are

also correlated because of links between companies, for example. In this section,

we observed time series extracted using fMRI facilities. The whole description of

this data set is detailed in [16]. 100 subjects were scanned twice and we extracted

89 regions of interest for each scan with time series of length 1200 time points.

Figure 3 displays 6 arbitrary signals from a subject in this data set.

0 200 400 600 800 1000

channel  4

channel  12

channel  30

channel  50

channel  70

channel  81

time

Fig. 3 Plot of 6 arbitrary signals from a subject of fMRI data set
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5.1 Estimation of d and Ω

As stated by Theorem 1, the highest frequencies should not be taken into account,

in order to decrease the bias caused by short-range dependence. As illustrated in

Sect. 2.3, the advantage of representing the wavelet correlation in terms of scale is

to qualitatively assess the scales necessary to estimate the long-memory parameters

and long-range covariance matrix. When dealing with real data, bootstrap is provid-

ing a way to assess the behaviour of the wavelet correlations. Sliding overlapping

windows of the time series containing 512 points were extracted and we repeated

the estimation until reaching the final point of the time series. This is illustrated in

Fig. 4, where an example of four pairs of fMRI data from one subject is presented.

Boxplots are constructed using the sliding window extractions. From these plots,

and taking into account neuroscientific hypothesis stating that the signal of interest

for resting state is occurring for frequency below 1 Hz, we chose to compute the

long-memory parameters between scales 3 and 6.
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Fig. 4 Boxplots of the empirical correlations between the wavelet coefficients at different scales

for real time series from a single subject of fMRI data sets: (a) Time series 1 and 2; (b) Time series

13 and 14; (c) Time series 31 and 32; (d) Time series 47 and 48. Boxplots were obtained using

sub-time series with N points, extracted from two fMRI time series with length equal to 1200

points, from a single subject. Estimated long parameters d of the two time series are equal with a

two digits precision. The index of the horizontal axis displays the number of coefficients available.

The horizontal red lines represent the estimated long-run correlation. Calculation was done on 100

sliding windows (with overlap), each of them containing N = 512 observations
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Fig. 5 Histogram of Æd and estimation of Ω from a subject of fMRI data set

For each subject, the vector of long-memory parameter d is estimated using both

univariate and multivariate methods. Figure 5 displays an example of long-memory

parameters estimated for one subject taken at random among the 100 subjects.

5.2 Comparison with Univariate Estimates of d

In addition, as the data sets consist of a test-retest paradigm with two recordings

for each subject, a way to evaluate the accuracy of the estimator is to evaluate the

reproducibility using intra-class correlation. Following [14], intra-class correlation

(ICC) was computed. ICC is a coefficient smaller than 1 that takes into account the

variance within subject in comparison to the variance between subject, defined as,

ICC = sb − sw

sb + (k − 1)sw
(7)

where sb is the variance between subjects, sw is the variance within subjects and k is

the number of sessions per subject. ICC is close to 0 when the reliability is low, and

close to 1 when the reliability is high. ICC defined as (7) can have negative values

but this reflects a wrong behaviour of the data set.

Figure 6 shows the results obtained using the univariate estimator and mul-

tivariate estimator. This result suggests that multivariate estimations are more

reproducible in a test-retest paradigm than univariate estimations.
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Fig. 6 Estimation of ICC

using multivariate or

univariate estimations
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6 Conclusion

Statistical analysis of multivariate time series with long memory is challenging.

Based on the results of [2], our study highlights the influence of the memory

properties on the long-run coupling between time series. In particular, due to dif-

ferences in long-memory parameters a phase phenomenon occurs, that is illustrated

by the behaviour of the wavelet coefficients. Next, we recall the wavelet-based

Whittle estimation of [2]. The main contribution is to illustrate how multivariate

estimation can improve univariate procedure. This is noticeable on numerical results

on simulations. We also consider a test-retest fMRI data set. The analysis shows

the robustness of multivariate estimation on this real application, compared with

univariate estimation.
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On Kernel Smoothing with Gaussian
Subordinated Spatial Data

S. Ghosh

Abstract We address estimation of a deterministic functionμ, that is the mean of a

spatial process y(s) in a nonparametric regression context. Here s denotes a spatial

coordinate in R2
+. Given k = n2 observations, the aim is to estimate μ assuming

that y has finite variance, and that the regression errors �(s) = y(s) − E {y(s)} are

Gaussian subordinated.

1 Introduction

We consider a nonparametric regression setting where our observations are

y(sr ), r = 1, 2, . . . , k (1)

on a continuous index random field y(s). Here sr , s ∈ R2
+ denote two-dimensional

spatial locations although these ideas easily generalize to other cases, such as higher

dimension or inclusion of predictors or explanatory variables as in regression. Let

k = n2, and let us denote

sr = (s1r , s2r ). (2)

Suppose also that there is a zero mean, unit variance, stationary latent Gaussian

random field Z(s) such that the centered process is Gaussian subordinated, i.e.,

�(s) = y(s) − E {y(s)} = G(Z(s),u) (3)

where u ∈ [0, 1]2 is obtained by rescaling the spatial coordinate s and

G : R × [0, 1]2 ³ R (4)
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is an unknown function, square integrable with respect to the standard normal

density, i.e., for u ∈ [0, 1]2,

" >

−>
G2(z,u)Ç(z)dz < > (5)

" >

−>
G(z,u)Ç(z)dz = 0 (6)

where Ç denotes the standard normal density function.

The consequence of the transformation in (3) is that the marginal distribution of

the regression errors � may be location dependent. In various applications, this is

advantageous. When very large scales are involved, using the above transformation

as a model, one may accommodate more flexibility. For instance, one may estimate

the marginal error distribution and test if various types of exceedance or non-

exceedance probabilities are location dependent, if the spatial quantiles of � are

horizontal surfaces, or if there are local modes etc.

There is an extensive literature on non-linear models of this kind; some refer-

ences are [4–6, 9, 16, 21, 22] and others, whereas [1] provide a review.

Often the spatial observations are available at a discrete set of locations. Let the

set of these coordinates be

An = {(i, j) | i, j = 1, 2, . . . , n}. (7)

In this case, the rescaled coordinates are u = s/n ∈ [0, 1]2 and the discrete lags are

h ∈ {0,±1,±2, ..}2, |h| being the Euclidean norm of h.

Written in terms of the spatial coordinates in An, our nonparametric regression

model is:

y(sr ) = μ(ur)+ �(sr), sr ∈ An,ur = sr/n, (8)

r = 1, 2, . . . , k, k = n2. Our aim is to estimate μ(u), � being a zero-mean

Gaussian subordinated process as described above. In a similar manner, the marginal

distribution of y at location u may be estimated, e.g., by smoothing an appropriately

defined indicator function; see, for instance, Ghosh and Draghicescu [15] for an

example in the time series case. Before proceeding, we formulate the correlation

structure in the latent Gaussian process Z.

1.1 Latent Gaussian Process Z(s), s ∈ R2
+

We assume that E (Z(s)) = 0, V ar (Z(s)) = 1. Also let Z be isotropic, its

covariance function being,

Cov(Z(s1), Z(s2)) = ³Z(|s1 − s2|), s1, s2 ∈ R2
+ (9)
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where | · | denotes the Euclidean norm. When Z has short-memory or long-memory

correlations, ³Z will satisfy:

Short-Memory For any integer m0 g 1,

>�

l=m0

"

[0,1]2

"

[0,1]2

���³Z(
:
k|u1 − u2|)

���
l

du1du2 = 0

�
1

k

�
, k ³ >, (10)

or, when the data are on a lattice,

�

h

|³Z(h)|m0 < >; (11)

Long-Memory Let 0.5 < H < 1 be the Hurst coefficient. Then

"

[0,1]2

"

[0,1]2

���³Z(
:
k|u1 − u2|)

���
m0

du1du2 = 0
�
km0(2H−2)

�
, k ³ >, (12)

or, in case of lattice data (see [2]), in terms of the discrete lags,

³Z(h) > CZ |h|−2³f

�
h

|h|

�
, as |h| ³ > (13)

where 0 < ³ < 1/m0, H = 1 − ³/2, m0 g 1 is a positive integer, CZ > 0 and f

is a continuous function on the unit circle on R2; also see [9].

Let m be the Hermite rank of G and assume that m0 = m, so that the regression

errors � will also have long-memory when Z is long-range dependent.

1.2 Regression Errors and Its Second Moments

As mentioned above, the errors � have zero mean, finite variance and are assumed to

be Gaussian subordinated. Consider the following Hermite polynomial expansion:

�(s) = G(Z(s),u) =
>�

l=m

cl(u)

l! Hl (Z(s)) (14)

where as before, s ∈ R2
+ is a spatial coordinate, u ∈ [0, 1]2 is rescaled s, and G is

the unknown Lebesgue-measurableL2 function mentioned earlier. Moreover, cl are

Hermite coefficients, m is Hermite rank of G, and Hl are Hermite polynomials. Let

the Hermite coefficients be in C3
�
[0, 1]2

�
, l = m,m+ 1,m+ 2, . . . .

In particular,

Cov (Hl(Z(s1)),Hl�(Z(s2))) = 0, if l �= l�, (15)
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whereas

Cov (Hl(Z(s1)),Hl(Z(s2))) (16)

= l! {³Z (|s1 − s2|)}l , if l = l�,

and

V ar (Hl(Z(i, j)) = l!. (17)

Due to the transformation (3), the variance of � need not be a constant and from the

above Hermite expansion, it follows that we have

Ã 2(u) = V ar (�(s)) =
>�

l=m

c2
l (u)

l! , (18)

We assume that Ã(u), u ∈ [0, 1]2 is smooth, so that consistent estimation can be

facilitated.

2 Estimation

For estimation, we assume that μ(u) is in C3
�
[0, 1]2

�
. We consider the following

regression estimator due to [18]. For u = (u1, u2), and ur = (u1r , u2r), r =
1, 2, . . . , k, k = n2

�μ(u) = 1

kb1b2

k�

r=1

K

�
u1r − u1

b1

�
K

�
u2r − u2

b2

�
y(sr). (19)

Here b1 > 0 and b2 > 0 are bandwidths such that as n ³ >, b1, b2 ³ 0, and

nb1, nb2 ³ >. Moreover, the kernel K is a continuous symmetric density function

on [−1, 1].
Theorem 1 along with its proof and related information can be found in [10, 11]

and [12].

Theorem 1 As n ³ >, for fixed u ∈ (0, 1)2,

Bias:

E {�μn(u)} − μ(u) = 1

2

" 1

−1

v2K(v)dv

�
b2

1

"2

"u2
1

{μ(u)} + b2
2

"2

"u2
2

{μ(u)}
�

+ o(max(b2
1, b

2
2)). (20)
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Variance: if b1 = b2 = b,

short memory: V ar {�μn(u)} = O
�
(nb)−2

�
(21)

long memory: V ar {�μn(u)} = O
�
(nb)−2m³

�
(22)

where 0 < ³ < 1/m, m being the Hermite rank of G.

Furthermore, weak uniform consistency can be proved assuming that K has a

characteristic function that is absolutely integrable on R.

For u = (u1, u2) ∈ (0, 1)2, consider a similar kernel smoothing operation

applied to the regression errors. Specifically, let

Sn(u) = 1

kb1b2

k�

r=1

K

�
u1r − u1

b1

�
K

�
u2r − u2

b2

�
�(sr ) (23)

where let Ë be the characteristic function of K, i.e.,

Ë(t) =
"

e»twK(w)dw (24)

where » =
:

−1 and t ∈ R. Let Ë satisfy

" >

−>
|Ë(t)|dt < > (25)

Then the following holds.

Theorem 2 Sn converges to zero uniformly and in probability as n ³ >.

For the proof of Theorem 2 see [12], where the arguments are generalizations of

[17] to non-linear transformations of Gaussian random fields; also see [3]. For a

general background on kernel smoothing see [13, 20, 23] as well as [19].

A consequence of the above theorems is that the nonparametric estimator �μ is

also uniformly consistent in probability. This result can be immediately exploited to

propose a possible bandwidth selection algorithm by noting that if

��(s) = y(s)− �μ(u) (26)

where u is rescaled s, then, as n ³ >,

Theorem 3 |��(s)− �(s)| converges to zero uniformly and in probability.

Moreover, although �(s) is not covariance stationary, in small neighborhoods, they

are locally stationary; also see [7]. We have
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Theorem 4 If u1,u2 ³ u then,

Cov(�(s1), �(s2)) > g(|s1 − s2|,u) (27)

where g is a covariance function.

Due to Theorem 3, g may now be estimated using a local variogram using the

regression residuals ��(s) (also see, e.g., [8]). Similarly, Ã 2 may be estimated by

smoothing the squared residuals. These estimates may then be combined to obtain

a direct estimate of the variance of �μ. For further information see [12]. A proposal

for a bandwidth selection procedure along with these lines can be found in [24];

also see [14] who consider a data-driven bandwidth selection procedure for trend

estimation for Gaussian subordinated time series data.
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Strong Separability in Circulant SSA

J. Bógalo, P. Poncela, and E. Senra

Abstract Circulant singular spectrum analysis (CSSA) is an automated variant of

singular spectrum analysis (SSA) developed for signal extraction. CSSA allows to

identify the association between the extracted component and the frequencies they

represent without the intervention of the analyst. Another relevant characteristic

is that CSSA produces strongly separable components, meaning that the resulting

estimated signals are uncorrelated. In this contribution we deepen in the strong

separability of CSSA and compare it to SSA by means of a detailed example.

Finally, we apply CSSA to UK and US quarterly GDP to check that it produces

reliable cycle estimators and strong separable components. We also test the absence

of any seasonality in the seasonally adjusted time series estimated by CSSA.

1 Introduction

Signal extraction time series methods seek to estimate a set of components that

isolate each of the main characteristics of a dynamic indicator. The decomposition

is usually based on the periodicity of associated fluctuations. In the classic setting

in economics, the trend component accounts for the long-run fluctuations, the

cycle for fluctuations between 1.5 and 8 years, seasonality for 1 year fluctuations,

and the remaining short run deviations are assigned to the irregular component.

Additionally, statistical offices regularly produce and publish seasonal adjusted

time series that remove the estimated seasonality from the original data. Seasonal
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adjusted time series are a useful tool for economic policy makers and analysts as

they are much easier to interpret than the original data.

One desirable property of the signal extraction method is that the resulting com-

ponents are orthogonal, however, they usually exhibit cross-correlation. Residual

seasonality in seasonal adjusted time series is a concern in any signal extraction

method since the very early papers, see, for instance, [3] or [2]. And it is today still

a relevant issue. Findley et al. [4] point out that “The most fundamental seasonal

adjustment deficiency is detectable seasonality after adjustment.” This is also a

concern for policy makers as seen in [9].

Circulant singular spectrum analysis (CSSA) is a signal extraction non-

parametric automated procedure based on singular spectrum analysis (SSA)

developed in [1]. These authors also showed that the components estimated by

CSSA were strongly separable and checked that this property was fulfilled by the

estimation obtained in the analysis of Industrial Production in 6 countries. In this

chapter, we focus more in detail on the property of separability and illustrate by

means of an example the main differences between Basic SSA and CSSA in relation

to separability.

Finally, we apply CSSA to UK and US quarterly GDP, check the reliability of the

estimated components and their separability, and test for any remaining seasonality

in the seasonally adjusted time series.

This chapter is organized as follows. Section 2 reviews the classical SSA

methodology and introduces the new CSSA. Section 3 deals with separability and

the differences between the results obtained by CSSA and Basic CSSA. Section 4

applies the technique to UK and US GDP, and Sect. 5 concludes.

2 SSA Methodology and CSSA

2.1 Classical SSA

In this section we briefly review SSA and then point out the differences with our

new approach CSSA. The goal is to decompose a time series into its unobserved

components (trend, cycle, etc.). SSA, see [5], is a technique in two stages:

decomposition and reconstruction. In the first stage, decomposition, we transform

the original vector of data into a related trajectory matrix and perform its singular

value decomposition to obtain the so-called elementary matrices. This corresponds

to steps 1 and 2 in the algorithm. In the second stage, reconstruction, steps 3 and 4

of the algorithm, we provide estimates of the unobserved components. In the third

step, we classify the elementary matrices into groups associating each group to an

unobserved component (trend, cycle, etc.). In the final step, we transform every

group into an unobserved component of the same size of the original time series

by diagonal averaging. To proceed with the algorithm, let {xt } be a real valued zero

mean time series of size T , x = (x1, . . . , xT )
�, and L a positive integer, called the
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window length, such that 1 < L < T/2. The SSA procedure involves the following

4 steps:

1st Step: Embedding

From the original time series we obtain an L × N trajectory matrix X given by

L dimensional time series of length N = T − L+ 1 as

X = (x1| . . . |xN ) =

»
¿¿¿¿

x1 x2 x3 . . . xN

x2 x3 x4 . . . xN+1

...
...

...
...

...

xL xL+1 xL+2 . . . xT

¿
¿¿¿£

where xj = (xj , . . . , xj+L−1)
� indicates the vector of dimension L and origin at

time j. Notice that the trajectory matrix X is Hankel and both, by columns and

rows, we obtain subseries of the original one.

2nd Step: Decomposition

In this step, we perform the singular value decomposition (SVD) of the trajectory

matrix X = UD1/2V�. In Basic SSA U is the L × L matrix whose columns uk are

the eigenvectors of the second moment matrix S = XX�, D = diag(Ç1, . . . , ÇL),

Ç1 g . . . g ÇL g 0, are the eigenvalues of S and V is the N × L matrix whose

columns vk are the L eigenvectors of X�X associated with nonzero eigenvalues. This

decomposition allows to write X as the sum of the so-called elementary matrices Xk

of rank 1,

X =
r�

k=1

Xk =
r�

k=1

ukw�
k,

where wk = X�uk = :
Çkvk and r = maxÇk>0{k}=rank(X).

The original and alternative versions of SSA base the decomposition of the

trajectory matrix on the second order moment of the series.

3rd Step: Grouping

In this step we group the elementary matrices Xk into m disjoint groups summing

up the matrices within each group. Let Ij = {j1, . . . , jp}, j = 1, . . . ,m each dis-

joint group of indexes associated with the corresponding eigenvectors. The matrix

XIj = Xj1 + . . . + Xjp is associated with the Ij group. The decomposition of the

trajectory matrix into these groups is given by X = XI1 +. . .+XIm . The contribution

of the component coming from matrix XIj is given by
�

k∈Ij

�»k/
�r

k=1
�»k.

4th Step: Reconstruction

Let XIj = (�xij ). In this step, each matrix XIj is transformed into a new time

series of the same length T as the original one, denoted as �x(j) = (�x(j)1 , . . . ,�x(j)T )�
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by diagonal averaging of the elements of XIj over its antidiagonals as follows:

�x(j)t =

§
⎪«
⎪«

1
t

�t
i=1 �xi,t−i+1, 1 ≤ t < L

1
L

�L
i=1 �xi,t−i+1, L ≤ t ≤ N

1
T−t+1

�T−N+1
i=L−N+1 �xi,t−i+1, N < t ≤ T .

2.2 Circulant SSA

Circulant SSA modifies steps 2 and 3 of the previous algorithm. It has been

introduced in [1]. The decomposition step is made through an alternative second

moments matrix that has the property of being Circulant. Let SC a matrix of second

moments where each element of the first row is given by

�cm = L −m

L
sm + m

L
sL−m, m = 0, 1, . . . , L − 1;

with

sm = 1

T −m

T−m�

t=1

xtxt+m.

From this first row we construct a Circulant matrix so, for instance, in the second

row we will shift one position to the right each element �cm and place the last one in

the first position of the row, and so on. Circulant matrices are related to the spectral

density of stationary time series. In particular, the elements of the Circulant matrix

of population second moments are also given by

cm = 1

L

i−1�

k=0

f

�
k

L

�
exp

�
i2Ãm

k

L

�

for m = 0, 1, . . . , L − 1 where the spectral density is given by

f (w) =
>�

m=−>
³m exp (i2Ãmw)

for w ∈ [0, 1] and ³m is the autocovariance of order m-th, that is estimated through

sm. Then, the spectral density function can be estimated at particular frequencies in

the sample by

�f
�
k − 1

L

�
=

>�

m=−>
sm exp

�
i2Ãm

k − 1

L

�
.
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The decomposition step in CSSA proposes to perform an orthogonal diagonal-

ization over the Circulant matrix of second moments SC . Bógalo et al. [1] show that

the eigenvalues�»k and the eigenvectors uk of SC are given by

�»k j �f
�
k − 1

L

�
, (1)

and

uk = L−1/2
�
uk,1, . . . , uk,L

��
, uk,j = exp

�
−i2Ã (j − 1)

k − 1

L

�
. (2)

Notice that (1) allows a direct association between the k-th eigenvalue and the

frequency wk = k−1
L
, k = 1, . . . , L.

The second variant that CSSA proposes is to make the grouping according to the

desired frequencies.

Given the symmetry of the spectral density, we have that �»k = �»L+2−k . There-

fore, to generate the elementary matrices we first form the groups of 2 elements

Bk = {k,L+ 2 − k} for k = 2, . . . ,M with B1 = {1} and BL
2
+1 =

�
L
2

+ 1
�

if L is

even. Second, notice that their corresponding eigenvectors uk , given by (2), are the

k columns of the U Fourier matrix of dimension L, therefore, they are conjugated

complex by pairs, uk = uL+2−k where v indicates the complex conjugate of a vector

v, and u7
kX and u7

L+2−kX correspond to the same harmonic period, where v7 denotes

the transpose conjugate of uk .

We compute the elementary matrix by frequency XBk as the sum of the two

elementary matrices Xk and XL+2−k , associated with eigenvalues �»k and �»L+2−k

and frequency k−1
L

,

XBk = Xk + XL+2−k

= uku7
kX + uL+2−ku7

L+2−kX

= (uku7
k + uku7

k)X

= 2(RukR
�
uk

+ Iuk I
�
uk
)X

where the prime denotes transpose, Ruk denotes the real part of uk , and Iuk its

imaginary part. In this way, all the matrices Xk, k = 1, . . . , L, are real.

3 Separability

As pointed out in [1], another important feature of CSSA is the strong separability

of the elementary series as well as those grouped by frequencies, outperforming

alternative algorithms. This characteristic is important since many signal extraction
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procedures assume zero correlation between their underlying components, whereas

the estimated signals can be quite correlated. As [5] point out the SSA decompo-

sition can be successful only if the resulting additive components of the series are

quite separable from each other. In this section, we deepen in the concept of strong

separability of CSSA by developing an example and comparing it to Basic SSA.

For a fixed window length L, given two series
�
x
(1)
t

�
and

�
x
(2)
t

�
extracted from

the series {xt }, we say that they are weakly separable if both their column and row

spaces are orthogonal, that is, their trajectory matrices X(1) and X(2) are such that

X(1)
�
X(2)

��
= 0L×L and

�
X(1)

��
X(2) = 0N×N . Furthermore, we say that two

series
�
x
(1)
t

�
and

�
x
(2)
t

�
are strongly separable if they are weakly separable and

the two sets of singular values of the trajectory matrices X(1) and X(2) associated

with
�
x
(1)
t

�
and

�
x
(2)
t

�
, respectively, are disjoint. When the trajectory matrix

of the original time series has not multiple singular values or, equivalently, each

elementary reconstructed series belongs to a different harmonic, strong separability

is guaranteed according to the previous definition.

We measure separability in terms of w-correlation ([5] and [6]), that it is given

by

Ãw
12

=
�
x(1), x(2)

�
w��x(1)

��
w

��x(1)
��
w

,

where
�
x(1), x(2)

�
w

= (x(1))�Wx(2) is the so-called w-inner product and
��x(1)

��
w

=��
x(1), x(1)

�
w

and W =diag(1, 2, . . . , L, . . . , L� �� �
T − 2(L− 1) times

, . . . , 2, 1). Note that the

window length L enters the definition of w-correlation. We are interested in

producing components with w-correlation (ideally) zero because, in this case, we

can conclude that the component series are w-orthogonal, i.e.,
�
x(1), x(2)

�
w

= 0 and

separable (see, [5]). To quickly check how separable are the component series when

performing SSA, we will plot the matrix of the absolute values of the w-correlations

for all the component series, coloring in white the absence of w-correlation, in

black w-correlations in absolute value equal to 1 and in a scale of grey colors, the

remaining intermediate values.

3.1 An Illustration of Separability with SSA and CSSA

Circulant SSA produces components that are strongly separable. The main argument

is that the real eigenvectors
:

2Ruk and
:

2Iuk (linked to eigenvalues »k and

»L+2−k , respectively, »k = »L+2−k) are orthogonal and have information associated

only with frequency k−1
L

. Those are the only eigenvectors that have information
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related to this frequency. As eigenvectors can be considered filters [7] these pair of

eigenvectors extract elementary series linked to the same frequency without mixing

with harmonics of other frequencies. As a result, the two elementary series, when

reconstructed in step 4, have spectral correlation close to 1 between them and close

to zero with the remaining ones. Taking into account the pairs of reconstructed series

per frequency, any grouping of the reconstructed series results in disjoint sets from

the point of view of the frequency. Then, Circulant SSA produces components that

are approximately strongly separable. In this case, the graph of the w-correlation

matrix is colored in black in the main diagonal and in white elsewhere as in the

ideal case.

To illustrate the separability of Circulant SSA, consider the following example.

Let xt = x
(1)
t + x

(2)
t , where x

(n)
t = An sin(2Ãwnt), n = 1, 2 for a sample size

T = 181. The sine components have different frequency, w1 = 1/45 and w2 =
1/10, but the same amplitude A1 = A2 = 1. Figure 1 shows the two basic sinusoid

components and their sum.

We perform Circulant and Basic SSA with a window length L equal to 90, that

is multiple of 45 and 10. Figure 2 shows that the eigenvalues of both, Circulant

and Basic SSA are almost identical. In Basic SSA eigenvalues are ordered in a

decreasing way, while in CSSA, they are shown related to the frequencies that they

identify and that makes easier the spectral identification of the components of the

series xt .

Figures 3 and 4 show the differences between both procedures. Figure 3 shows

the w-correlations of the 4 reconstructed elementary series, corresponding to the

eigenvalues ordered in a decreasing way. In CSSA we can observe that each pair

of elementary reconstructed series corresponding to the same harmonic has w-

correlation very close to 1 and are w-orthogonal to the rest.

On the other hand, Fig. 4 shows the scatterplots of the eigenvectors. On the

contrary, Basic SSA shows higher w-correlations between the reconstructed series

and more mixed patterns in their scatterplots.

In Fig. 5 we plot the component series extracted by Circulant SSA while in Fig. 6

we plot the component series extracted by Basic SSA. Notice that in Basic SSA

we cannot separate the two sine series since two elementary components (top left

and bottom right in Fig. 6) are quite mixed and do not correspond to a particular

frequency (either 1/45 or 1/10). On the contrary, the elementary series extracted

from Circulant SSA have only information associated with a particular frequency,

either 1/45 or 1/10 (see Fig. 4). This result could have been advanced given the w-

correlation matrices shown in Fig. 3.
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Fig. 1 Two simulated sinusoids and their sum

Fig. 2 Eigenvalues obtained through Circulant and Basic SSA



Strong Separability in Circulant SSA 303

4

3

2

1

1 2 3 4

Circulant Basic

[0.00 , 0.05]
[0.05 , 0.10]
[0.10 , 0.15]
[0.15 , 0.20]
[0.20 , 0.25]
[0.25 , 0.30]
[0.30 , 0.35]
[0.35 , 0.40]
[0.40 , 0.45]
[0.45 , 0.50]
[0.50 , 0.55]
[0.55 , 0.60]
[0.60 , 0.65]
[0.65 , 0.70]
[0.70 , 0.75]
[0.75 , 0.80]
[0.80 , 0.85]
[0.85 , 0.90]
[0.90 , 0.95]
[0.95 , 1.00]

1 2 3 4

4

3

2

1

Fig. 3 W-correlations of the reconstructed elementary components obtained through Circulant

(left) and Basic (right) SSA

Fig. 4 Plots of pairs of eigenvectors
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Fig. 5 Components extracted through Circulant SSA

4 Empirical Application

We apply CSSA to quarterly gross domestic product (GDP) in UK and in the USA.

Our aim is twofold, first we check on the accuracy of the estimated components

by comparing the estimated cycle with the dated recessions by OECD. Second, we

check on the strong separability of the components. We pay special attention to the

presence of any remaining seasonality in the seasonally adjusted time series, as it is

one of the most followed indicators for real time monitoring of economic activity.

Data for UK GDP are taken from the UK Office for National Statistics (www.ons.

gov.uk). Data are quarterly original volume chain index numbers where the value

of the index for 2010 is 100. Data for US GDP are taken from the US Bureau of

www.ons.gov.uk
www.ons.gov.uk
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Fig. 6 Components extracted through Basic SSA
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Fig. 7 GDP and estimated trend for US and UK

Economic Analysis (www.bea.gov). US data are only published seasonally adjusted

and are index numbers where the value of the index for 2009 is 100. The sample

for both indicators goes from the first quarter in 1955 to the last quarter in 2016,

therefore we have T = 248 observations. Figure 7 shows US and UK GDP.

To select the window length L, we consider a value that is between T/4 and

T/3 and that is multiple of the cycle frequency. In this case, taking into account

that business cycle frequencies range between one year and a half and 8 years (32

quarters), we consider L = 64. Longer oscillations (16 years, 64 quarters) will be

assigned to the trend component.

www.bea.gov
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Table 1 Signal contribution

on GDP
UK US

Trend 91.79 92.56

Cycle 6.85 6.47

Seasonal 0.35 0.07

Total 98.99 99.09
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Fig. 8 Estimated GDP cycle for the USA and UK and OECD recession dates (shadowed area)

Let Bk = {k,L − k + 2} the elementary pair associated with the frequency w =
k−1
L

. The group associated with the trend will be It rend = {B1, B2} that corresponds

with frequencies 0 and 1/64. The group associated to the cycle will be Icycle =
{B3, B4, B5, B6, B7, B8, B9, B10, B11} that corresponds to frequencies 2/63, 3/64,

4/64, 5/64, 6/74,7/64, 8/64, 9/64, and 10/64, while the group associated with the

seasonal component is Iseasonal = {B17, B33}, corresponding to the frequencies 1/4

and 1/2.

Figure 7 shows the estimated trend and Table 1 shows the contribution of the

different signals to the original data. The adjustment, measured by the contribution

of the irregular component in terms of the original corresponding GDP, shows

that noise variance is not greater than 1% of that of the original series in both

geographical areas. The trend is the signal with greatest contribution, around 92%,

the cycle contributes with a little more than 6% and seasonality is low in UK (0.35%)

and residual in the USA where the original data were already seasonally adjusted.

Figure 8 shows the business cycle estimated by CSSA and the OECD dated

recessions. As it can be seen there is great coincidence except two small differences

in UK. The differences occur in 1983, when the OECD dates a shorter recession

than CSSA, and 1995 when, on the contrary, the OECD dates a longer recession

than CSSA.
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Fig. 9 w-Correlation matrix for the elementary reconstructed series for the 30 greatest eigenvalues

4.1 Seasonality

Figure 9 represents w-correlation matrices for the elementary reconstructed series

corresponding to the 30 greatest eigenvalues in decreasing order. As it is expected,

the plot shows that w-correlations corresponding to elementary reconstructed time

series of the group Bk are close to one and generate black diagonal of blocks

2 × 2. Figure 9 also shows the absence of cross w-correlations with the rest of

the reconstructed series. The results also hold for the seasonal frequencies. Notice

that in CSSA the eigenvectors of the Circulant matrices do not change for a given

window lengthL so the revisions of the data do not affect so much the results. When

seasonally adjusted data are published, they are adjusted for a given time span or

published data and, varying the data or the time span can change the conclusions

about residual seasonality on the adjusted series.

Findley et al. [4] apply different seasonal residual tests to seasonally adjusted

time series. They find that most of the diagnostics must be applied to a subspan

(preferably including the most recent data) of the seasonally adjusted series for best

residual seasonality detection, but this raises doubts about the idempotency. By that

we mean that perhaps the tests do throw different conclusions if applied to the full

sample or to some subsamples.

We check the presence of seasonality before and after the adjustment of seasonal-

ity to the time series by the combined seasonality test used in X-13 ARIMA-SEATS,

[8]. The aim of the combined seasonality test is to determine whether the seasonality

of the series can be identifiable. It uses the so-called SI (seasonal-irregular) ratios,

calculated as the ratio of the original series to the estimated trend. In other words, SI

ratios are estimates of the detrended series. This test comprises four combined tests:

stable seasonality (FS statistic), evolutive seasonality (FM statistic), identifiable

seasonality (statistics T1 = 7
FS−FM

and T2 = 3FM
FS

), and finally a Kruskal-Wallis



308 J. Bógalo et al.

Table 2 Combined seasonal test

Stable seas. Evolving seas. Identifiable seas. Kruskal-Wallis I/NIa

FS p-val FS p-val T T1 T2 W p-val

Original time series

UK 189.1 0.00 0.23 1.00 0.14 0.04 0.00 175.8 0.00 I

US 1.02 0.38 1.73 0.00 2.44 6.84 5.08 2.18 0.54 NI

Seasonal adjusted time series

UK 0.76 0.52 0.58 0.99 2.40 9.24 2.31 2.18 0.54 NI

US 0.20 0.89 1.87 0.00 5.67 35.9 28.3 0.19 0.98 NI

aStands for identifiable and non-identifiable seasonality

test to check the average values of the different seasons. In all the tests, the null

hypothesis is the absence of seasonality in the series.

Table 2 shows the combined seasonality tests, and their corresponding p-values,

applied both to the original GDP series and to the seasonally adjusted series obtained

with Circulant SSA. The top panel is referred to the original series and the bottom

panel to the seasonally adjusted series. The consequence is clear: the only series that

presents identifiable seasonality is the original UK GDP series, as expected.

5 Concluding Remarks

Circulant SSA is an automated version of SSA that allows the association between

desired frequencies and extracted components. This contribution deepens on the

property of strong separability between the extracted components. It illustrates the

different performance between CSSA and SSA by means of a simulated example

finding that the signals extracted by CSSA show smaller w-correlations. One

important consequence of the strong separability of the components extracted with

CSSA is that the seasonal component should be w-uncorrelated with the remaining

components. This means that the adjusted series from seasonality should be clean

from seasonal variation. Residual seasonality has been identified in the literature

as the most fundamental seasonal adjustment deficiency. In this work, we also test

for the absence of residual seasonality with an empirical application to the CSSA

seasonally adjusted series obtained from the quarterly GDP series for UK and the

USA, showing that the seasonally adjusted series through CSSA pass the tests used

in the literature for detecting residual seasonality and, therefore, can be considered

clean from seasonality.
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Selection of Window Length in Singular
Spectrum Analysis of a Time Series

P. Unnikrishnan and V. Jothiprakash

Abstract Singular Spectrum Analysis (SSA) is a promising non-parametric time

series modelling technique that has proved to be successful in data preprocessing in

diverse application fields. It is a window length-based method and the appropriate

selection of window length plays a crucial role in the accuracy of SSA. However,

there are no specific methods depicted in the literature about its selection. In this

study, the method of SSA in time series analysis is presented in detail and a

sensitivity analysis of window length is carried out based on an observed daily

rainfall time series.

1 Introduction

Time series modelling is the study of the temporally arranged data or development

of a model for prediction where time is an independent variable [7]. The complexity

of the time series model depends on the characteristics of the available time series

data [1]. According to the complexity and characteristics of the underlying physical

process of the time series, various empirical, conceptual, physically based and data-

driven models have been developed in the field of hydrology [9]. Famous time

series models in the field of hydrology include conventional stochastic models and

data-driven techniques. Recently, models like SSA and wavelet model that works

on the internal structure of the time series has found its application in time series

modelling. SSA is a model-free and non-parametric time series analysis technique

that has proved to be very successful in preprocessing the data by eliminating

the unwanted noise [2, 4]. It combines classical time series analysis, multivariate

statistics, multivariate geometry, signal processing and dynamical systems [4]. It

decomposes the time series into various small subcomponents. The data adaptive

nature of the basis functions used in SSA gives the method significant strength
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over classical spectral methods and makes the approach suitable for analysis of

some non-linear dynamics [4]. Unlike stochastic models, there is no assumption of

stationarity in the method of SSA. SSA can be successfully applied in diverse time

series analysis and modelling areas such as extraction of various components of the

time series, change point detection, gap filling, image processing, elimination of

noise from signal, etc. Window length is the only parameter in the method of SSA.

The entire decomposition of the time series will depend on the window length. Thus,

it is very important to select window length accurately. In the present study, the

importance of window length has been studied and a sensitivity analysis of window

length has been carried out on an observed time series. The daily rainfall data of

Koyna catchment, Maharashtra, India for 52 years has been utilized in the study.

The detailed description of the method of SSA can be seen in next section.

2 Singular Spectrum Analysis (SSA)

Singular Spectrum Analysis involves two major stages: decomposition and

reconstruction. Decomposition includes two steps: embedding and Singular Value

Decomposition (SVD). Reconstruction phase involves two steps: grouping and

diagonal averaging.

2.1 Embedding

It is the stage in SSA where the time series is converted into a matrix upon which

multivariate statistics can be carried out. If Y is the time series upon consideration,

the embedding stage transfers it into a trajectory matrix X, based on a window length

chosen for the time series. A trajectory matrix is a Hankel matrix (anti-diagonals

are equal) with dimension L x K, where L is the window length and K is the lag

parameter, K =N-L+1, where N is the time series length. If L is the window length

and N is the time series length, the embedding stage can be described as below: Let

Y be the time series upon consideration

Y = y1, y2, y3 . . . .yN (1)

Xi = y1, y2, y3, . . . yi + L − 1 (2)

Then trajectory matrix is given as:

X = [X1X2X3...XK ] (3)
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2.2 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) of the trajectory matrix of time series is the

core stage of SSA in which the number and form of decomposed components

depend on the window length utilized for decomposition. SVD transforms the

matrix into product of three matrices together called Eigen Triple (ET): left singular

vector or eigen function (eigen vectors of XXT ), diagonal matrix of eigen values,

transpose of right singular vector or principal component (eigen vector of XTX).

XLxK = ULxlDLxKV
7
KxK (4)

UDV* is called eigen triples, where X is the trajectory matrix, U is the left

orthogonal vector system (eigen function), V is the right orthogonal vector system

(principal component) and D is the diagonal matrix containing the square roots of

eigen values written in descending order. Thus, the trajectory matrix (X) can be

interpreted as the sum of d matrices where d is the rank of the trajectory matrix X.

X =
d�

i=1

Xi (5)

Xi = Ui

:
»Vi (6)

» = eigen value ofXXT , i = 1, 2, 3, · · · d, d = max(i :
:
»i > 0).

2.3 Grouping

Grouping is the stage in SSA where the different components of time series are

identified and selected for reconstruction. It is the procedure of arranging matrix

terms Xi in Eq. (5). Basically, the method of grouping divides the set of indices

1,. . .d into m disjoint subsets I1, I2, . . . .Im.

I =
�
i1, i2, . . . ..ip

�
(7)

Then, the resultant matrix XI corresponding to the group I is defined as:

XI = Xi1 +Xi2 + . . . . . . Xip (8)

X = XI1 +XI2 + . . . . . . XIm (9)
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There is no hard and fast rule in the method of grouping. Based on the eigen

values, eigen functions and principal components, the different components of the

time series need to be identified.

2.4 Diagonal Averaging

In this stage, each matrix XIj from the grouping stage is transformed to time

series of length N. This corresponds to averaging the matrix elements over the anti-

diagonals i+j=k+1.

3 Significance and Selection of Window Length

SSA is a window length-based method of time series decomposition that will

eliminate the problem of the variation in the frequency behaviour of the time series

along the time axis by means of breaking the long-time axis into various time

segments. Window length (L) is the only parameter in SSA and it decides the form of

the trajectory matrix. Its adequate choice is important in getting better results. The

choice of L represents a compromise between information content and statistical

confidence. Too small window length can cause mixing of interpretable components

and too big window length produce undesirable decomposition of components.

There is no universal rule in selecting the window length. However, there are some

recommendations in selecting the window length [3]. The general recommendations

for its selection are given below:

1. Window length should be less than half of the time series length.

2. If the time series has a periodicity component with known period, it would be

better to take a window length proportional to this period.

3. If the window length is relatively big, the results are stable under the small

perturbations of the window length.

4. Too small window length would cause mixing of interpretable components.

5. Too big window length may produce undesirable decomposition of components.

4 Sensitivity Analysis of Window Length: A Case Study

In the present study, in order to carry out the sensitivity analysis of window length,

a daily rainfall time series has been utilized as a case study. The daily rainfall

data pertaining to Koyna catchment in Maharashtra, India from 1st January 1961

to 31st December 2013 has been collected from Koyna Irrigation division office,

Government of Maharashtra, India. The details of the study area have been given in

Jothiprakash and Magar [6] and Unnikrishnan and Jothiprakash [10]. The time series
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Fig. 1 Daily rainfall of Koyna catchment from 01/01/1961 to 31/12/2013

plot of the Koyna rainfall for the time period of 1st January 1961 to 31st December

2013 is given in Fig. 1. A time series plot is the plot that shows the variation of the

given variable with respect to time. In the present case study, the time scale is daily

and the variable is rainfall. Figure 1 shows the pattern of the rainfall that repeats

every year, with positive rainfall during monsoon season (June–October) and zero

rainfall during non-monsoon season (November–May). This repetitive behaviour of

the daily rainfall can be accounted for the prevailing periodicity component present

in the series. A time series is said to contain a periodic component of period ‘T’,

when the pattern of the series repeats in every ‘T’ interval of time.

Autocorrelation can be defined as the correlation between the pair of values of

the process separated by an interval of length ‘k’, and the parameter ‘k’ is generally

known as ‘lag’ [8]. The autocorrelation of a time series ‘yt ’ for a lag ‘k’ can be

defined as below: As the covariance is independent of time, it can be written as:

ACF(k) = E[(yt − μ)(yt+k − μ):
V ar[yt]V ar[yt+k]

(10)

where ACF(k) is the ACF for a lag ‘k’ of the time series yt and yt+k is the time

series lagged by ‘k’ times. ACF can reveal the internal structure of the time series

and can be interpreted as the measure of similarity between a realization of the time

series (Y(t)) and the same realization shifted by ‘k’ units [8]. Thus, ACF plot can

be used to detect the presence of periodic component in the time series, as it reflects

the repetitive nature of the periodic component.

The ACF plot of Koyna daily rainfall series up to a lag of 1000 days is given in

Fig. 2. The pattern of ACF plot repeats at every 365 lags. This repetition of pattern

of ACF plot indicates the presence of a periodic component with period of 365

days in the time series. Thus, as per recommendation in selection of window length

as explained in the previous section, it may be advantageous if we are selecting

multiples of 365 as window length. In the present study, in order to carry out
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Fig. 2 Autocorrelation function of Koyna daily rainfall data up to a lag of 1000 days

sensitivity analysis in selection of window length, various window lengths have been

chosen and the performance of SSA in decomposition is compared. The window

length in days chosen are 50, 100, 365, 1000 and 2000 (two values below 365 and

two above 365). As discussed in the earlier section, upon SVD of the trajectory

matrix, the trajectory matrix is decomposed into product of ‘L’ number of eigen

triples where ‘L’ is the window length adopted for decomposition. Eigen triples

includes eigen function, square root of eigen values and principal components.

Each of the eigen function and principal components contains ‘L’ and ‘K’ elements,

respectively. Hence, each eigen functions and principal components can be treated

as a time series. Thus, the choice of window length heavily affects not only the form

of trajectory matrix but also that of eigen functions and principal components. Phase

space plot of paired eigen functions (one eigen function to the next adjacent eigen

function) gives the pictorial representation of the decomposition of the time series.

This 2D paired plot between eigen function(t) and eigen function(t+1) will show

how the observations can be grouped together for the present decomposition and

will give a significant insight to the data analyst about the variation in the data [5].

The 2D paired plots of first 10 eigen functions corresponding to SSA decomposition

for various window lengths (50, 100, 365, 1000 and 2000 days) of Koyna daily

rainfall data are given in Figs. 3, 4, 5, 6 and 7, respectively.

The 2D paired plots for various window lengths show that for window length 50

as well as for 100, the time series is under-decomposed, which can be interpreted

from the open scatter plots of the first few eigen functions shown in Figs. 3 and 4.

The 2D paired plots for window lengths 1000 and 2000 (Figs. 6 and 7) show that

a number of data points in the same eigen function are sharing the same values

which implies a possible over-decomposition of the time series. For more detailed

analysis, periodograms of eigen functions for all the decompositions have been used.



Selection of Window Length in Singular Spectrum Analysis of a Time Series 317

0.2
0.2

0.0

3
(6

.6
9
1
%

)

–0.2

–0.2 -0.1 0.0 0.1 0.2

0.4

0.2

0.2

3(6.691%)

0.0

0.0

4
(5

.5
0
3
%

)

–0.2

–0.2

0.2

6(2.807%)

0.0–0.2

0.2

9(1.545%)

0.0–0.2

0.2

0.0

7
(2

.1
6
1
%

)

–0.2

0.2

0.0

1
0
(1

.3
0
7
%

)
–0.2

2(10.241%)

–0.2 0.0 0.2

5(3.736%)

–0.2 0.0 0.2

8(1.828%)

0.2

0.0
6
(2

.8
0
7
%

)

–0.2

0.2

0.0

9
(1

.5
4
5
%

)

–0.2

0.1

0.0

2
(1

0
.2

4
1
%

)
5
(3

.7
3
6
%

)

–0.1

–0.2

0.12 0.13

1(50.187%)

–0.2 0.0 0.2

4(5.503%)

–0.2 0.0 0.2

7(2.161%)

0.14 0.15

0.2

0.0

–0.2

8
(1

.8
2
8
%

)

0.2

0.0

–0.2

Fig. 3 Paired plot of first 10 eigen functions, SSA decomposition window length=50 days

0.2

0.1

0.0

2
(1

4
.6

5
4
%

)

3
(4

.8
3
2
%

)
6
(3

.0
5
2
%

)
9
(2

.0
6
7
%

)

4
(3

.6
4
9
%

)
7
(2

.7
6
0
%

)
1
0
(1

.7
0
4
%

)

5
(3

.5
5
4
%

)
8
(2

.3
1
0
%

)

–0.1

–0.2
0.06 0.08 0.10

1(38.274%) 2(14.654%) 3(4.832%)

0.12 –0.2 –0.1 0.0 0.1 0.2

4(3.649%)

–0.2 –0.1 0.0 0.1 0.2

5(3.554%)

–0.2 –0.1 0.0 0.1 0.2

6(3.052%)

–0.2 –0.1 0.0 0.1 0.2

9(2.067%)

–0.2 –0.1 0.0 0.1 0.2

8(2.310%)7(2.760%)

–0.2 –0.1 0.0 0.1 0.2–0.2 –0.1 0.0 0.1 0.2

–0.1 0.0 0.1 0.2

0.2

0.1

0.0

–0.1

–0.2

0.2

0.1

0.0

–0.1

–0.2

0.2

0.1

0.0

–0.1

–0.2

0.2

0.1

0.0

–0.1

–0.2

0.2

0.1

0.0

–0.1

–0.2

0.2

0.1

0.0

–0.1

0.2

0.1

0.0

–0.1

–0.2

0.2

0.1

0.0

–0.1

–0.2

Fig. 4 Paired plot SSA decomposition window length=100 days



318 P. Unnikrishnan and V. Jothiprakash

0.10

0.05

0.00

2
(1

1
.8

4
1
%

)
5
(5

.9
7
0
%

)
8
(1

.1
4
0
%

)

3
(1

1
.7

8
2
%

)
6
(2

.1
8
2
%

)
9
(1

.1
3
5
%

)

4
(5

.9
9
6
%

)
7
(2

.1
6
2
%

)
1
0
(1

.0
8
0
%

)

–0.05

–0.10
0.049 0.050 0.051 0.052

1(14.897%)

0.053 0.054 0.055 –0.10 –0.05 0.00 0.05 0.10

2(11.841%)

–0.10 –0.05 0.00 0.05 0.10 –0.10 –0.05 0.00
5(5.970%)

0.05 0.10 –0.10 –0.05 0.00

6(2.182%)

0.05 0.10

–0.10 –0.05 0.00

9(1.135%)

0.05 0.10–0.10 –0.05 0.00

8(1.140%)

0.05 0.10–0.10 –0.05 0.00

7(2.162%)

0.05 0.10

4(5.996%)

–0.10 –0.05 0.00 0.05 0.10

3(11.782%)
0.10

0.05

0.00

–0.05

–0.10

0.10

0.05

0.00

–0.05

–0.10

0.10

0.05

0.00

–0.05

–0.10

0.10

0.05

0.00

–0.05

–0.10

0.10

0.05

0.00

–0.05

–0.10

0.10

0.05

0.00

–0.05

–0.10

0.10

0.05

0.00

–0.05

–0.10

0.10

0.05

0.00

–0.05

–0.10

Fig. 5 Paired plot SSA decomposition window length=365 days

0.06

0.04

0.02

0.00

–0.02

2
(1

2
.2

1
0

%
)

–0.04

–0.06

0.01 0.02 0.03 –0.06–0.04–0.02 0.00

2(12.210%)

0.02 0.04 0.06 –0.04 –0.02 0.00

3(10.538%)

0.02 0.04 0.06

1(15.210%)

0.04

–0.05 0.00 0.05

4(5.740%)

–0.05 0.00 0.05

5(5.539%)

–0.05 0.00 0.05

6(1.957%)

–0.05 0.00 0.05

7(1.877%)

–0.05–0.10 0.00 0.05

8(0.687%)

–0.05 0.00 0.05

9(0.677%)

0.05

0.00

5
(5

.5
3

9
%

)

–0.05

0.05

0.00

8
(0

.6
7

8
%

)

–0.05

0.06

0.04

0.02

0.00

–0.023
(1

0
.5

3
8

%
)

–0.04

0.10

0.05

0.00

–0.05

4
(5

.7
4

0
%

)

0.05

0.00

–0.05

7
(1

.8
7

7
%

)

0.05

0.00

–0.05

1
0

(0
.6

3
1

%
)

0.05

0.00

6
(1

.9
5

7
%

)

–0.05

0.05

0.00

9
(0

.6
7

7
%

)

–0.05

–0.10

Fig. 6 Paired plot SSA decomposition window length=1000 days



Selection of Window Length in Singular Spectrum Analysis of a Time Series 319

0.04

0.02

0.00

2
(1

1
.4

3
1
%

)

–0.02

–0.04
0.010 0.015 0.020

1(14.817%)

0.025 0.030 –0.04 –0.02 0.00 0.02 0.04

2(11.431%)

–0.04 –0.02 0.00 0.02 0.04

4(5.647%)

–0.04 –0.02 0.00 0.02 0.04

7(1.869%)

–0.04 –0.02 0.00 0.02 0.04 –0.04–0.06 –0.02 0.00 0.02 0.04

9(0.482%)

0.06

8(0.484%)

–0.04 –0.02 0.00 0.02 0.04

5(5.621%)

–0.04 –0.02 0.00 0.02 0.04

6(1.877%)

–0.02 0.00

3(11.057%)

0.02 0.04

0.04

0.02

0.00

5
(5

.6
2
1
%

)

–0.02

–0.04

0.04

0.02

0.00

8
(0

.4
8
4
%

)

–0.02

–0.04

0.04

0.02

0.00

3
(1

1
.0

5
7
%

)

–0.02

0.04

0.02

0.00
6
(1

.8
7
7
%

)

–0.02

–0.04

0.04

0.02

0.00

9
(0

.4
8
2
%

)

–0.02

–0.04

0.04

0.02

0.00

4
(5

.6
4
7
%

)

–0.02

–0.04

0.04

0.02

0.00

7
(1

.8
6
9
%

)

–0.02

–0.04

0.05

1
0
(0

.3
9
7
%

)

 0.00

–0.05

Fig. 7 Paired plot SSA decomposition window length=2000 days

Periodogram can be defined as an estimate of spectral density of a time series and

can be used to identify the prevailing periods (or frequencies) of a time series. The

periodogram gives a measure of the relative significance of the frequency values

present in the time series that might explain the oscillation pattern of the observed

data. If the time series under consideration is having ‘N’ number of observations,

then the time series Yt can be written as the following Fourier representation:

Yt =
N/2�

k=0

(ak cosËk t + (bk sinËkt) (11)

where Ëk = 2Ãk/N , k=0,1..N/2, are Fourier frequencies and

ak =
�

1
N

�N
t=1 Yt cosËkt, k=0, k=N/2

2
N

�N
t=1 Yt cosËkt, k=1,2,..[N-1/2]

�
(12)

bk = 2

N

N�

t=1

Yt sinËk t, k = 1, 2, ..[N − 1/2] (13)
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The periodogram of the time series I (Ëk) is given by the following expression:

I (Ëk) =

§
⎪«
⎪«

na2
0, k=0

n
2
(a2

k + b2
k), k=1,2,..[(n-1)/2]

Na2
N/2, k=N/2

«
⎪̄

⎪̄ (14)

A relatively large value of periodogram (I (Ëk)) indicates more importance for the

frequency Ëk in explaining the oscillation in the observed series. As each of the

eigen functions and principal components obtained after SVD of the trajectory

matrix are time series themselves, periodogram can be defined for each of the eigen

functions. A perfect decomposition of a time series involves perfect distribution

of the frequency domain of the time series in the various components (eigen

triples). Periodogram can define the frequency behaviour of a time series, thus

if the decomposition of the time series is adequate by a certain window length,

the periodogram of the corresponding eigen functions can be used to identify the

frequency range of various components of the time series. The periodogram of

first eigen functions of Koyna daily rainfall time series corresponding to SSA

decomposition using various window lengths adopted in the present study is given

in Fig. 8.

The periodogram of first eigen function corresponding to window lengths 50 and

100 days (Fig. 8a, b) shows that the frequency range of the non-zero periodogram

values is too wide, implying mixing up of components, whereas those corresponding

to higher window length (1000 and 2000 days) decomposition (Fig. 8d, e), the

frequency range of non-zero periodogram values is too narrow to extract any

component implying over-decomposition which result in undesirable components.

Also, the periodogram values are also very less in the order of 10−6 and 10−4 for

decomposition using window lengths 2000 and 1000 days, respectively (Fig. 8d, e).

It is observed that for window length of 365 days (Fig. 8c), the decomposition

is good, decomposing desirable components, and the frequency range of the

periodogram is adequate for effective selection of components. The periodogram

of other (higher) eigen functions for the various window lengths have also been

analysed and also showed a similar implication of wider non-zero frequency range

for 50 and 100 and narrow non-zero periodogram frequency range for window

lengths 1000 and 2000. In case of SSA decomposition by window lengths of 1000

and 2000 days, the non-zero periodogram values of higher eigen functions are even

lesser than that of first eigen function. Thus, bigger window length can result in

over-decomposition of the time series and smaller window length can cause under-

decomposition and mixing up of components. Selection of appropriate window

length is very much essential for proper decomposition and extraction of various

components of the time series. A window length equal to the period of periodic

component in the time series will be an adequate choice of window length for time

series analysis and extraction of various components of the time series.
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Fig. 8 Periodogram of first eigen function corresponding to the SSA decomposition of the rainfall

time series using (a) various window length=50 days (b) window length=100 days (c) window

length=365 days (d) window length=1000 days (e) window length=2000 days

5 Conclusion

SSA is a window length-based method which will break the time series into various

small components. Selection of window length is crucial as it defines structure of the

trajectory matrix of the time series. In the present study, the importance of window

length in the decomposition of an observed hydrologic time series has been studied

and a sensitivity analysis of window length has been carried out. 2D paired plots of

corresponding eigen functions and periodogram of eigen functions have been used

to carry out the sensitivity analysis. The results show that higher window length

leads to over-decomposition and wrong interpretation whereas lower window length

leads to under-decomposition and mixing up of components. It is observed that a

window length proportional to period of the prevailing periodic component of the

time series can provide better decomposition and hence can be used for extraction

of various components of the time series.
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Fourier-Type Monitoring Procedures
for Strict Stationarity

S. Lee, S. G. Meintanis, and C. Pretorius

Abstract We consider model-free monitoring procedures for strict stationarity of a

given time series. The new criteria are formulated as L2-type statistics incorporating

the empirical characteristic function. Monte Carlo results as well as an application

to financial data are presented.

1 Introduction

The notion of stationarity plays a very important role in statistical modeling. In

its weakest form of first- or second-order stationarity, it implies that the mean or

second moment, respectively, are time invariant; see, for instance, [8, 26] and [17].

A more general related notion is that of pth order (weak) stationarity which requires

that all joint product moments of order (up to) p are time invariant. Most studies

of stationarity are restricted to some form of weak stationarity, which of course is

the most suitable concept for linear time series. On the other hand, the property of

strict stationarity states that not only moments, but the entire probabilistic structure

of a given series is time invariant. This property is of great importance with non-

linear time series in which low-order moments are not sufficient for the dynamics

of the series, not to mention the case of heavy-tailed time series lacking higher

moments [1, 22]. Another divide is between parametric and non-parametric tests
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for stationarity, with the first class containing the majority of procedures in earlier

literature. There is also the methodological approach that categorizes the methods

which operate either in the time or in the frequency domain. As the existing literature

is vast, we provide below only a selected set of references which is by no means

exhaustive.

In econometrics, the majority of earlier tests for weak stationarity are either

tests for stationarity against unit root or, alternatively, tests of a unit root against

stationarity, with the KPSS and the Dickey–Fuller tests being the by far most popular

ones and having enjoyed a number of generalizations; see, for instance, [11, 12, 24]

and [16]. When it comes to testing for strict stationarity in parametric time series,

there exist many tests. These tests typically reduce to testing for a given portion of

the parameter space and may often readily be extended to monitoring procedures.

We indicatively mention here the work for ARMA, GARCH and DAR models by

[4, 9] and [14], respectively. On the other hand, testing for strict stationarity is scarce

when performed within a purely nonparametric framework. It appears that [18] was

the first to address the issue of testing strict stationarity of the marginal distribution

of an arbitrary time series. There is also the method of [15] which is based on the

joint characteristic function and the papers of [7] and [21] which test for constancy

(of a discretized version) of the marginal quantile process. The interest in testing

for stationarity rests on the fact that modelling, predictions and other inferential

procedures are invalid if this assumption is violated; see [13] for a good review on

this issue. However, although strict stationarity is widely assumed in the literature,

it is not truly a realistic assumption when one observes a given time series over a

long period of time. On the contrary, it is expected that institutional changes cause

structural breaks in the stochastic properties of certain variables, particularly in the

macroeconomic and financial world. In this connection, monitoring the stationarity

of a stochastic process seems to be of an even greater importance than testing.

In this contribution, we propose a sequential procedure for strict stationarity. Our

approach uses the characteristic function (CF) as the main tool. The advantage of

using this function is that the CF can be estimated purely non-parametrically without

the use of smoothing techniques. Moreover, and unlike the case of estimating the

joint distribution function, the estimate of the joint CF is easy to obtain and when

viewed as a process it is continuous in its argument.

The remainder of the chapter is as follows. In Sect. 2, we introduce the basic

idea behind the proposed procedures. Section 3 presents the corresponding detector

statistics. A resampling procedure is proposed in Sect. 4 in order to carry out the

suggested monitoring method. The results of a Monte Carlo study for the finite-

sample properties of the methods are presented in Sect. 5. A short real-world

empirical application to market data is presented and discussed in Sect. 6. Finally,

we end in Sect. 7 with conclusions and discussion.
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2 ECF Statistics

Let {Xt }t∈N be an arbitrary time series, and write Ft (·) for the corresponding

distribution function (DF) of them-dimensional variable§t = (Xt−(m−1), . . . , Xt )
�,

m g 1. We are interested in the behaviour of the distribution of §t over time, i.e.

to monitoring the joint distribution of the observations Xt of a given dimension m.

The null hypothesis is stated as:

H0 : Ft c Fm for all t g m + 1, (1)

against the alternative

H1 : Ft c Fm, t ≤ t0 and Ft (y) �= Fm(y), t > t0, (2)

for some y ∈ Rm, where Fm, Ft , as well as the threshold t0 are considered

unknown. Clearly, m = 1 corresponds to monitoring the marginal distribution of

Xt , m = 2 corresponds to the joint bivariate distribution of (Xt−1,Xt )
", and so

on. As it is typical in monitoring the studies, we assume that there exist a set of

observations X1, . . . , XT (often termed training data), which involve no change,

and that monitoring starts after time T .

To motivate our procedure, let ËY (u) := E(eiu
"Y ), i =

:
−1, be the

characteristic function (CF) of an arbitrary random vector Y . We will compare a

nonparametric estimator of the joint CF Ë§j (u), of §j , j = m,m+ 1, . . . , T , with

the same estimator obtained from observations beyond time T . Then, the quantity

of interest is

DT ,t =
�

Rm

���ËT (u)− �ËT+t (u)
��2
w(u)du, (3)

where

�ËJ (u) = 1

Jm

J�

j=m

eiu
"§j , Jm = J −m+ 1, (4)

is the empirical characteristic function (ECF) computed from the observations

§j , j = m, . . . , J , and w(·) is a weight function which will be discussed below.

Our motivation for considering (3) as our main tool is that the null hypothesis (1)

may equivalently be stated as:

H0 : Ë§t c Ë§m for all t g m+ 1, (5)

and therefore we expect DT ,t to be ‘small’ under the null hypothesis (5). Moreover,

and unlike equivalent approaches based on the empirical DF, the ECF approach
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enjoys the important feature of computational simplicity. Specifically, by straight-

forward algebra we have, from (3):

DT ,t = 1

T 2
m

T�

j,k=m

Wj,k + 1

(Tm + t)2

T+t�

j,k=m

Wj,k − 2

Tm(Tm + t)

T�

j=m

T+t�

k=m

Wj,k,

(6)

where Wj,k = W(§j − §k) with

W(x) =
�

Rm

cos(u"x)w(u)du. (7)

A standard choice is to set w(u) = e−a�u�2
, a > 0, which leads to

W(x) = Ce−�x�2/4a, (8)

where C = (Ã/a)m/2, and hence renders our statistic in closed form. Another

interesting choice results by considering the statistic �DT ,t = −DT ,t (in which case

of course large negative values of �DT ,t are significant). Then, we may write

�DT ,t = 1

T 2

T�

j,k=1

�Wj,k + 1

(T + t)2

T+t�

j,k=1

�Wj,k − 2

T (T + t)

T�

j=1

T+t�

k=1

�Wj,k, (9)

where �Wj,k = �W(§j − §k) with

�W(x) =
�

Rm

(1 − cos(u"x))w(u)du. (10)

If we let in (10) w(u) = �u�−(m+a), 0 < a < 2, then

�W(x) = �C�x�a,

where �C is a known constant depending only on m and a, and hence in this

case too our statistic comes in a closed-form expression suitable for computer

implementation. Note that this weight function was first used by Székely and Rizzo

[25], and later employed by Matteson and James [23] in change-point analysis.

The choice for the weight function w(·) is usually based upon computational

considerations. In fact, if w(·) integrates to one (even after some scaling) and

satisfies w(−u) = w(u), then the function W(·) figuring in (7) can be interpreted

as the CF of a symmetric around zero random variable having density w(·). In this

connection, w(·) can be chosen as the density of any such distribution. Hence, the
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choice e−a�u�2
corresponds to the multivariate normal density but for computational

purposes any density with a simple CF will do.

Another important user-specified parameter of our procedure is the order m

that determines the dimension of the joint distribution which is monitored for

stationarity. Of course, having a sample size T of training data already imposes

the obvious restriction m ≤ T , but if m is only slightly smaller than T , then we

do not expect the ECF to be a reliable estimator of its population counterpart. The

situation is similar to the problem of order-choice when estimating correlations from

the available data; see [6, p. 221] and [5, p. 33] for some general guidelines. In our

Monte Carlo results, we only consider cases where m ≤ 4 (very small compared to

T ), but it is reasonable to assume that we could let m grow as T increases.

3 Detector Statistics and Stopping Rule

As already mentioned, we consider online procedures whereby the test is applied

sequentially on a dynamic data set which is steadily updated over time with the

arrival of new observations. In this context, the null hypothesis is rejected when the

value of a suitable detector statistic exceeds an appropriately chosen constant for

the first time. Otherwise, we continue monitoring. These statistics are commonly

defined by a corresponding stopping rule. In order to define this stopping rule, and

based on asymptotic considerations, we need to introduce an extra weight function

in order to control the large-sample probability of type-I error. In particular, we

employ the detector statistic

�T ,t = 1

q2
³

"
t
T

"
"
T + t − m+ 1:

T − m+ 1

"2

DT ,t , (11)

where DT ,t is defined by (3), and

q³ (s) = (1 + s)

"
s

s + 1

"³

, ³ ∈ [0, 1/2). (12)

Here, q³ denotes an extra weight function needed to control (asymptotically) the

probability of type-I error for the sequential test procedure. The parameter ³

figuring in (12) gives some flexibility to the resulting procedure. Specifically, if

early violations are expected, then the value of ³ should be close to 1/2, while

values closer to zero are appropriate for detecting changes occurring at later stages;

see [3].

As already mentioned, it is clear that since the training data {X1, . . . , XT } are

assumed to involve no change, the monitoring period begins with time t = T + 1.

Typically, this monitoring continues until time T (L + 1), where L denotes a fixed

integer, and if L < > we call the corresponding procedure closed-end. Otherwise
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(i.e. if L = >), we have an open-end procedure. The corresponding stopping rule

is specified as:

Ç (T ;L) = Ç (T ) =
�

inf{1 < t ≤ LT : �T ,t > c³},
+>, if �T ,t ≤ c³for all 1 < t ≤ LT,

(13)

where c³ is a constant that guarantees that the test has size equal to ³,

asymptotically.

The main problem is then to find an approximation for the critical value c³ and

to investigate consistency of the test procedures. Particularly, we require that under

H0 and for a prechosen value of 0 < ³ < 1,

lim
T³>

PH0
(Ç (T ) < >) = ³, (14)

while under alternatives we want

lim
T³>

P(Ç(T ) < >) = 1. (15)

4 The Resampling Procedure

The asymptotic distribution of the detector statistic in (11) under the null hypothesis

H0 will be reported elsewhere. However, despite its theoretical interest, this

limit distribution depends on factors that are unknown in the current, entirely

nonparametric, context. For this reason, we suggest a resampling procedure in order

to compute critical values and actually implement the new method. Specifically,

we employ an adapted version of the moving block bootstrap procedure see, e.g.

[19, 20] in order to approximate the critical value c³ of the test. This is done using

only the training data, i.e. all data available at time T . Given a block size �, define

the overlapping blocks bk = (Xk, . . . , Xk+�−1), k = 1, . . . , T − �+ 1, and proceed

as follows:

1. From {bk}T−�+1
k=1 , randomly sample �T/�� blocks with replacement to obtain the

bootstrapped blocks {b7
k}

�T/��
k=1 . Throughout, �x� denotes the ceiling of x ∈ R.

2. Concatenate the b7
k and select the first T observations as the bootstrap sample

X7
1 , . . . , X

7
T .

3. Treat the first T̃ = �T/(1 + L)� bootstrap observations as a pseudo training

sample and calculate �7
T̃ ,t

= �T̃ ,t (X
7
1 , . . . , X

7
T̃+t

) for each t = 1, . . . , T − T̃ ,

i.e. run the monitoring procedure on the remaining data.

4. Calculate M7 = max1≤t≤T−T̃ �
7
T̃ ,t

.
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Repeat steps 1–4 a large number of times, say B, to obtain the (ordered) statistics

M7
(1) ≤ · · · ≤ M7

(B). An approximate value for c³ is then given by M7
(�B(1−³)�).

Throughout, �x� denotes the floor of x ∈ R.

In order to choose an appropriate block size, we utilize the correlation between

two consecutive observations. To this end, define the following plug-in estimate of

lag order due to [2] with an additional upper bound introduced by [26]:

pT = min

��"
3T

2

"1/3 "
2�Ã

1 − �Ã2

"2/3
�
,

�
8

"
T

100

"1/3
��

,

where �Ã is an estimator for the first-order autocorrelation of {Xt }Tt=1. Further,

define p̄T the same as above except with �Ã replaced by an estimator for the

first-order autocorrelation of the squared observations {X2
t }Tt=1. Based on this, a

data-dependent block size is given by � = �T = max{pT , p̄T }. This choice of � is

used throughout the simulations discussed in the following section.

5 Monte Carlo Results

We investigate the performance of the monitoring procedure defined by (11) with

criterion given by (6), and weight function w(u) = e−a�u�2
, a > 0. The results

corresponding to criterion (9) are similar and therefore are not reported. We only

report here Monte Carlo results on the actual level of the procedure. Corresponding

power results will be reported elsewhere. We consider the following data generating

processes:

DGP.S1: Xt = ·t ,

DGP.S2: Xt = 0.5Xt−1 + ·t ,

DGP.S3: Xt =
�
ht·t , with ht = 0.2 + 0.3X2

t−1,

DGP.S4: Xt =
�
ht·t , with ht = 0.1 + 0.3X2

t−1 + 0.3ht−1,

where X0 = 0, and {·t }t∈N is an iid sequence of N(0, 1) random variables. These

processes satisfy the null hypothesis of strict stationarity and are introduced to

study the size of our monitoring procedure for finite samples. DGP.S1 consists of

iid observations, whereas DGP.S2–DGP.S4 introduce some dependence structure

without violating the null hypothesis.

The values in Tables 1, 2, 3 and 4 represent the percentage of times that H0 was

rejected out of 2000 independent Monte Carlo repetitions. To estimate the critical
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Table 2 Additional size

results for DGP.S2 with

m = 1

a

T L 0.1 0.5 1.0 1.5 5.0

500 1 6 7 7 7 7

2 6 7 8 8 8

3 6 7 7 7 7

1000 1 6 7 7 7 7

value c³, we employed the warp-speed method of [10]. For a significance level of

³ = 5%, Tables 1 and 2 contain the results for the case of strict stationarity of order

m = 1, while Tables 3 and 4 supply the corresponding results for the cases m = 2

and m = 4.

An overall assessment of the figures in Tables 1, 2, 3 and 4 brings forward

certain desirable features of the method. A reasonable degree of approximation

of the nominal level, and the size of the test seems to converge to the nominal

level as the sample size is increased. A further factor influencing the percentage

of rejection is the value of the weight parameter a, and in this respect it seems that

an intermediate value 0.5 ≤ a ≤ 1.5 is preferable in terms of level accuracy, at least

in most cases. At the same time though, there is some degree of size distortion with

the autoregressive process DGP.S2, even up to sample size T = 300. To further

account for this phenomenon, we have selectively run the procedure for this process

with higher sample size. The resulting figures (reported in Table 2) with sample

sizes T = 500 and T = 1000 suggest that the problem still persists but certainly

with decreasing intensity.

6 Real-Data Application

We now demonstrate the potential of the monitoring procedure to detect breaks

in strict stationarity. Consider the daily percentage change in the USD/GBP and

ZAR/USD exchange rates, which are depicted in Fig. 1. According to the test by

Hong et al. [15], these two series exhibit no change in distribution (at ³ = 5%

for m = 2, 4, 8) over the period 1 January to 31 December 2015. Starting on

1 January 2016, the monitoring procedure was run sequentially until the first break

in stationarity was detected, or until 31 December 2016, whichever came first. The

results of the monitoring procedure are given in Table 5.

Based on the results from the Monte Carlo study, we chose the tuning parameter

a = 1 for practical application. For each stock, the critical value c³ of the

test was approximated by B = 2000 bootstrap replications using the resampling

procedure described in Sect. 4. The observed run length (in weeks, denoted by

ÆÇ ) of the monitoring procedure until a break in stationarity was identified and is

reported along with the corresponding calendar date. Additionally, we also supply

an approximate p-value, calculated as Æp = 1
B

�B
b=1 I(M7

(b) g max1≤t≤LT �T ,t),

where M7
(b) is as defined in Sect. 4.
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Fig. 1 Standardized daily percentage change in the USD/GBP (left) and ZAR/USD (right)

exchange rates. Data source: South African Reserve Bank

Table 5 Results of the

monitoring procedure for the

two considered series

USD/GBP ZAR/USD

m Æp ÆÇ Date Æp ÆÇ Date

2 0.041 153 2016/08/08 < 0.001 75 2016/04/19

4 0.016 133 2016/07/11 < 0.001 71 2016/04/13

8 0.012 134 2016/07/12 < 0.001 80 2016/04/26

According to our monitoring procedures, both series exhibit breaks in station-

arity. For the USD/GBP exchange rate, the first significant break is detected in

July/August 2016, shortly after the outcome of the Brexit referendum. For the

ZAR/USD exchange rate, a break is detected very early in 2016, amidst a period

of political instability and increased volatility in the South African markets.

7 Conclusion

We suggest a procedure for online monitoring of strict stationarity. The criteria

involved are entirely model-free and therefore apply to arbitrary time series. In

particular, we employ a non-parametric estimate of the joint characteristic function

of the underlying process and suggest to monitor an integrated functional of

this estimate in order to capture structural breaks in the joint distribution of the

observations. Since the limit null distribution depends on the stochastic structure

of the series being sampled, a modification of the block bootstrap is used in order

to actually implement the procedure. This bootstrap is in turn applied to simulated

data, and shows satisfactory performance in terms of level. The same procedure is

applied to real data from the financial market. We close by noting that our results,

although presented for scalar observations, may readily be extended to multivariate

time series.
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Nonparametric and Parametric Methods
for Change-Point Detection in Parametric
Models

G. Ciuperca

Abstract We consider a posteriori and a priori change-point models. The para-

metric regression functions of the each phase can be nonlinear or linear, and

moreover, in the linear case, the number of the explanatory variables could be large.

Theoretical results and simulations are presented for each model. For a posteriori

change-point nonlinear model, the results obtained by two estimation techniques

are given in the case when the change-point number is known. So, the quantile and

empirical likelihood nonparametric methods are considered. If the number of the

change-points is unknown, a consistent criterion is proposed. When the change-

point model is linear with a large number of explanatory variables, it would make

the automatic selection of variables. The adaptive LASSO quantile method is then

proposed and studied. On the other hand, we propose a nonparametric test based

on the empirical likelihood, in order to test if the model changes. For detecting in

real time a change in model, we consider two cases, nonlinear and linear models.

For a nonlinear model, a hypothesis test based on CUSUM of LS residuals is

constructed. For a linear model with large number of explanatory variables, we

propose a CUSUM test statistic based on adaptive LASSO residuals.

1 Introduction

A change-point model is a model which changes its form at unknown times, the

change location being generally unknown. This problem was introduced in the

quality control, for checking whether there is a change in the performance of a

machine. Generally, there are two types of change-point problem:

• a posteriori (retrospective) when the data are completely known at the end of the

experiment. Then, a posteriori, the question if model has changed is considered.

In the affirmative case, we must find the number of changes, their location and
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finally we need to estimate each phase. We will present results for a change-

point nonlinear model by a parametric method: the quantile method, and a

nonparametric estimation method, the empirical likelihood (EL). If the change-

point model is linear, but with a large number of explanatory variables, then the

automatic selection of variables must be carried out. Methods of LASSO type

are then used. On the other hand, in order to test the change of the model, a

nonparametric test based on the EL method is proposed.

• a priori (sequential, on-line) when the detection is performed in real time. The

most used technique is the cumulative sum (CUSUM) method. In this talk, two

cases are presented: for a nonlinear model a hypothesis test based on weighed

CUSUM of least squares (LS) residuals is constructed and for a linear model

with a large number of explanatory variables, we propose a CUSUM test statistic

based on adaptive LASSO residuals.

We present here some results obtained by author and its co-authors in the papers:

[1–5].

Some general notations are used throughout in this chapter. All vectors are

column and vt denotes the transpose of v. All vectors and matrices are in bold.

For a vector, �.�2 is the euclidean norm, �.�1 is the L1 norm and for a matrix M,

�M�1 is the subordinate norm to the vector norm �.�1. For a vector (matrix), if A

is a index set, then the vector (matrix) with subscript A is a subvector (submatrix)

with the index in the set A .

This contribution is organized as follows. In Sect. 2 are given theoretical results

and simulations for a priori change-point model, while in Sect. 3, the CUSUM

method is used for sequential detection of a change-point.

2 Off-Line Procedures

In this section we first consider a nonlinear model and then a linear model

with a large number of explanatory variables. For change-point nonlinear model,

using quantile method, a consistent criterion for finding the number of changes is

proposed, the location of the changes and the model in each phase are estimated. The

EL method allows to find an asymptotic test statistic for detection of the changes in

model.

For a linear model in high-dimension, we use adaptive LASSO quantile method

for automatic selection of relevant variables in each phase and for finding the

number of change. In order to have more accurate parameter estimators and a better

adjustment of the dependent variable, we use the EL method.

Studied models in this section have the following form:

Yi = h(Xi, . . . ; ti)+ ·i, i = 1, . . . , n. (1)
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The function h, for x ∈ R
d , t ∈ R, has the form:

h(x, . . . ; t) = f1(x, . . .)1t≤l1 +f2(x, . . .)1l1<t≤l2 + . . . fK+1(x, . . .)1lK<t , (2)

We say that model (1) with (2) has K change-points or K + 1 phases. The classical

regression models are single-phase. In model (1), Y is the response variable, X is a

vector of explicative variables, t is another variable in relation to which the change

may occurs. The variables X and t can be either random or deterministic. Knowing

n observations for (Y,X, t), parametric or nonparametric techniques can be used

to study models (1) and (2). In this talk, the regression function depends only on

x ∈ § ¦ R
d and on a parameter vector β ∈ � ¦ R

p. So f : § × � ³ R and it is

known up to the parameter β . The variable t is the number of observation.

The main difficulties for studying model (1) are: if K unknown, the model is

unidentifiable and then we must first determinate K and afterwards estimate the

model; moreover, the objective function is not regular with respect to the parameters

l1, · · · , lK .

Throughout this contribution, the errors (·i) are supposed i.i.d. with ×· its density

and F· its distribution function.

2.1 Nonlinear Model

In this subsection, we suppose that the function f is nonlinear.

2.1.1 Estimation in a Change-Point Nonlinear Quantile Model

The results presented in this subsubsection are published in [4].

Let us consider the following nonlinear model, where the changes l1, · · · , lK of

relation (2) occur with respect to the observations:

Yi =
K�

r=0

f (Xi,βr+1)1lr≤i<lr+1 + ·i, i = 1, · · · , n,

with l0 = 1, lK+1 = n. We suppose that the set � is compact. The parameters of the

model are: the regression parameters ð1 c (β1, · · · ,βK+1) and the change-points

ð2 c (l1, · · · , lK ) ∈ N
K . The true values are ð0

1 and ð0
2.

Classically, the model errors ·i are supposed with mean zero and bounded

variance. If these conditions are not satisfied or if model contains outliers, then the

LS estimators of the model parameters can have large errors. A very interesting and

robust alternative method was proposed by Koenker and Bassett [9] by introduction

of quantile method. For a fixed quantile index Ç ∈ (0, 1), the check function

ÃÇ : R ³ R is defined by ÃÇ (u) = u[Ç − 1u≤0]. We define the quantile estimators
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of parameters ð1 and ð2 by

( Æð(Ç )1n ,
Æð(Ç )2n ) c argmin

(ð1,ð2)

K+1�

r=1

lr�

i=lr−1+1

ÃÇ (Yi − f (Xi,βr )).

The components of Æð(Ç )1n are ( Æβ(Ç )

1 , · · · , Æβ(Ç )

K+1) and of Æð(Ç )2n are (Æl(Ç )1 , · · · , Æl(Ç )K ). Note

that for the particular case Ç = 1/2 we obtain the least absolute deviation estimator.

The following assumptions are considered for the errors, design and the regres-

sion function. The design Xi is deterministic. For the errors (·i)1≤i≤n we suppose:

(NLQ1) There exist two constants c0, ·0 > 0 such that for all |x| ≤ ·0, we have:

min(F·(|x|)− F·(0), F·(0)− F·(−|x|)) g c0|x|.
The regression function f (x,β) is supposed twice differentiable in β on � and

continuous on § . In the following, for x ∈ § and β ∈ � we use notation
.

f(x,β) c
"f (x,β)/"β and

..

f(x,β) c "2f (x,β)/"β2 and βo is the true value of β. Moreover,

for the function f , the following assumptions are considered:

(NLQ2) There exist two constants c2, c3 > 0 and n0 ∈ N such that for all β1,β2 ∈
� and n g n0: c2�β1 − β2�2 ≤

"
n−1

�n
i=1[f (Xi,β1)− f (Xi,β2)]2

"1/2 ≤
c3�β1 −β2�2. Moreover, we have that, n−1

�n
i=1

.

f(Xi ,β
0)

.

f
t
(Xi,β

0) converges, as

n ³ >, to a positive definite matrix. Furthermore, max1≤i≤n n−1/2�
.

f(Xi,β
0)�2 ³

0, as n ³ >.

(NLQ3) For all β ∈ � , x ∈ § , we have that �
.

f(x,β)�2 is bounded.

(NLQ4) For all β ∈ � , x ∈ § , we have that �
..

f(x,β)�1 is bounded.

Concerning the change-point location, we suppose that each phase contains a

large number of observations:

(NLQ5) lr+1 − lr g na , a > 1/2, for all r = 0, · · · ,K , with l0 = 1 and lK+1 = n.

For fixed (known) K , under these assumptions we have the following theorem

which obtains that the distance between the change-point quantile estimator and

the true value is finished. The asymptotic distribution of the quantile estimators

is also found. The asymptotic distribution of the regression parameter estimator is

Gaussian and the change-point estimator has an asymptotic distribution depending

on the quantile index Ç and on the difference of the values of f for two consecutive

phases.

Theorem 1 Under assumptions (NLQ1)–(NLQ5), if density function ×· of · is

differentiable in a neighbourhood of 0 and ×"
·(x) is bounded in this neighbourhood,

then:

(i) �Æð(Ç )2n − ð0
2�2 = OP(1).

(ii) for each r = 1, · · · ,K , we have (Æl(Ç )r − l0r )
L−³

n³>
argminj∈Z Z

(Ç )
r,j , with:

Z
(Ç)
r,j c

§
«
«

�l0r +j

i=l0r +1

�
ÃÇ (·i − f (Xi ,β

0
r ) + f (Xi ,β

0
r+1)) − ÃÇ (·i)

�
, for j = 1, 2, · · ·

�l0r
i=l0r +j

�
ÃÇ (·i − f (Xi ,β

0
r+1) + f (Xi ,β

0
r )) − ÃÇ (·i)

�
, for j = −1,−2, · · ·
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(iii) for each r = 1, · · · ,K + 1, we have

(Æl(Ç )r − Æl(Ç )r−1)
1/2( Æβ(Ç )

r − β0
r )Σ

1/2
r

L−³
n³>

N (0,
Ç (1 − Ç )

×2
· (0)

Ip),

with Σr c (l0r − l0r−1)
−1

�l0r

i=l0r−1+1

.

f(Xi ,β
0
r )

.

f
t
(Xi,β

0
r ) and Ip the identity

matrix of order p.

The asymptotic results of Theorem 1 are obtained when the number of changes

is known, this is rarely the case in applications. Thus, based on the quantile method

and on Schwarz criterion, we propose a general criterion for determining the phase

number in a model:

ÆK(Ç )
n c argmin

K

�
n log

�
n−1Sn(Ç, Æð(Ç )1n (K), Æð(Ç )2n (K))

�
+ P(K,p)Bn

�
, (3)

where:

Sn(Ç,ð1,ð2) c
�K

j=0

�lj+1

i=lj+1 ÃÇ (Yi − f (Xi,βj+1));

( Æð(Ç )1n (K), Æð(Ç )2n (K)) is the quantile estimator of (ð1,ð2) for a fixed K;

(Bn)n a deterministic sequence converging to > such that Bnn
−a ³ 0, Bnn

−1/2 ³
>, as n ³ >, with a > 1/2;

penalty function P(K,p) is such that P(K1, p) ≤ P(K2, p), for all number

change-points K1 ≤ K2.

Let K0 be the true value of K . The following theorem shows that proposed

criterion (3) is consistent.

Theorem 2 Under the same conditions of Theorem 1, if moreover E[ÃÇ (·)] > 0

and E[Ã2
Ç (·)] < >, then P[ ÆK(Ç )

n = K0] ³ 1, as n ³ >.

Simulations To evaluate the performance of the quantile method in a change-point

nonlinear model, simulations are realized using Monte Carlo replications for n =
100 observations. Moreover, in order to demonstrate the usefulness of the proposed

estimators, we compare the performances of the LS and of the quantile methods

for a growth model with two change-points: f (x,β) = b1 − exp(−b2x), with β =
(b1, b2). We denote by Æl1, Æl2, Æβ1, Æβ2, Æβ3 the estimations by LS or by quantile method

for the two change-points l1, l2 and for three vectors of the three phases. For the

errors ·, three distributions were considered: standard normal, Laplace and Cauchy

(Table 1, see also [4]). We obtain in all situations that the median of the change-

point estimations is very close to the true values. When the errors are Gaussian,

very good results are obtained by the two methods. For Laplace errors, the results

deteriorate slightly. For Cauchy errors, the quantile method gives very satisfactory

results, while by LS method the obtained estimations are biased and with a large

variation.
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Table 1 Median of the change-point estimations, mean of the regression parameter estimations

by LS and quantile methods for a growth model with two change-points in l01 = 20, l02 = 85 and

the true parameters β0
1 = (0.5, 1), β0

2 = (1,−0.5), β0
3 = (2.5, 1)

Estimation Mean( Æβ1) Mean( Æβ2) Mean( Æβ3)

method · law Median(Æl1) Median(Æl2) sd( Æβ1) sd( Æβ2) sd( Æβ3)

LS · > N 19 84 (0.52, 1.06) (0.98, -0.5) (2.52, 1.07)

(0.17, 0.64) (0.09, 0.02) (0.15, 0.5)

· > L 19 84 (0.58, 1.28) (0.98, -0.5) (2.65, 1.13)

(0.42, 1.56) (0.22, 0.05) (0.46, 1.1)

· > C 22 85 (2.51, 1.26) (2.34, -0.24) (7.7, 1.75)

(18.7, 2.2) (12.7, 0.96) (42, 3.4)

Quantile · > N 19 84 (0.52, 1.1) (0.99, -0.5) (2.53, 1.1)

(0.16, 0.78) (0.09, 0.02) (0.18, 0.8)

· > L 19 84 (0.57, 1.17) (1, -0.5) (2.6, 1.45)

(0.37, 1.28) (0.13, 0.04) (0.32, 3.2)

· > C 20 84 (0.58, 1.2) (0.98, -0.48) (2.7, 1.75)

(0.55, 1.1) (0.29, 0.23) (0.6, 3.1)

2.1.2 Empirical Likelihood Test by Off-Line Procedure for a Nonlinear

Model

Above we proposed a criterion for finding the number of changes. Now, we propose

a statistical test to detect a change in regression model.

Under null hypothesis H0, we test that there is no change in the regression

parameters of model:

H0 : Yi = f (Xi; β)+ ·i, i = 1, · · · , n,

against the hypothesis that the parameters change from β1 to β2 at an unknown

observation k:

H1 : Yi =
�
f (Xi; β1) + ·i i = 1, · · · , k,
f (Xi; β2) + ·i i = k + 1, · · · , n.

We test then H0 : β1 = β2 = β against H1 : β1 �= β2.

In order to introduce the EL method, let y1, · · · , yk, yk+1, · · · , yn be observa-

tions for the random variables Y1, · · · , Yk, Yk+1, · · · , Yn. Consider the following

sets I c {1, . . . , k} and J c {k + 1, . . . , n} which contain the observation index

of the two segments for the model under hypothesis H1. Corresponding to these

sets, we consider the probabilities for observing the value yi (respectively yj ) of

the dependent variable Yi (respectively Yj ) : pi c P[Yi = yi], for i ∈ I and

qj c P[Yj = yj ], for j ∈ J .

The regression function f is supposed thrice differentiable in β on � and

continuous on § .



Nonparametric and Parametric Methods for Change-Point Detection in. . . 343

Consider the following random vector gi(β) =
.

f(Xi,β)[Yi − f (Xi,β)]. Under

H0, the profile EL ratio for β has the form

R
"
0,nk(β) = sup

(p1,··· ,pk)
sup

(qk+1,··· ,qn)

� �

i∈I
kpi

�

j∈J
(n− k)qj ;

�

i∈I
pi = 1,

�

j∈J
qj = 1,

�

i∈I
pigi(β) =

�

j∈J
qjgj (β) = 0d

�
.

and under H1, the profile EL ratio for β1,β2 has the form

R
"
1,nk(β1,β2) = sup

(p1,··· ,pk)
sup

(qk+1,··· ,qn)

� �

i∈I
kpi

�

j∈J
(n− k)qj ;

�

i∈I
pi = 1,

�

j∈J
qj = 1,

�

i∈I
pigi (β1) = 0d ,

�

j∈J
qj gj (β2) = 0d

�
.

For testing H0 against H1 we consider the profile EL ratio:

R "
0,nk(β)

R "
1,nk(β1,β2)

. (4)

Under hypothesis H1, we have a Wilks theorem on each segment (see [10]). Then,

since the observations are independent we have:

−2 log R "
1,nk(β1,β2)

L−³
n³>

Ç2(2p). Consequently, since the denominator of (4)

does not asymptotically depend on β1 and β2, we are going to consider the test

statistic −2 log R "
0,nk(β). On the other hand, since in expression of R "

0,nk(β) they

are constraints, using the Lagrange multiplier method, we have that maximizing this

statistic is equivalent to maximizing the following statistic with respect to β, ·1, ·2,

λ1, λ2,

�

i∈I
[logpi − nλt1pigi(β)]+

�

j∈J
[log qj + nλt2qjgj (β)] + ·1(

�

i∈I
pi − 1)+ ·2(

�

j∈J
qj − 1),

with ·1, ·2, λ1, λ2 the Lagrange multipliers. The statistic −2 log R "
nk,0(β) becomes

2
�

i∈I
log

�
1 + n

k
λt1gi(β)

�
+ 2

�

j∈J
log

�
1 − n

n − k
λt2gj (β)

�
. (5)
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The maximizer of (5) in β satisfies
�

i∈I piλ
t
1

.
gi(β) −

�
j∈J qjλ

t
2

.
gj (β) = 0. In

order to have a single parameter λ, we restrict the study to a particular case:

V1n(β)λ1 = V2n(β)λ2, with V1n(β) c k−1
�

i∈I

.
gi(β),

V2n(β) c (n − k)−1
�

j∈J

.
gj (β).

Then, statistic (5) becomes:

2
�

i∈I
log[1 + n

k
λtgi(β)] + 2

�

j∈J
log[1 − n

n − k
λtV1n(β)V

−1
2n (β)gj (β)]. (6)

On the other hand, in order that parameters belong to a bounded set, in the place of k

we consider »nk c k/n. Let be Æλ(»nk) and Æβ(»nk) the maximizers of (6). Then Æλ(»nk)
and Æβ(»nk) are the solution of the score equations. By a computational proof enough

(see [5]), we show that, under H0, �Æλ(»nk)�2
a.s.−³

n³>
0 and Æβ(»nk) is a consistent

estimator of β . Then, we can consider the following test statistic

Tnk(»nk,λ,β) = 2
�

i∈I
log(1 + 1

»nk
λtgi(β))+ 2

�

j∈J
log(1 − 1

1 − »nk
λtgj (β)).

Because the regression function is nonlinear, in order to that the maximum EL

always exists, we consider that the parameter »nk belongs to closed interval

[�1n,�2n], which is included in open interval (0, 1). Finally, the test statistic for

testing H0 against H1 is:

T̃n c max
»nk∈[�1n,�2n]

Tnk(»nk, Æλ(»nk), Æβ(»nk)),

with Tnk(»nk,λ,β) = 2
�

i∈I log(1+ 1
»nk

λtgi(β))+2
�

j∈J log(1− 1
1−»nk

λtgj (β)).

In order to present the asymptotic distribution of T̃n we introduce the following

functions A(x) c (2 log x)1/2, D(x) c 2 log x + log log x, for x > 0, respectively

x > 1 and the sequence u(n) c 1+�1n�2n

�1n(1−�2n)
.

Theorem 3 Under hypothesis H0, for classical assumptions on f , X and β (see

Theorem 3 of [5]) we have, for all t ∈ R, that

lim
n³>

P{A(logu(n))(T̃n)
1
2 ≤ t +D(log u(n))} = exp(−e−t).

The following theorem gives that test statistic T̃n has the asymptotic power equal to

one (see Theorem 5 of [5]).

Theorem 4 The power of the EL ratio test T̃n converges to 1, as n ³ >.
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As a consequence of these two theorems, for a fixed size ³, we can deduct the critical

test region:

(T̃n)
1/2 g − log(− log³) +D(log u(n))

A(logu(n))
.

Theorems 3 and 4 allow us to provide an estimator of the change-point location:

Ækn c nmin{»̃nk; »̃nk = argmax
»nk∈[�1n,�2n]

Tnk(»nk, Æλ(»nk), Æβ(»nk))}. (7)

Simulations We report a Monte Carlo simulation study in order to evaluate the

performance of the proposed test statistic T̃n. We consider the following nonlinear

function: f (x,β) = a/b(1 − xb), with β = (a, b). Under null hypothesis H0,

the model is Yi = a/b(1 − Xb
i ) + ·i , for i = 1, · · · , n, with the true values

of the parameters a0 = 10, b0 = 2. Under H1, the model is: Yi = a1/b1(1 −
X
b1

i )1i≤k0 + a2/b2(1 − X
b2

i )1i>k0 + ·i , for i = 1, · · · , n, with the true values of

the parameters a0
1 = 10, b0

1 = 2, a0
2 = 7, b0

2 = 1.75. In order to obtain more

precise false probabilities, we calculate by Monte Carlo replications a new critical

value. Accordingly, the empirical test size is 0.05. For the new critical value, we

obtain in all situations the empirical power equal to 1. In Table 2 (see [5]), we

give the summarized results (mean, standard-deviation, median) for the estimations
Ækn of (7), corresponding to 5000 Monte Carlo replications, for errors of Gaussian or

Cauchy distribution. The change occurs at observation 200 or 400. In view of results

presented in Table 2, we deduce that the proposed estimation method approaches

very well the true value k0. Note that in all situations, the median and the mean of

the change-point estimations coincide or are very close to the true value of k0.

2.2 Linear Models in High-Dimension

We consider now the case of a phenomenon (dependent variable) as a function

of one very large variable number, with unknown change-point number. A very

significant advancement in variable selection for a model without change-point was

Table 2 Descriptive statistics for the estimations of the change-point by EL method, for

n = 1000

Ækn
Error distribution k0 Mean( Ækn) sd( Ækn) Median( Ækn)

·i > N (0, 1) 200 204 12 200

400 400 5 400

·i > 1/
:

6(Ç2(3) − 3) 200 204 12 200

400 400 5 400

Reprinted from [5] by permission from © Springer-Verlag Berlin Heidelberg 2015
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realized by Tibshirani [11] proposing the LASSO method. Then, the estimation and

model selection are simultaneously treated as a single minimization problem. If

the model has change-points, the LASSO method would allow at the same time to

estimate the parameters on every segment and eliminates the irrelevant predictive

regressors without using sequential hypothesis test.

2.2.1 Adaptive LASSO Quantile for Multiphase Model

When the dimension of β is large, it is interesting that a regression parameter

estimator to satisfy the oracle properties: the nonzero parameter estimator is asymp-

totically normal and zero parameters are shrunk directly to 0 with a probability

converging to one (sparsity property).

For a linear model without change-point, [12] proposed an adaptive LASSO

estimator which satisfies the oracle properties, while for weaker error conditions,

[1] proposes the adaptive LASSO quantile estimator method which we will consider

here in a model with change-points. As for the nonlinear case, we first suppose that

the number K of change-points is fixed:

Yi = Xt
iβ111≤i<l1 + Xt

iβ21l1≤i<l2 + · · · + Xt
iβK+11lK≤i≤n + ·i, i = 1, · · · , n.

In order to study the properties of LASSO quantile estimator in a change-point

model, we suppose for the deterministic design (Xi) that: n−1 max1≤i≤n X"
iXi −³

n³>
0

and for any r = 1, · · · ,K + 1, the matrix (lr − lr−1)
−1

�lr
i=lr−1+1 XiX

"
i −³
n³>

Cr .

We define the adaptive LASSO quantile estimator of the change-point location

that the minimizer of the quantile process penalized with a weighted L1 norm:

(Æl71 , · · · , Æl7K ) c argmin
(l1,··· ,lK )

inf
(βj ,bj )

K+1�

r=1

[
lr�

i=lr−1+1

ÃÇ (Yi−br−Xt
iβr )+»(lr−1;lr ) Æωt

(lr−1;lr)|βr |],

with (b1, · · · , bK+1) the Ç th quantile of · on each phase, the weight Æω(lr−1;lr ) c
| Æβ(lr−1;lr )|−g , and Æβ(lr−1;lr) the quantile estimator of βr , calculated on the observa-

tions lr−1 + 1, · · · , lr . The tuning parameter »n;(lr−1,lr ) depends on the sample size

in every segment.

Between lr−1 and lr , we define the regression parameter estimators by adaptive

LASSO quantile method as:

Æβ7
(lr−1,lr )

= argmin
β

[
lr�

i=lr−1+1

ÃÇ (Yi − br − Xt
iβr )+ »(lr−1;lr ) Æωt

(lr−1;lr)|βr |].

In order to study the oracle properties of the regression parameter adaptive LASSO

quantile estimators, we consider for each two consecutive true change-points l0r−1

and l0r , for r = 1, · · · ,K + 1, the set with the index of nonzero components of the
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true regression parameters:

A
0
r c {k ∈ {1, · · · , p}; ³0

r,k �= 0},

and similarly, the index set of nonzero components of adaptive LASSO quantile

estimator of the regression parameters:

ÆA
7
n,r c {j ∈ {1, · · · , p}; Æβ7

(Æl7r−1;Æl7r ),j �= 0}.

The presence of the change-points in model makes that the important sparsity

property is not obvious. By Theorem 3.2 of [3] we obtain the convergence rate of the

change-point estimators, which implies using with Karush-Kuhn-Tucker conditions

that on every segment the sparsity property is true.

Theorem 5 (Theorem 3.3 of [3]) If the tuning parameter sequence

(»(lr−1;lr))1≤r≤K+1 is a sequence, depending on n, converging to zero, such that

(lr−lr−1)
1/2»(lr−1;lr) ³ > and if (c(lr−1,lr )) is another deterministic sequence, such

that c(lr−1,lr ) ³ 0, (lr − lr−1)c
2
(lr−1,lr )

/ log(lr − lr−1) ³ >, »(lr−1;lr)c
−2
(lr−1,lr )

³ 0,

and (lr − lr−1)
(g−1)/2»(lr−1;lr ) ³ >, as n ³ >, we have:

(i) (Æl7r − Æl7r−1)
1/2( Æβ7

(Æl7r−1;Æl7r ) − β0
r )A 0

r

L−³
n³>

N (0, (Ç (1 − Ç ))×−2
· (b0

r )(VA 0
r
)−1)

(ii) For every r = 1, · · · ,K , we have limn³> P

�
ÆA 7
n,r = A 0

r

�
= 1

Remark 1 To estimate the true change-points number we can propose a criterion,

similarly to Schwarz criterion.

Simulations For a model with three phases, we calculate by Monte Carlo simula-

tions the percentage of zero coefficients estimated to zero (true 0) and the percentage

of nonzero coefficients estimated to zero (false 0) by two methods: adaptive LASSO

and adaptive LASSO quantile (see Table 3). In Table 3 (see also [3]), ·j is generic

error in the j th phase with j = 1, 2, 3. Their distributions are Gaussian(N ) or

Exponential(E ): E1 for E xp(−4.5, 1), E2 for E xp(−6.5, 1). For Gaussian errors,

the two methods give very satisfactory results when the number of observations in

Table 3 Model with three phases

Interval (1, Æl1) Interval (Æl1, Æl2) Interval (Æl2, n)
% true 0 % false 0 % true 0 % false 0 % true 0 % false 0

Error distribution aQ aLS aQ aLS aQ aLS aQ aLS aQ aLS aQ aLS

·1, ·2, ·3 > E1 96 82 1 11 99 92 0 2 100 100 0 2

·1, ·2, ·3 > N 97 88 1 12 98 96 0 3 99 100 0 1

·1 > E2, ·2, ·3 > E1 97 74 8 10 99 93 0 2 99 100 0 4

β0
1 �= β0

2 �= β0
3. Percentage (%) of true 0 and of false 0 by adaptive LASSO quantile (aQ) and

adaptive LASSO for LS model (aLS)
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each phase is large enough. If the errors are of exponential distribution, the adaptive

LASSO quantile methods give the best results in terms of true zeros or false zeros

percentage.

Then, the adaptive LASSO quantile method is more precise than the adaptive

LASSO for LS model.

2.2.2 Empirical Likelihood Test for High-Dimensional Two-Sample Model

In order to have more accurate parameter estimators and a better adjustment for the

dependent variable, when p converges to infinity or when the model has outliers, it

is more appropriate to use the EL method. The presented results are proved in [6].

We test the following linear model:

H0 : Yi = Xt
iβ + ·i, i = 1, · · · , n,

against

H1 : Yi =
�

Xt
iβ + ·i, 1 ≤ i ≤ k,

Xt
iβ2 + ·i, k < i ≤ n,

with β ∈ R
p, p ³ > as n ³ > and limn³> k/n ∈ (0, 1). Remark that

with respect to the adaptive LASSO quantile model, we consider that the number

of explanatory variables is divergent. The two hypotheses can be also written,

H0 : β2 = β and H1 : β2 �= β.

If we denote: zi(β) c Xi(Yi − Xt
iβ), similarly to nonlinear model, we obtain

that the EL ratio statistic is:

ELnk(β) c 2

k�

i=1

log
�
1 + n

k
λtzi(β)

�
+ 2

n�

j=k+1

log
�
1 − n

n − k
λtzj (β)

�
,

with λ ∈ R
p the Lagrange multiplier.

The errors ·i are considered i.i.d. with E[·i] = 0 and V ar(·i) = Ã 2 <

>. Let us consider the following square matrix V0
n c nk−2Ã 2

�k
i=1 XiX

t
i +

n(n − k)−2Ã 2
�n

j=k+1 XjXt
j .

The following assumptions are considered for ·i and Xi :

(ELHD1) There exist two constants C0, C1 > 0, such that 0 < C0 < infn ³1(V
0
n) ≤

supn ³1(V
0
n) < C1 < >.

(ELHD2) p−1
�p

s=1 |Xi,s |q < C3, 1 ≤ i ≤ n, for some C3 > 0, and q g 4;

(ELHD3) E|�1|2q < C4, for some C4 > 0.

(ELHD4) p k(2−q)/(2q) ³ 0 and p (n− k)(2−q)/(2q) ³ 0, as n, k ³ >.

(ELHD5)
�p

r,s=1 ³
rrss = O(p2).

(ELHD6)
�p

r,s,u=1 ³
rsu³rsu = O(p5/2) and

�p
r,s,u=1 ³

rss³suu = O(p5/2).
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(ELHD7) For all i = 1, . . . , n, for l ∈ N
7, j1, . . . , jl ∈ {1, . . . , p}, and whenever�l

i=1 di ≤ 6, there exists a constant 0 < C5 < >, such than E[wd1

i,j1
· · ·wdl

i,jl
] ≤

C5.

For assumptions (ELHD5)–(ELHD7) we have used the notations:

w0
i = (w0

i,1, · · · , w0
i,p) c (V0

n)
−1/2zi(β

0),

³t1···tr c nr−1k−r
�k

i=1 E[w0
i,t1

· · ·w0
i,tr

] + nr−1(n − k)−r
�n

i=k+1

E[w0
i,t1

· · ·w0
i,tr

].
We first establish an asymptotic approximation of the EL ratio statistic under the

null hypothesis.

Proposition 1 If hypothesisH0 is true, under assumptions (ELHD1)–(ELHD5), we

have ELn(β
0) = nψ0t

n (V
0
n)

−1ψ0
n + oP(p

1/2), with ψ0
n c k−1

�k
i=1 Xi·i − (n −

k)−1
�n

j=k+1 Xj·j .

By constructing a martingale and applying the martingale limit theorem, we obtain

by the following theorem that under hypothesis H0, the statistic ELnk(β
0) − p

converges in law to a standard Gaussian distribution, where �n is a variance of

standardization.

Theorem 6 Under hypothesis H0, if assumptions (ELHD1)–(ELHD7) hold and if

p = o(n1/3), then

ELnk(β
0) − p

�n/n

P= nψ0t
n (V

0
n)

−1ψ0
n − p

�n/n

L−³
n³>

N (0, 1),

We remark that when the dimension p converges to infinity, the asymptotic

distribution of the EL statistic is Gaussian, which is different from the obtained

law for a model with a fixed variable number (see Theorem 3).

Simulations We conducted a Monte Carlo simulation study to evaluate the pro-

posed method in terms of empirical sizes (Table 4, see [6]) for nominal size

³ = 0.05. The model errors are either Exponential or Gaussian and the p-vector

β0 = (1, · · · , p). We obtain that empirical powers are equal to 1, that is, if there

are changes in the coefficients of the second phase of the model, the test statistic

given by Theorem 6 detects always this change. In order to ameliorate the empirical

Table 4 Empirical size ( Æ³)

for Exponential and Gaussian

errors by EL test for

high-dimensional two-sample

model

Exponential errors Gaussian errors

n k p Æ³ Æ³
600 350 2 0.08 0.07

10 0.10 0.09

20 0.11 0.11

Reprinted from [6] with permission from © Elsevier 2016
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Table 5 Empirical critical

value Æc1−³/2 and

corresponding Æ³, ÆÃ , by EL

test for high-dimensional

two-sample model

Exponential errors Gaussian errors

n k Æc1−³/2 Æ³ ÆÃ Æc1−³ Æ³ ÆÃ
600 225 3.40 0.03 1 2.85 0.03 1

375 0.03 1 0.02 1

Reprinted from [6] with permission from © Elsevier

2016

sizes Æ³, we recalculate the critical values and then Æ³ are less than 0.05, for empirical

powers always equal to 1 (Table 5, see [6]), for p = 50 and β0
2 = 1 − β0.

3 On-Line Procedures

Let us now consider that there is only one model on the first m observations, called

also historical data. Then, we will test in real time if the model changes at each

observation starting with observation m + 1. We will first test the change in real

time in a nonlinear model using the statistic of the CUSUM of LS residuals and

afterwards in a linear model with large number of variables using the CUSUM

statistic of the adaptive LASSO residuals.

3.1 In Nonlinear Model

Let us consider the following nonlinear model with independent observations:

Yi = f (Xi; βi) + ·i, i = 1, · · · ,m, · · · ,m + Tm,

with f : § ×� ³ R known up to the parameters βi , � ¦ R
p, § ¦ R

d and Xi the

random vector of regressors. We suppose that on the first m observations, no change

in the regression parameter has occurred

βi = β0, for i = 1, · · · ,m,

with β0 (unknown) the true value. For observations after m, we test H0 : βi = β0,

for all m+ 1 ≤ i ≤ m+ Tm against

H1 : there exists k0
m g 1, such that

�
βi,m = β0, for m + 1 ≤ i ≤ m + k0

m,

βi,m = β1
m �= β0, for m + k0

m + 1 ≤ i ≤ m + Tm.
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The value of β1
m is also unknown. This problem has been addressed in literature

when function f is linear f (x; β) = xtβ (see [7, 8]). The following notations are

considered in this subsection: A c E[
.

f(X; β0)], B c E[
.

f(X; β0)
.

f
t
(X; β0)] and

D c
�
AtB−1A

�1/2
. Matrix B is supposed positive definite.

The regression function, the random vector Xi , and the error ·i satisfy the

following assumptions:

(NLS1) (·i)1≤i≤n are i.i.d. E[·i] = 0, V ar[·i] = Ã 2 and E[|·i|¿] < > for some

¿ > 2.

(NLS2)
..

f(x,β) is bounded for all β in a neighbourhood of β0, for all x ∈ R
d .

(NLS3) For i = 1, · · · , Tm, the errors ·i are independent of the random vectors

Xj , for j = 1, · · · ,m + Tm.

(NLS4) (m+ l)−1
�m+l

i=1 f (Xi; β0)
a.s.−³

m³>
E[f (X; β0)],

(m + l)−1
�m+l

i=1

.

f(Xi; β0)
a.s.−³

m³>
E[

.

f(X; β0)],

(m + l)−1
�m+l

i=1

.

f(Xi; β0)
.

f
t
(Xi; β0)

a.s.−³
m³>

B, for all l =
0, 1, · · · , Tm.

(NLS5) (m+ k0
m + l)−1

�m+k0
m+l

i=1 f (Xi; β0
m)

a.s.−³
m³>

E[f (X; β0
m)],

(m + k0
m + l)−1

�m+k0
m+l

i=1

.

f(Xi; β0
m)

a.s.−³
m³>

E[
.

f(X; β0
m)],

(m + k0
m + l)−1

�m+k0
m+l

i=1

.

f(Xi; β0
m)

.

f
t
(Xi; β0

m)
a.s.−³

m³>
B, "l =

0, 1, · · · , Tm − k0
m.

Let us consider the following statistic, built as the weighted cumulative sum of the

residuals, 0 ≤ ³ < 1/2, k = 1, · · · , Tm,

G(m, k, ³ ) c
�

m+1≤i≤m+k

[Yi − f (Xi , Æβm)]/g(m, k, ³ ),

with, g(m, k, ³ ) c m1/2(1 + k
m
)( k

k+m
)³ , where Æβm c argmin³

�m
j=1[Yj −

f (Xj ; β)]2 is the LS estimator of β. Let us also consider the corresponding residuals

Æ·i c Yi − f (Xi; Æβm). We build a test statistic based on the residuals Æ·i after the

observationm by estimating the parameter β on the historical data. The CUSUM of

the residuals is
�m+k

i=m+1 Æ·i .
The following theorem (Theorem 3.1 of [1]) gives the asymptotic distribution of

the test statistic under the null hypothesis.
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Theorem 7 Under hypothesisH0, if assumptions (NLS1)–(NLS4) are true, we have

for all real c > 0 that:

(i) If Tm = > or (Tm < > and limm³> Tm/m = >), then

lim
m³>

P[ 1

ÆÃm
sup
k

|
m+k�

i=m+1

Æ·i
g(m, k, ³ )

| ≤ c] = P[ sup
0≤t≤D−2

(1 + t − D2t)|W(t)|
t³

≤ c].

(8)

(ii) If Tm < > and limm³> Tm/m = T < >, then the left-hand side of (8) is

equal to P

�
sup0≤t≤ T

1+D2T

(1+t−D2t )|W(t)|
t³

≤ c

�
.

The covariance function of the Wiener process {W(t), 0 ≤ t < >} is

Cov(W(s),W(t)) = min(s, t), with s, t ∈ [0,D−2] for (i) and s, t ∈ [0, T

1+D2T
]

for (ii).

We remark that, unlike to the linear case considered by Horváth et al. [7], the

asymptotic distribution of the test statistic, under H0, depends on the regression

function f (by D) and on the true parameter β0.

In order to have a test statistic for testing H0 against H1, it is necessary also

to study the behaviour of the statistic under alternative hypothesis H1. By the

following theorem, the statistic converges in probability to infinity as m converges

to infinity. For this, we suppose that the change-point k0
m is not very far from the

last observation of historical data. This supposition poses no problem for practical

applications since if H0 was not rejected until an observation km of order m, we

reconsider as historical data the observations of one up to km. Another assumption

is that, before and after the break, on an average, the model is different.

Theorem 8 Under H1, if k0
m = O(m), assumptions (NLS1)–(NLS4) are true and if

E[f (X; β0)] �= E[f (X; β1
m)] hold, then

1

ÆÃm
sup

1≤k≤Tm

������

m+k�

i=m+1

Æ·i

����� /g(m, k, ³ )
�

P−³
m³>

>.

Therefore, we can deduce from Theorems 7 and 8 that the null hypothesis H0 is

rejected in the change-point

Ækm c
�

inf
�
1 ≤ k ≤ Tm, ÆÃ−1

m |G(m, k, ³ )| g c³(³ )
�

>, if ÆÃ−1
m |G(m, k, ³ )| < c³(³ ), for every 1 ≤ k ≤ Tm,

where c³(³ ) is the (1 − ³) quantile of the asymptotic distribution obtained by

Theorem 7. The proofs of these last two theorems are found in [1].
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3.2 In Linear Model with Large Number of Explanatory

Variables

We consider now that on the first m observations, we have a classical model of linear

regression:

Yi = Xt
iβ + ·i, i = 1, · · · ,m, (9)

with β ∈ R
p, p fixed but with the possibility that p is very close to m.

For automatic selection of the variables, [12] proposes the adaptive LASSO

estimator as:

Æβ7
m c argmin

β∈Rp
[
m�

i=1

(Yi − Xt
iβ)

2 + »m

p�

j=1

ÆËj |³,j |],

with ÆËj c | Æ³m,j |−g , Æ³m,j the j -th component of the LS estimator Æβm, ³,j the j -

th component of β and g > 0. The tuning parameter sequence (»m) is such that

»m ³ > as m ³ >.

For errors ·i we have the following assumptions: ·i i.i.d. E[·1] = 0, Ã 2 =
V ar(·1) < >, E[|·1|¿] < >, ¿ > 2.

Let be the set of index of nonzero components of the adaptive LASSO estimator
ÆA 7
m c {j ∈ {1, · · · , p}; Æ³7

m,j �= 0} and A c {j ∈ {1, · · · , p}; ³0
,j �= 0} the set

of index of nonzero components of the true value β0.

For Ã 2, we consider the following estimator:

ÆÃ 72
m c 1

m − Card( ÆA 7
m)

m�

i=1

(Yi − Xt
i
Æβ7
m)

2.

As for nonlinear model, we test H0 : βi = β0 for all i = m+ 1,m+ 2, · · · against

H1 : there exists k0 g 1 such that

�
βi = β0, i = m+ 1, · · · ,m + k0

βi = β1, i = m+ k0 + 1, · · ·
with β0 �= β1.

The residuals corresponding to Æβ7
m are Æ·7

i = Yi − Xi
Æβ7
m, for i = 1, · · · ,m,m +

1, · · · ,m + k.

The following results come from [2]. The tuning parameter (»m) satisfies the

additional conditions m−1/2»m ³ 0, m(g−1)/2»m ³ >, as m ³ >. Moreover,

we assume that the model is significant, i.e. at least one of the regressors affects

significantly to the response variable: #j ∈ {1, · · · , p}, such that ³0
,j �= 0.
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Theorem 9

1) If hypothesis H0 holds, then we have for any real c > 0:

lim
m³>

P

�
1

ÆÃ 7
m

sup
1≤k<>

|
m+k�

i=m+1

Æ·7
i |/g(m, k, ³ ) ≤ c

�
= P

�
sup

0≤t≤1

|W(t)|
t³

≤ c

�
,

with {W(t); 0 ≤ t < >} a Wiener process.

2) If hypothesis H1 holds, then

1

ÆÃ 7
m

sup
1≤k<>

|
m+k�

i=m+1

Æ·7
i |/g(m, k, ³ )

P−³
m³>

>.

The proof of this theorem is completely different from that of the classical linear

model for LS residuals. For adaptive LASSO estimator, we don’t know its explicit

form and further, we must take into account the automatic selection of the nonzero

parameters. Then, we mainly use the KKT optimality conditions for the CUSUM

statistic study.

Simulations The empirical sizes and powers of the CUSUM test statistic corre-

sponding to LS and to adaptive LASSO residuals are given in Table 6 (see [2]), for

p = 400, A = {3, 30, 90}, k0 ∈ {5, 25}, ³ ∈ {0.25, 0.49}, sizes ³ ∈ {0.025, 0.05}.
The nonzero components of β0 have the values ³0

,3 = 5, ³0
,30 = 2, ³0

,90 = −1.

Under hypothesis H1 only components 90 and 91 change in 0 and −1, respectively.

In all cases, the empirical test size corresponding to the adaptive LASSO method

is smaller than the theoretical size ³. On the other hand, the CUSUM test with LS

residuals gives many false alarms. This shows that when the number of variables is

very large, the test doesn’t work well. In Fig. 1 (see [2]) we represented the empirical

density of the stopping time Ækm: with solid line for the density corresponding to LS

framework and with doted line for the density corresponding to adaptive LASSO

Table 6 Empirical test size Æ³ and power ÆÃ by CUSUM test statistic for LS and adaptive LASSO

(aLASSO) residuals, for ³ ∈ {0.25, 0.49}
³ = 0.25 ³ = 0.49

k0 (m, T ) Method Æ³, ÆÃ ³ = 0.025 ³ = 0.05 ³ = 0.025 ³ = 0.05

5 (410,80) LS Æ³ 0.94 0.96 0.99 0.99

ÆÃ 0.98 0.99 1 1

aLASSO Æ³ 0.002 0.002 0.004 0.01

ÆÃ 0.97 0.98 0.99 0.99

25 (410,100) LS Æ³ 0.97 0.98 1 1

ÆÃ 0.98 0.99 1 1

aLASSO Æ³ 0 0 0.01 0.02

ÆÃ 0.96 0.98 0.96 0.97
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Fig. 1 Estimated density of the stopping time, corresponding to LS and adaptive LASSO

residuals, for ³ ∈ {0.025, 0.05, 0.10}

framework. We deduce that the estimation of k0 by adaptive LASSO method is very

accurate and unbiased, when k0 = 5, ³ = 0.25 and for ³ ∈ {0.025, 0.05, 0.10}.
The estimation of k0 by LS method is biased and detects the change before it occurs

(false change). These results are consistent with those previously found (in Table 6)

for the empirical sizes. The empirical density shape of the stopping time Ækm using

the LS residuals also indicates that the variability of Ækm is very large.
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Variance Estimation Free Tests
for Structural Changes in Regression

Barbora Peštová and Michal Pešta

Abstract A sequence of time-ordered observations possesses a trend, which is

possibly subject to change at most once at some unknown time point. The aim is

to test whether such an unknown change has occurred or not. The change point

methods presented here rely on ratio type test statistics based on maxima of the

cumulative sums. These detection procedures for the change in regression are

also robustified by considering a general score function. The main advantage of

the proposed approach is that the variance of the observations neither has to be

known nor estimated. The asymptotic distribution of the test statistic under the

no change null hypothesis is derived. Moreover, we prove the consistency of the

test under alternatives. The results are illustrated through a simulation study, which

demonstrates computational efficiency of the procedures. A practical application to

real data is presented as well.

1 Introduction and Main Goals

The problem of an unknown change in linear regression models, particularly

the trending regression models, is studied and procedures for detection of such

change within the observed time-ordered sequence are presented. The considered

underlying stochastic model allows at most one change. The ratio type test statistic

elaborated here is derived from the non-ratio type test statistics based on partial

sums of the residuals that are commonly used in the change point analysis. They do

not need to be standardized by any variance estimate, which makes them a suitable
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alternative for the non-ratio type test statistics, most of all in situations, when it is

difficult to find a variance estimate with satisfactory properties. Such difficulty can

occur especially under alternatives.

A procedure for testing the change in linear regression with equidistant design

was considered by Jarušková [10]. Limit distribution for over-all maximum type

test statistics under the assumption of no change was given. Antoch and Hušková

[1] described the detection of structural changes in a general regression setup.

Nonlinear polynomial regression model from the change point perspective was

studied by Aue et al. [2]. M-tests for the detection of changes in the linear models

were presented in [6]. Furthermore, [7] performed permutation type tests in the

linear models. Bootstrapping with and without replacement in the change point

analysis for the linear regression models was discussed in [8]. Bai and Perron

[3] gave an extension into multiple structural changes, occurring at unknown time

points, in the linear regression model estimated by least squares. In [5], the ratio

type test statistics for the change in mean were introduced. Lately, [15] considered

procedures for detecting the change of regression parameters in the linear model

when both the regressors and the errors are weakly dependent in the sense of Lp-

m approximability. Peštová and Pešta [13] applied the ratio type test statistics for

detection of the structural changes in panel data.

This chapter is structured as follows: Sect. 2 introduces a change point model

in regression together with stochastic assumptions. A ratio type test statistic for

the change point detection is proposed in Sect. 3. Consequently, the asymptotic

behavior of the considered test statistic is derived, which covers the main theoretical

contribution. Section 4 contains a simulation study that illustrates performance of

the asymptotic test. It numerically emphasizes the advantages and disadvantages

of the proposed procedure. A practical application of the developed approach is

presented in Sect. 5. Proofs are given in the Appendix.

2 Change Point Problem in Regression

We assume to have a set of observations Y1,n, . . . , Yn,n obtained at time-ordered

points and that these data follow a linear regression model. Particularly, we are

interested in studying a situation, where a change in regression parameters may

occur at some unknown time point Ç . Such situation can be formally described as

Yk,n = h
�(k/n)β + h

�(k/n)δnI {k > Çn} + ·k, k = 1, . . . , n, (1)

where β = (³1, . . . , ³p)
�, δn = (·1, . . . , ·p)

�, and Çn are unknown parameters.

Functions h(t) = (h1(t), . . . , hp(t))
� are such that h1(t) = 1 for t ∈ [0, 1] and

hj (t), j = 2, . . . , p are continuously differentiable functions on [0, 1]. We are

going to assume that the error terms ·1, . . . , ·n are independent and identically

distributed (iid) random variables, satisfying E·k = 0 and V·k = Ã 2 > 0 for

k = 1, . . . , n.
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Despite the fact that the observed data {Yk,n}n,>k=1,n=1 form a stochastic triangular

array, the random disturbances {·n}>n=1 are just a single sequence of random

variables. So, the errors remain the same for each row of the triangular array of

the observed variables. For the sake of convenience, we suppress the index n in

the observations Yk,n as well as in the parameters δn and Çn (and in the variables

depending on the latter) whenever possible. However, we have to keep in mind that

in the asymptotic results both δn c δ and Ç c Çn may change, as n increases over

all bounds. Then, model (1) can be rewritten as the regression change point model

Yk = h
�(k/n)β + h

�(k/n)δI {k > Ç } + ·k, k = 1, . . . , n. (2)

Model (2) corresponds to the situation where the first Ç observations follow the

linear model with the regression parameter β and the remaining n− Ç observations

follow the linear regression model with the changed regression parameter β + δ.

The parameter Ç is called the change point.

The basic question is whether a change in the regression parameters occurred at

some unknown time point Ç or not. Using the above introduced notation, the null

hypothesis of no change can be expressed as

H0 : Ç = n. (3)

We are going to test this null hypothesis against the alternative that the change

occurred at some time point Ç prior to the latest observed time n, i.e.,

H1 : Ç < n, δ �= 0. (4)

A graphical illustration of the change point model (2) for regression parameters

under the alternative can be seen in Fig. 1.

k = 1 k = k = n

+

t

Fig. 1 Illustration of the change point problem in regression
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3 Ratio Type Test Statistic for Detection of a Change

For the situation described above, test statistics based on the weighted partial sums

of residuals are often used, i.e., statistics of the form

Sj,k(Ë) =
j�

i=1

h(i/n)Ë
�
Yi − h

�(i/n)bk(Ë)
�
, j, k = p + 1, . . . , n, j ≤ k,

which can also be rewritten elementwise (for the lth element of Sk)

S
(l)
j,k(Ë) =

j�

i=1

hl(i/n)Ë
�
Yi − h

�(i/n)bk(Ë)
�
,

for l = 1, . . . , p; j, k = p+1, . . . , n, j ≤ k. Here,Ë is a score function and bk(Ë)

is an M-estimate of the regression parameter β based on observations Y1, . . . , Yk
from model (2) with Ç = n (under the null), i.e., it is a solution of the equation

k�

i=1

h(i/n)Ë
�
Yi − h

�(i/n)b
�

= 0

with respect to b. Let us similarly denote

�Sj,k(Ë) =
n�

i=j+1

h(i/n)Ë
�
Yi − h

�(i/n)�bk(Ë)
�
, j, k = 1, . . . , n − p − 1, k ≤ j,

where �bk(Ë) is an M-estimate of the parameter β based on observations

Yk+1, . . . , Yn. That means, it is a solution of the equation

n�

i=k+1

h(i/n)Ë
�
Yi − h

�(i/n)b
�

= 0

with respect to b. Further, we denote

Cj,k =
k�

i=j

h(i/n)h�(i/n), j, k = 1, . . . , n, j ≤ k. (5)

Using this notation, we may now define the ratio type test statistic

Rn(Ë) = max
n³≤k≤n−n³

max
1≤j≤k

S
�
j,k(Ë)C

−1
1,kSj,k(Ë)

max
k≤j≤n−1

�S�
j,k(Ë)C

−1
k+1,n

�Sj,k(Ë)
, (6)

where 0 < ³ < 1/2 is a given constant.
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Let us note that the matrices C1,k and Ck+1,n become regular after adding

Assumption M2 (see below) and considering k and n − k sufficiently large. Being

particular, k − 1 and n − k − 1 have to be at least as large as p, i.e., the dimension

of h(·). Inverses of these matrices in (6) exist, since ³ is a fixed constant known in

advance and the test statistic Rn(Ë) is mainly studied from the asymptotic point of

view. This ensures that the number of summands in (5) is larger than fixed p.

The idea behind the construction of the test statistic Rn(Ë) in (6) lies in

comparing two total distances of weighted residuals from their center of gravity

(by evaluating the ratio of the numerator and the denominator). This view comes

from the fact that Sj,k(Ë) is a sum of weighted residuals and C1,k acts as a distance

measure in the Mahalanobis sense. Similarly for the denominator of (6).

3.1 Asymptotic Properties of the Robust Test Statistic

We proceed with deriving asymptotic properties of the robust ratio type test statistic

Rn(Ë), under the null hypothesis as well as under the alternatives. Before stating

the main asymptotic results, we introduce several model assumptions. The following

four assumptions apply to the model’s errors ·1, . . . , ·n and the score function Ë .

Assumption R1 The random error terms {·i, i ∈ N} are iid random variables with

a distribution function F , that is symmetric around zero.

Assumption R2 The score function Ë is a non-decreasing and antisymmetric

function.

Assumption R3

0 <

�
Ë2(x)dF(x) < >

and

�
|Ë(x + t2)− Ë(x + t1)|2dF(x) ≤ C1|t2 − t1|·, |tj | ≤ C2, j = 1, 2

for some constants · > 0 and C1, C2 > 0.

Assumption R4 Let us denote »(t) = −
�
Ë(e − t)dF(e) for t ∈ R. We assume

that »(0) = 0 and that there exists a first derivative »�(·) that is Lipschitz in the

neighborhood of 0 and satisfies »�(0) > 0.

The conditions regarding Ë reduce to the moment restrictions for ËL2(x) = x

(L2 method) taking · = 2. ForËL1(x) = sgn(x) (L1 method), the conditions reduce

to F being a symmetric distribution, having continuous density f in a neighborhood
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of 0 with f (0) > 0, and · = 1. Similarly, we may consider the derivative of the

Huber loss function, i.e.,

ËH (x) = x I {|x| ≤ C} + C sgn(x) I {|x| > C} (7)

for some C > 0. In that case to satisfy Assumptions R2–R4, we need to assume

F being a symmetric distribution function with the continuous density f in

a neighborhood of C and −C satisfying f (C) > 0 and f (−C) > 0 with · = 2.

Furthermore, the use of score function

Ë³ (x) = ³ − I {x < 0}, x ∈ R, ³ ∈ (0, 1)

results in test procedures related to the ³-regression quantiles.

Although we consider only a symmetric distribution function F in our approach,

the results can be generalized to include an asymmetric random error distribution.

Such distribution is a common source of outlying observations that occur in practical

applications. To generalize our approach for the asymmetric distribution functionF ,

one needs to assure that there exists some unique t0 ∈ R such that »(t0) = 0 by

modified Assumption R4. Correspondingly, all other assumptions required to hold

in the neighborhood of t = 0 need to be satisfied in the neighborhood of t = t0.

The next pair of assumptions refer to the system of covariate functions h =
(h1, . . . , hp)

�, which represent the model design.

Assumption M1 h1(t) = 1, t ∈ [0, 1].
Assumption M2 h2(·), . . . , hp(·) are continuously differentiable functions on

[0, 1] such that

� 1

0

hj (t)dt = 0, j = 2, . . . , p.

The p × p matrix functions

C(t) =
�� t

0

hj (x)hl(x)dx

�

j,l=1,...,p

, t ∈ [0, 1]

and �C(t) = C(1)−C(t) are regular for each t ∈ (0, 1] and t ∈ [0, 1), respectively.

Let us remark that Assumption M2 covers important situations like polynomial

and harmonic polynomial regression.

Now, we may characterize the limit behavior of the test statistic under the null

hypothesis.
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Theorem 1 (Under null) Suppose that Y1, . . . , Yn follow model (2) and assume

that Assumptions R1–R4 and M1–M2 hold. Then, under null hypothesis (3),

Rn(Ë)
dist−−−³

n³>
sup

³≤t≤1−³

sup0≤s≤t S
�(s, t)C−1(t)S(s, t)

supt≤s≤1
�S�(s, t)�C−1(t)�S(s, t)

, (8)

such that

S(s, t) =
� t

s

h(x)dW (x)−C(s)C−1(t)

� t

0

h(x)dW (x), 0 ≤ s ≤ t ≤ 1, t �= 0

and

�S(s, t) =
� s

t

h(x)d �W (x)−�C(s)�C−1(t)

� 1

t

h(x)d �W (x), 0 ≤ t ≤ s ≤ 1, t �= 1,

where {W (x), 0 ≤ x ≤ 1} is a standard Wiener process and �W (x) = W (1)−W (x).

Realizing the property of a standard Wiener process, the definition of a Brownian

bridge B(x) = W (x) − xW (1), x ∈ [0, 1], and using stochastic calculus together

with Assumption M2, we end up with

� s

0

h(x)dW (x)− C(s)C−1(t)

� t

0

h(x)dW (x)

=
� s

0

h(x)dB(x)− C(s)C−1(t)

� t

0

h(x)dB(x).

Therefore, one can still have the same limit distribution when dW (x) is replaced by

dB(x) and d �W (x) is replaced by d �B(x), where {B(x), 0 ≤ x ≤ 1} and { �B(x), 0 ≤
x ≤ 1} are independent Brownian bridges.

The next theorem describes a situation under some local alternatives.

Theorem 2 (Under Local Alternatives) Suppose that Y1, . . . , Yn follow

model (2), assume that

�δn� ³ 0 and
:
n�δn� ³ >, as n ³ >, (9)

and Ç = [·n] for some ³ < · < 1 − ³ (alternative (4) holds). Then, under

Assumptions R1–R4 and M1–M2,

Rn(Ë)
¶−−−³

n³>
>.

The previous theorem provides asymptotic consistency of the studied test

statistic. The null hypothesis is rejected for large values of the ratio type test statistic.
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Table 1 Simulated critical values corresponding to the asymptotic distribution of the test statistic

Rn(Ë) under the null hypothesis and to the covariate functions h1(t) = 1 and h2(t) = t − 1/2

90% 95% 97.5% 99% 99.5%

³ = 0.1 7.629223 9.923813 13.114384 17.339711 20.891231

³ = 0.2 4.351720 5.981026 7.583841 11.048126 14.371703

Table 2 Simulated critical values corresponding to the asymptotic distribution of the test statistic

Rn(Ë) under the null hypothesis and to the covariate functions h1(t) = 1, h2(t) = t − 1/2, and

h3(t) = 4t2 − 4t + 2/3

90% 95% 97.5% 99% 99.5%

³ = 0.1 5.638486 7.062320 8.633249 12.225500 13.631059

Being more formal, we reject H0 at significance level ³ if Rn(Ë) > r1−³,³ , where

r1−³,³ is the (1 − ³)-quantile of the asymptotic distribution from (8).

3.2 Asymptotic Critical Values

The explicit form of the limit distribution (8) is not known. The critical values may

be determined by simulation of the limit distribution from Theorem 1. Theorem 2

ensures that we reject the null hypothesis for large values of the test statistic.

We simulated the asymptotic distribution from (8) by discretizing the stochastic

integrals present in S(s, t) and �S(s, t) and using the relationship of a random walk

to a Wiener process. We considered 1000 as the number of discretization points

within [0, 1] interval and the number of simulations equal to 1000. We also tried to

use higher numbers of discretization points, but only small differences in the critical

values were acquired. In Table 1, we present several critical values for covariate

functions h1(t) = 1 and h2(t) = t − 1/2.

Moreover, Table 2 shows critical values for covariate functions h1(t) = 1,

h2(t) = t − 1/2, and h3(t) = 4t2 − 4t + 2/3 with ³ = 0.1. The system of

covariate functions was chosen in the way that those functions are orthogonal in the

L2([0, 1]) sense.

A possible extension of the proposed methods, which will be part of the future

research, is bootstrapping. Using the bootstrap techniques implemented similarly as

by Peštová and Pešta [14] for the change in means, one can obtain critical values in

an alternative way compared to the presented asymptotic approaches.

4 Simulation Study

A simulation experiment was conducted to study the finite sample properties of the

asymptotic test for an unknown change in the regression parameters. Performance

of the tests based on the ratio type test statistic Rn(Ë) with ËL2(x) = x and
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Table 3 Empirical size of the test for the change in regression under H0 using the asymptotic

critical values from Rn(Ë), considering various significance levels ³ and n = 100

Score Error distribution ³ = 0.01 ³ = 0.05 ³ = 0.10

L2 N(0, 1) 0.023 0.111 0.214

t5 0.050 0.191 0.294

L1 N(0, 1) 0.003 0.045 0.136

t5 0.003 0.039 0.112

ËL1(x) = sgn(x) is studied from a numerical point of view. In particular, the

interest lies in the empirical size of the proposed tests under the null hypothesis

and in the empirical rejection rate (power) under the alternatives. Random samples

of data (1000 repetitions) are generated from the linear regression change point

model (2) with h1(t) = 1 and h2(t) = t − 1/2. The number of observations

considered is n = 100. Higher sample sizes were also tried and the effect of number

of observations will be discussed at the end of this section. Parameter ³ is set to 0.1.

The innovations are obtained as iid random variables from a standard normal

N(0, 1) or Student t5 distribution. The regression parameters β is chosen as (2, 3)�.

Simulation scenarios are produced by varying combinations of these settings.

Table 3 provides the empirical size for the asymptotic version of the regression

change point test, where the theoretical significance level is ³ = 0.01, 0.05, and

0.10.

Generally, the empirical sizes in case of the asymptotic tests are higher than they

should be, especially for the L2 case. That means the test rejects the null hypothesis

more often than one would expect. Possible explanation of this difficulty can be that

the test statistics converge only very slowly to the theoretical asymptotic distribution

under the null hypothesis. Better performance of the asymptotic test under the null

hypothesis is achieved, when the L1 score function is chosen for Rn(Ë) compared

to the L2 method. The L2 method appears to be too liberal in rejecting the null

hypothesis. There seems to be no significant effect of the errors’ distribution on the

empirical rejection rates based on this simulation study.

The performance of the testing procedure under H1 in terms of the empirical

rejection rates is shown in Table 4, where the change point is set to Ç = n/2 or

Ç = n/4. The values of δ are chosen as δ = (1, 1)� and δ = (2, 3)�.

The test power drops when switching from a change point located in the middle

of the time series to a change point closer to the beginning or the end of the time

series. The errors with heavier tails (represented by the Student t5 distribution)

yield slightly smaller power than the errors with lighter tails (standard normal

distribution). When using the L1 method, power of the test decreases compared to

the L2 method. On the other hand, it keeps the theoretical significance level under

the null hypothesis better.

We have shown the simulated powers of the tests only for two choices of β,

however, several other values were tried in the simulation scenarios. There was no

visible effect of the value of regression parameter on the test’s power. It brought

the results that one would naturally expect: the higher the value of change in the
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Table 4 Empirical power of the test for the change in regression under H1 using the asymptotic

critical values from Rn(Ë), considering various significance levels ³ and n = 100

Score Error distribution · Ç ³ = 0.01 ³ = 0.05 ³ = 0.10

L2 N(0, 1) (1, 1)� n/2 0.110 0.332 0.476

n/4 0.065 0.197 0.330

(2, 3)� n/2 0.600 0.855 0.922

n/4 0.096 0.296 0.465

t5 (1, 1)� n/2 0.108 0.319 0.469

n/4 0.087 0.247 0.348

(2, 3)� n/2 0.429 0.690 0.801

n/4 0.106 0.281 0.426

L1 N(0, 1) (1, 1)� n/2 0.017 0.145 0.291

n/4 0.002 0.086 0.211

(2, 3)� n/2 0.105 0.508 0.715

n/4 0.005 0.115 0.241

t5 (1, 1)� n/2 0.009 0.112 0.237

n/4 0.005 0.072 0.190

(2, 3)� n/2 0.091 0.436 0.651

n/4 0.003 0.102 0.233

regression parameter, the higher the power is achieved. Better results in terms of

power may be obtained by considering larger sample size or an alternative more

far away from the null hypothesis. The choice of δ = (5, 5)� rapidly increases

the power of the tests. By considering 250 and 500 observations, one can conclude

that the power of the tests increases as the number of observations grows, which is

expected.

5 Application to Surface Temperature Data

The analyzed data come from a large data set based on long-term surface tempera-

ture measurements at several meteorological stations around the world (for more

details see [12], data set HadCRUT3). In Fig. 2, we see the data together with

already estimated regression curves. The data represent temperature anomalies, i.e.,

differences from what is expected to be measured in some particular area at some

particular time of the year. Each observation corresponds to monthly measurements

at the chosen area located in the South Pacific Ocean, close to New Zealand (the

center of the 5 × 5 degree area is located at 177.5 W and 32.5 S). The data covers

the period of years 1947–1987 including 485 months.

We took L2 score function with p = 3, h1(x) = 1, h2(x) = x − 1/2,

h3(x) = 4x2 − 4x + 2/3, and ³ = 0.1. The null hypothesis of no change in

the parameters of the quadratic regression model based on the asymptotic test (95%
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Fig. 2 The surface temperature data analyzed by the L2 method. Estimated change point is

depicted by the orange vertical line and estimated regression curves are drawn by the blue and

green lines

critical value equals 7.06232) is rejected both for the L2 method and the L1 method,

since R485(ËL2) = 30.59436 and R485(ËL1) = 8.477089.

We estimate the time of change Ç by maximizing the numerator in (6) when using

all the observations for the statistic in the numerator, i.e.,

�Ç = arg max
k

S
�
k,n(Ë)C

−1
1,nSk,n(Ë). (10)

For the L2 score function, we get �Ç = 171. Using L1 approach, we obtain �Ç = 212.

The estimates of the regression parameters can then be obtained as

b�Ç = C
−1
1,�Ç

�Ç�

i=1

h (i/n) Yi and �b�Ç = C
−1
�Ç+1,n

n�

i=�Ç+1

h (i/n) Yi . (11)

The fitted quadratic curves for the surface temperature data before and after the

estimated change point are shown in Fig. 2 for the L2 method and in Fig. 3 for the

L1 method.

Note that the estimated change points using the L2 and L1 method are not very

close to each other. As a consequence, the estimated quadratic regression parameter

corresponding to the fitted curve before the estimated change point using the L2

method possesses the opposite sign compared to the estimated quadratic regression

parameter corresponding to the fitted curve before the estimated change point

using the L1 method. Similarly for the estimated quadratic regression parameter

corresponding to the fitted curve after the estimated change point. One of the

possible reasons is that there exist more change points in such a long observation

history.
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Fig. 3 The surface temperature data analyzed by the L1 method. Estimated change point is

depicted by the orange vertical line and estimated regression curves are drawn by the blue and

green lines

6 Conclusion

The ratio type test statistics provide an alternative to the non-ratio type test

statistics in situations, in which variance estimation is problematic. The change point

detection of at most one change in the regression parameters of the regression model

is discussed. Asymptotic behavior of the ratio type test statistics is studied under the

null hypothesis of no change and under the local alternatives of a change occurring at

some unknown time point. We robustify testing procedures by assuming a general

score function in the test statistics. To obtain the critical values, approximations

of the limit distribution are used. The simulation study illustrates that even for

a relatively small length of the time series, the presented approaches work fine,

while various simulation scenarios are considered. The simulations reveal that the

methods keep the significance level under the null and provide reasonable powers

under the alternatives. Finally, the proposed methods are applied to the real data.
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Appendix: Proofs

Proof (of Theorem 1) Asymptotic representation for the M-estimate of regression

parameter β can be obtained by Jurečková et al. [11], Section 5.5:

bk(Ë) − β = C
−1
1,k

1

»"(0)

k�

i=1

h(i/n)Ë(·i)+OP (k
−1) (12)

as k ³ > and n³ ≤ k ≤ n(1 − ³ ). Moreover, by the Hájek-Rényi-Chow

inequality [4] for each A > 0, × ∈ (0, 1/2], and t ∈ Rp,

¶

�
max

1≤l≤k/2
k−1/2+×l−×

����
l�

i=1

hj (i/n)
�
Ë(·i − h

�(i/n)tk−1/2) − Ë(·i) + »(h�(i/n)tk−1/2)
�����g A

�

≤ D1A
−2k−1+2×

[k/2]�

i=1

l−2×

� �
Ë(· − h

�(i/n)tk−1/2) − Ë(·)
�2

dF(·)

≤ D2A
−2

�
k−1/2�t�

�·
, j = 1, . . . , p, (13)

with some constants D1,D2 > 0, where · is the constant from Assumption R3.

Similarly,

¶

�
max

k/2≤l≤k−1
k−1/2+×(k − l)−³

����
k�

i=l+1

hj (i/n)
�
Ë(·i − h

�(i/n)tk−1/2)− Ë(·i)

+ »(h�(i/n)tk−1/2)
����� g A

�
≤ D3A

−2
�
k−1/2�t�

�·
, j = 1, . . . , p, (14)

with some constant D3 > 0. Combining (12)–(14), we get

max
1≤j≤k−1

1:
k

�
j (k − j)

k2

�−× ����
j�

i=1

h(i/n)Ë
�
Yi − h

�(i/n)bk(Ë)
�

−

»
¿

j�

i=1

h(i/n)Ë(·i) − C1,jC
−1
1,k

k�

i=1

h(i/n)Ë(·i)

¿
£

���� = oP (1), (15)

as k ³ >. Using again the same arguments, we also have as (n− k) ³ >

max
k+1≤j≤n−1

1:
n− k

�
(n− j)(j − k)

(n − k)2

�−× ����
n�

i=j+1

h(i/n)Ë
�
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»
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k+1,n

n�

i=k+1

h(i/n)Ë(·i )

¿
£

���� = oP (1). (16)
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Hence with respect to (15) and (16), the limit distribution of

�
max

1≤j≤k
S

�
j,k(Ë)C

−1
1,kSj,k(Ë), max

k≤j≤n−1

�S�
j,k(Ë)C

−1
k+1,n

�Sj,k(Ë)

�

is the same as that of
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1
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¿
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��
,

which by denoting k = [nt] for t ∈ (0, 1) weakly converges in dist2[³, 1 − ³ ] to

�
sup

0≤s≤t

� �� s

0

h(x)dW (x) − C(s)C−1(t)

� t

0

h(x)dW (x)

��
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�� s
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h(x)d �W (x)

� ��
,

as n ³ >. The weak distributional convergence holds due to [9] (Theorem 1) and

Assumption M2, together with the facts that

sup
0≤s≤t

� �� s

0
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� s

0

�
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� t

0

h
�(x)C−1(t)h(y)dW (y)

�
dx

��
C

−1(t)

�� s

0

h(x)dW (x) −
� s

0

�
h(x)

� t

0

h
�(x)C−1(t)h(y)dW (y)

�
dx

� �

= sup
0≤s≤t
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,
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and that
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Then, the assertion of the theorem directly follows by the continuous mapping

theorem. ��
Proof (of Theorem 2) Let us choose k > Ç+1 and k = [¿n] for some · < ¿ < 1−³ .

Moreover, let us take into account assumption (9). Using the same arguments as

in (15) and due to the fact that the local alternatives hold, we have, as n ³ >,

max
1≤j≤k
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Ak3 = δ�
�

Ç�

i=1

h(i/n)h�(i/n)− CÇ+1,kC
−1
1,kC1,Ç

�
C

−1
1,k

�
Ç�

i=1

h(i/n)h�(i/n)− C1,ÇC
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�
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Then from the proof of Theorem 1 we get Ak1 = OP (1) as n ³ >.

Furthermore, with respect to assumption (9),

Ak3 = δ�
�
C1,Ç − CÇ+1,kC

−1
1,kC1,Ç

�
C

−1
1,k

�
C1,Ç − C1,ÇC
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δ
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1,kC1,Çδ

¶−−−³
n³>

>.

Finally, |Ak2| ≤
:
Ak1Ak3. Therefore, under the considered assumptions, the term

Ak3 is asymptotically dominant over the remaining terms. It follows that

max
1≤j≤k

S
�
j,k(Ë)C

−1
1,kSj,k(Ë)

¶−−−³
n³>

>.

For Ç + 1 < k = [¿n], the denominator in (6) has the same distribution as under

the null hypothesis and it is, therefore, bounded in probability. It follows that the

maximum of the ratio has to tend to infinity as well, as n ³ >. ��
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Bootstrapping Harris Recurrent Markov
Chains

Gabriela Ciołek

Abstract The main objective of this paper is to present bootstrap uniform func-

tional central limit theorem for Harris recurrent Markov chains over uniformly

bounded classes of functions. We show that the result can be generalized also to

the unbounded case. To avoid some complicated mixing conditions, we make use of

the well-known regeneration properties of Markov chains. Regenerative properties

of Markov chains can be applied in order to extend some concepts in robust statistics

from i.i.d. to a Markovian setting. It is possible to define an influence function and

Fréchet differentiability on the torus which allows to extend the notion of robustness

from single observations to the blocks of data instead. We present bootstrap uniform

central limit theorems for Fréchet differentiable functionals in a Markovian case.

1 Introduction

The naive bootstrap for independent and identically distributed random variables

was introduced by Efron [10]. Since then, many resampling methods have been

established for dependent data. Hall [12], Carlstein [7], Liu and Singh [17]

were among the first to propose block bootstrap methods designed for dependent

processes. Block bootstrap methods constitute an active field of research (see [15]

for extensive survey on many theoretical and methodological aspects of those

procedures). However, they all struggle with problem of the choice of length of the

blocks which can abuse the dependence structure of the data. Another approach is to

resample residuals or to use wild bootstrap which is tailor-made for heteroscedastic

models (see [13] for a huge survey on bootstrap for dependent data).
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In this framework we are interested in bootstrap methods when the data

are Markovian. Rajarshi [23] proposed the Markovian bootstrap with estimated

transition densities and [20, 21] used transition distribution functions. Kulperger and

Prakasa Rao [14] investigated bootstrap procedures for Markov chains with finite

state space. Athreya and Fuh [1] extended the approach to countable state spaces.

Athreya and Fuh [1, 2] proposed methods which rely on the renewal properties of

Markov chains when a (recurrent) state is visited infinitely often. Main idea when

working with regenerative processes is to cut the trajectory into data segments which

are i.i.d. The regenerative processes are especially appealing to us, since they allow

in a natural way to extend the results from the i.d.d. case into Markovian one.

Datta and McCormick [9] proposed procedure for bootstrapping additive functionals

1/n
�n

i=1 f (Xi) when the chain possesses an atom; however, their method is not

second-order correct. Bertail and Clémençon [6] modified this procedure, i.e., it is

second-order correct in the stationary case. Bertail and Clémençon [4] formulated

the regenerative block bootstrap (RBB) method for atomic chains and approximate

block bootstrap method (ARBB) for general Harris recurrent Markov chains and

proved their consistency. Both methods are a natural generalization of standard non-

parametric bootstrap procedure for the i.d.d. data since in a Markovian case we

draw regeneration data blocks (instead of single observations) from the empirical

distribution function based on blocks. Thus, both procedures are data-driven and do

not require a choice of the length of the blocks which is problematic when one uses

block bootstrap methods. In parallel to the results of [4], [22] has proved bootstrap

CLT for the mean under minimal moment assumptions on renewal times for atomic

Markov chains.

This work is aimed to extend the results of [4, 22]. Radulović [22] has proved

uniform bootstrap CLT for atomic Markov chains when the class of functions

F is uniformly bounded. We show that the bootstrap uniform CLT also holds

when the chain is Harris recurrent. Moreover, we relax the uniform boundedness

conditions and impose moment conditions on the envelope. The main difficulty

when deriving the asymptotic results for Markov chains is random number of

(pseudo-) regeneration blocks. We show that it is feasible to replace this number by

its deterministic equivalent which enables to revert to standard theory of empirical

processes indexed by classes of functions in the i.i.d. case. It is noteworthy that this

chapter is just a short survey based on the paper of [8] and we refer to this paper for

more details, comments, and explanations.

Let X = (Xn)n∈N be a homogeneous Markov chain on a countably generated

state space (E,E ) with transition probability£ and initial probability ¿. Denote by

Px (resp. P¿) the probability measure such that X0 = x and X0 ∈ E (resp. X0 > ¿),

and Ex (·) is the Px-expectation (resp. E¿ (·) the P¿-expectation). Assume that X

is Ë-irreducible and aperiodic. Suppose further that X is positive recurrent Harris

Markov chain. By the results of [19], we know that any Harris recurrent Markov

chain can be extended to a chain that possesses an atom A.

We define the sequence of regeneration times (ÇA(j))jg1. Let

ÇA = ÇA(1) = inf{n g 1 : Xn ∈ A}
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be the first time when the chain hits regeneration set A and

ÇA(j) = inf{n > ÇA(j − 1),Xn ∈ A} for j g 2

are next consecutive visits of X to regeneration set A. By the strong Markov

property, given any initial law ¿, the sample paths of X can be divided into i.i.d.

blocks corresponding to the consecutive visits of the chain to the regeneration set A.

The segments of data are of the form:

Bj = (X1+ÇA(j), · · · ,XÇA(j+1)), j g 1

and take values in the torus *>
k=1E

k .

Throughout the paper, we write ln =
�n

i=1 I{Xi ∈ A} for the total number

of consecutive visits of the chain to the atomA. We make the convention that B
(n)
ln

=
' when ÇA(ln) = n. Denote by l(Bj ) = ÇA(j + 1) − ÇA(j), j g 1,

the length of regeneration blocks. Let f : E ³ R be μ-integrable function.

By un(f ) = 1
ÇA(ln)−ÇA(1)

�n
i=1 f (Xi) we denote the estimator of the unknown

asymptotic mean Eμ(f (X1)). Refer to [5] and [18] for a detailed review of the

theory of atomic regenerative Markov chains.

Remark 1 We discard the first and the last non-regenerative blocks in order to avoid

large bias of estimators build from blocks.

We apply the so-called splitting technique (see [19]) in order to artificially con-

struct a regeneration set for chain X. The splitting technique requires existence of

so-called small sets, which have the following property: there exists a parameter · >

0, a positive probability measure§ supported by S and an integerm ∈ N7 such that

"x ∈ S, A ∈ E £m(x,A) g · §(A), (1)

where £m denotes the m-th iterate of the transition probability £ . We call (1)

the minorization condition and denote by M . We assume that the family of

the conditional distributions {£(x, dy)}x∈E and the initial distribution ¿ are

dominated by a Ã -finite measure » of reference, so that ¿(dy) = f (y)»(dy)

and £(x, dy) = p(x, y)»(dy), for all x ∈ E. The minorization condition requests

that § is absolutely continuous with respect to » and that p(x, y) g ·Ç(y),

»(dy) a.s. for any x ∈ S, with §(dy) = Ç(y)dy. We apply the Nummelin’s

splitting technique and obtain a split chain XM = (Xn, Yn)n∈N, where (Yn)n∈N
is the sequence of independent Bernoulli r.v.’s with parameter ·. It is known that

XM possesses an atom AM and inherits all the stability and communication

properties of the chain X. Throughout the paper unless specified otherwise, we

assume that EAM
(ÇAM

)2 < >. The regenerative blocks of the split chain are

i.i.d. In practice, one wants to approximate the Nummelin’s construction. The

main idea is to approximate successive hitting times of AM = S × {1} by the

sequence ÆÇAM
(i), i = 1, · · · , Æln, where Æln =

�n
i=1 I{Xi ∈ S, ÆYi = 1} is

the total number of visits of the split chain to AM up to time n and the random

vector ÆYn = ( ÆY1, · · · , ÆYn) is the approximation of the vector (Y1, · · · , Yn) via
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Fig. 1 Regeneration block construction for AR(1) model

approximating procedure described in [4]. The approximated blocks are of the form:

ÆB0 = (X1, · · · ,X ÆÇAM
(1)), · · · , ÆBj = (X ÆÇAM

(j)+1, · · · ,X ÆÇAM
(j+1)), · · · ,

ÆBÆln−1
= (X ÆÇAM

(Æln−1)+1
, · · · ,X ÆÇAM

(Æln)),
ÆB
(n)

Æln
= (X ÆÇAM

(Æln)+1
, · · · ,Xn+1).

Figure 1 illustrates a regeneration block construction for an autoregressive model of

order one. Moreover, we denote by ÆnAM
= ÆÇAM

(Æln) − ÆÇAM
(1) =

�Æln−1
i=1 l( ÆBj ) the

total number of observations after the first and before the last pseudo-regeneration

times. Let Ã 2
f = 1

EAM
(ÇAM

)
EAM

��ÇAM

i=1 {f (Xi)− μ(f )}2
�

be the asymptotic

variance. Furthermore, we set that Æμn(f ) = 1
ÆnAM

�Æln−1
i=1 f ( ÆBj ), where

f ( ÆBj ) =
ÆÇAM

(j+1)�

i=1+ÆÇAM
(j)

f (Xi) and ÆÃ 2
n (f ) = 1

ÆnAM

Æln−1�

i=1

�
f ( ÆBi) − Æμn(f )l( ÆBi)

�2

.

2 Bootstrapping Harris Recurrent Markov Chains

To establish our uniform bootstrap results we need to generate bootstrap blocks

B7
1 , · · · , B7

k which are obtained from approximate regenerative block bootstrap

algorithm (ARBB) introduced by [4]. For completeness of exposition we recall the

ARBB procedure below.
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Algorithm 1 (ARBB Procedure)

1. Draw sequentially bootstrap data blocks B7
1 , · · · , B7

k (we denote the

length of the blocks by l(B7
j ), j = 1, · · · , k) independently from the

empirical distribution function

ÆLn = 1

Æln − 1

Æln−1�

i=1

· ÆBi ,

where ÆBi , i = 1, · · · , Æln − 1 are initial pseudo-regeneration blocks. We

draw the bootstrap blocks until l7(k) =
�k

i=1 l(B
7
i ) exceeds n. We denote

ł7n = inf{k : l7(k) > n}.
2. Bind the bootstrap blocks obtained in step 1 in order to construct the ARBB

bootstrap sample X7(n) = (X7
1, · · · ,X7

l7n−1).

3. Compute the ARBB statistic and its ARBB distribution, namely T 7
n =

T (X7(n)) = T (B7
1 , · · · , B7

l7n−1) and its standardization S7
n = S(X7(n)) =

S(B7
1 , · · · , B7

l7n−1).

4. Compute the ARBB distribution

HARBB(x) = P7(S7−1
n (T 7

n − Tn) ≤ x),

where P7 is the conditional probability given the data.

Few more pieces of notation: we denote by n7
AM

=
�l7n−1

i=1 l(B7
j ) the length

of the bootstrap sample, where l7n = inf
�
k : l7(k) =

�k
i=1 l(B

7
j ) > n

�
. Moreover,

we write μ7
n(f ) = 1

n7
AM

�l7n−1

i=1 f (B7
i ) and Ã 72

n (f ) = 1
n7
AM

�l7n−1

i=1 {f (B7
i ) −

μ7
n(f )l(B

7
j )}2 for bootstrap estimates of mean and variance.

We derive our results under assumptions on Harris chain formulated in [4]. We

recall them below for the reader’s convenience (see [4], page 700, for details and

discussion on the conditions).

Let (³n)n∈N be a sequence of nonnegative numbers that converges to zero. We

impose that the positive recurrent Harris Markov chain X fulfills the following

conditions (compare with Theorems 3.2 and 3.3 in [4]):

A1. S is chosen so that infx∈S Ç(x) > 0 and the transition density p is estimated

by pn at the rate ³n (usually we consider ³n = log(n)
n

) for the mean squared

error (MSE) when error is measured by the L> loss over S2.

Let k g 2 be a real number.
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H1(f, k, ¿). The small set S is such that

sup
x∈S

Ex

£
£

�
ÇS�

i=1

|f (Xi)|
�k

§
§<> and E¿

£
£

�
ÇS�

i=1

|f (Xi)|
�k

§
§<>.

H2(k, ¿). The set S is such that supx∈S Ex(Ç
k
S ) < > and E¿(Ç

k
S ) < >.

H3. Density p(x, y) is estimated by pn(x, y) at the rate ³n for the MSE

when error is measured by the L> loss over S × S :

E¿

�
sup

(x,y)∈S×S

|pn(x, y)− p(x, y)|2
�

= O(³n), as n ³ >.

H4. The density Ç is such that infx∈S Ç(x) > 0.

H5. The transition density p(x, y) and its estimate pn(x, y) are bounded

by a constant R < > over S2.

Denote by BL1(F ) the set of all 1-Lipschitz bounded functions on l>(F ). We

define the bounded Lipschitz metric on l>(F ) as

dBL1(X, Y ) = sup
b∈BL1(l>(F ))

|Eb(X)− Eb(Y )|; X,Y ∈ l>(F ).

We choose to work with bounded Lipschitz metric since it metrizes the weak

convergence of empirical processes.

When one formulates bootstrap procedure in order to obtain bootstrap estimate

of sampling distribution, it is crucial to know if the two distributions are sufficiently

close.

Definition 1 We say that Z7
n is weakly consistent of Zn if dBL1(Z

7
n,Zn)

P−³ 0.

2.1 Bootstrap Uniform Central Limit Theorems for Harris

Recurrent Markov Chains

To establish uniform bootstrap CLT over permissible, uniformly bounded classes

of functions F , we need to control the size of F . We require the finiteness of its

covering number Np(�,Q,F ) which is interpreted as the minimal number of balls

with radius � needed to cover F in the norm Lp(Q) and Q is a measure on E with

finite support. Moreover, we impose the finiteness of the uniform entropy integral

of F , namely
� >

0

�
logN2(�,F )d� < >, where N2(�,F ) = supQN2(�,Q,F ).

In the following we consider process Zn defined as

Zn = Æn1/2
AM

£
£ 1

ÆnAM

Æln−1�

i=1

�
f ( ÆBi) − l( ÆBi)μ(f )

�
§
§ . (2)
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Theorem 1 Suppose that (Xn) is a positive recurrent Harris Markov chain and

the assumptions A1, H1(f, Ã, ¿),H2(Ã, ¿) with Ã g 4, H3,H4, and H5 are

satisfied by (Xn). Assume further, that F is a permissible, uniformly bounded class

of functions and
� >

0

�
logN2(�,F )d� < >. Then, the process

Z7
n = n

71/2
AM

£
£ 1

n7
AM

l7n−1�

i=1

f (B7
i ) − 1

ÆnAM

Æln−1�

i=1

f ( ÆBi)

§
§ (3)

converges in probability under P¿ to a gaussian process G indexed by F whose

sample paths are bounded and uniformly continuous with respect to the met-

ric L2(μ).

Proof The proof is based on the bootstrap central limit theorem introduced by [11].

Finite dimensional convergence follows directly from Theorem 5.9 from [16]

coupled with Theorems 3.2 and 3.3 in [4] (see [8] for details). Next, we need to

verify if for every � > 0

lim
·³0

lim sup
n³>

P7(�Z7
n�F·

> �) = 0 in probability under P¿, (4)

where �R�F·
:= sup{|R(f ) − R(g)| : Ã(f, g) < ·} and R ∈ l>(F ). Moreover,

F must be totally bounded in L2(μ). The total boundedness of F was shown

by [16]. In order to show (4), we replace the random numbers n7
AM

and l7n by their

deterministic equivalents. By the same arguments as in the proof of Theorem 3.3

in [4], we have that

Z7
n(f ) = 1:

n

£
££££

1+
�

n
EAM

(ÇA)

�

�

i=1

{f (B7
i )− Æμn(f )l(B

7
i )}

§
§§§§ + oP7(1),

where � · � is an integer part. Thus, we can switch to the analysis of the process

U7
n(f ) = 1:

n

£
££££

1+
�

n
EAM

(ÇA)

�

�

i=1

{f (B7
i ) − Æμn(f )l(B

7
i )}

§
§§§§ .

Note, that {f (B7
i )− Æμn(f )l(B

7
i )}, i g 1 are i.i.d.
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Next, take h = f − g. Denote by wn = 1 +
�

n
EAM

(ÇA)

�
and Yi = l(B7

i ) −
Æμn(h)l(B

7
i ). We introduce one more piece of notation: Yi = h(B7

i − Æμn(f )l(B
7
i ).

Then, note that

P7(�Y1 + · · · + Ywn
�F·

>
:
n�) ≤ P7

�
�h(B7

1 ) + · · · + h(B7
wn
)�F·

>

:
n�

2

�

+ P7
�

�l(B7
1 ) Æμn,h + · · · + l(B7

wn
) Æμn,h�F·

>

:
n�

2

�
= I+II.

(5)

We treat terms I and II separately. Observe that by Markov’s inequality we obtain

for the first term

P7
�

�h(B7
1 )+ · · · + h(B7

wn
)�F·

>

:
n�

2

�
≤

4E7(�h(B7
1 ) + · · · + h(B7

wn
)�F·

)2

n

= 4wnE
7(�h(B1)�F·

)2

n

by the fact that h(B7
i ), i g 1 are i.i.d. Next, we deduce that

E7(�h(B7
1 )�F·

)2 = 1

wn

wn�

i=1

�h(B1)�2
F·

³ EAM
(�h(B1)�F·

)2 a.s.

Moreover,

EAM
(�h(B1)�F·

)2 = EAM

»
¿�

ÇAM�

i=1

h(Xi)�F·

¿
£

2

= EAM

»
¿�

ÇAM�

i=1

h2(Xi)�F·

¿
£ + 2EAM

»
¿�

ÇAM�

i=1

�

i �=j

h(Xi)h(Xj )�F·

¿
£

≤ ·2EAM
(ÇAM

) + 2·2EAM
(ÇAM

)2 ³ 0 (6)

in P¿-probability as · ³ 0. Thus, we conclude that

P7
�

�h(B7
1 )+ · · · + h(B7

wn
)�F·

>

:
n�

2

�
³ 0 in P¿ − probability (7)

by (6) and wn/n ≤ 1.
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In order to control the term II, we apply Markov’s inequality and get

P7
�

�l(B7
1 ) Æμn,h + · · · + l(B7

wn
) Æμn,h�F·

>

:
n�

2

�

≤
4E7 �

�l(B7
1 ) Æμn,h + · · · + l(B7

wn
)2 Æμn,h�F·

�2

n

=
4wnE

7(l(B7
1 ))

2� Æμn,h�2
F·

n
. (8)

Obviously, wn/n ≤ 1 and � Æμn,h�F·
³ 0 in P¿-probability since Zn is stochasti-

cally equicontinuous. Bertail and Clémençon [4] have showed that

E7
�
l(B7

1 )
2|X(n+1)

�
³ EAM

(ÇAM
)2 < > (9)

in P¿-probability along the sample as n ³ >. Thus, by (8) and (9) we have that

P7
�

�l(B7
1 ) Æμn,h + · · · + l(B7

wn
) Æμn,h�F·

>

:
n�

2

�
³ 0 (10)

in P¿-probability along the sample as n ³ >.

The stochastic equicontinuity of Z7
n is implied by (7) and (10). Thus, we can

apply bootstrap central limit theorem introduced by [11] which yields the result.

��
Remark 2 Note that the reasoning from the proof of the above theorem can

be directly applied to the proof of Theorem 2.2 in [22]. In order to show

the asymptotic stochastic equicontinuity of the bootstrap version of the empirical

process indexed by uniformly bounded class of functions F , we switch from

the process Z7
n(f )f∈F :=

:
n7{μn7(f ) − μnA(f )}, where nA = ÇA(ln) − ÇA

to the process U7
n(f ) = 1:

n

�
�1+

�
n

EA(ÇA)

�

i=1 {f (B7
i ) − μnA(f )l(B

7
i )}

�
and the

standard probability inequalities applied to the i.i.d. blocks of data yield the

result.

In the following, we show that we can weaken the assumption of uniform

boundedness imposed on the class F .

Theorem 2 Suppose that (Xn) is a positive recurrent Harris Markov chain and the

assumptions A1, H1(f, Ã, ¿),H2(Ã, ¿) with Ã g 4, H3,H4, and H5 are satisfied

by (Xn). Assume further, that F is a permissible class of functions and such that

the envelope F satisfies EA

��
ÇA<j≤ÇA(2) F(Xj )

�2
< >. Suppose further, that
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� >
0

�
logN2(�,F )d� < >. Then, the process

Z7
n = n

71/2
AM

£
£ 1

n7
AM

l7n−1�

i=1

f (B7
i ) − 1

ÆnAM

Æln−1�

i=1

f ( ÆBi)

§
§ (11)

converges in probability under P¿ to a gaussian process G indexed by F whose

sample paths are bounded and uniformly continuous with respect to the met-

ric L2(μ).

Proof The proof of the theorem goes analogously to the proof of Theorem 1 with

few natural modifications. Theorem 4.3 from [24] combined with Theorems 3.2

and 3.3 establishes finite dimensional convergence of Z7
n to G. It is shown in

[24] that F is totally bounded in L2(μ) when F fulfills only the condition that

the envelope F is in L2(μ). The proof of stochastic equicontinuity of Z7
n follows

the same lines as in the proof of Theorem 1.

3 Bootstrapping Fréchet Differentiable Functionals

Robust statistics provides tools to deal with data when we suspect that they include

a small proportion of outliers. We denote by P the set of all probability measures

on E and (Ó, �·�) a separable Banach space. Let T : P ³ Ó be a functional on P .

If the limit

T ((1 − t)μ + t·x)− T (μ)

t
, as t ³ 0

is finite for all μ ∈ P and for any x ∈ E, then we say that the influence function

T (1) : P ³ Ó of the functional T is well defined and for all

x ∈ E T (1)(x, μ) = lim
t³0

T ((1 − t)μ + t·x)− T (μ)

t
.

Let d be some metric on P .

Definition 2 We say that the functional T : P ³ R is Fréchet differentiable

at μ0 ∈ P for a metric d , if there exists a continuous linear operator DTμ0 and

a function �(1)(·, μ0) : R ³ (Ó, � · �), which is continuous at 0 and �(1)(0, μ0) = 0

such that

" μ ∈ P, T (μ) − T (μ0) = DTμ0(μ− μ0) + R(1)(μ,μ0),
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where R(1)(μ,μ0) = d(μ,μ0)�
(1)(d(μ,μ0), μ0). Furthermore, we say that T has

an influence function T (1)(·, μ0) if for DTμ0 :

" μ0 ∈ P, DTμ0 (μ− μ0) =
�

E

T (1)(x, μ0)μ(dx).

In the following, we will work with metric dF defined as

dF (P,Q) := sup
h∈F

����
�

hd(P −Q)

����

for any P, Q ∈ P . It is noteworthy that the choice of the metric must be done

carefully, in this framework we decided to work with the Kolmogorov’s distance

since, roughly speaking, it ensures a precise control of the remainder term d(μn, μ).

Theorem 3 Let F be a permissible, uniformly bounded class of functions, such

that
� >

0

�
logN2(�,F )d� < >. Suppose that supx∈AM

Ex(ÇAM
)2+³ < >, ³ >

0 (fixed). Assume further, that the conditions of Theorem 1 hold and T : P ³ R

is Fréchet differentiable functional at μ. Then, in general Harris positive recurrent

case, we have that n1/2(T (μ7
n)− T ( Æμn)) converges weakly in l>(F ) to a gaussian

process Gμ indexed by F , whose sample paths are bounded and uniformly

continuous with respect to the metric L2(μ).

Remark 3 The above theorem works also in the regenerative case.

Proof Assume that EμT
(1)(x, μ) = 0. It follows directly from the definition

of Fréchet differentiability that

:
n(T (μ7

n) − T ( Æμn)) =
:
n

�
DT Æμn

(μ7
n − Æμn)

�
+

:
n

�
dF ( Æμn, μ)�

(1)(dF ( Æμn, μ), μ)
�

+
:
n

�
dF (μ7

n, μ)�
(1)(dF (μ7

n, μ), μ)
�
.

The distance dF ( Æμn, μ) = OP¿ (n
−1/2) by Theorem 5.9 from [16]. Next, observe

that

dF (μ7
n, μ) ≤ dF (μ7

n, Æμn) + dF ( Æμn, μ).

From Theorem 1 it is easy to conclude that dF (μ7
n, Æμn) = OP¿

�
n−1/2

�
and thus,

dF (μ7
n, μ) = OP¿ (n

−1/2). Next, we apply Theorem 1 to
:
n(T ( Æμn) − T (μ)) =:

n(DTμ( Æμn − μ)) + oP¿ (1). The linear part in the above equation is gaussian as

long as

0 < EμT
(1)(Xi, μ)

2 ≤ C1(μ)
2EμF

2(X) < >
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(see [3]), but that assumption is of course fulfilled since F is uniformly bounded.

Thus, it is easy to deduce that

:
n(T ( Æμn) − T (μ))

L−³ DTμGμ

and

:
n(T (μ7

n − T (μ))) =
:
n

£
££

1

n7
AM

n7
AM�

i=1

T (1)(X7
i , μ)

§
§§ + oP¿ (1)

in l>(F ). Thus, we have that

:
n[T (μ7

n) − T ( Æμn)]
L−³ DTμGμ

and this completes the proof.

Theorem 3 can be easily generalized to the case when F is unbounded and has

an envelope in L2(μ).

Theorem 4 Let F be a permissible class of functions such that the envelope F

satisfies

EA

£
£ �

ÇA<j≤ÇA(2)
F(Xj )

§
§

2

< >. (12)

Suppose that
� >

0

�
logN2(�,F )d� < >. Assume further, that the conditions

of Theorem 2 hold and that T : P ³ R is Fréchet differentiable functional

at μ. Then, in general Harris positive recurrent case, we have that n1/2(T (μ7
n) −

T ( Æμn)) converges weakly in l>(F ) to a gaussian process Gμ indexed by F ,

whose sample paths are bounded and uniformly continuous with respect to the

metric L2(μ).

The proof of Theorem 4 follows analogously to the proof of Theorem 3. Apply

the results of [24] and Theorem 2 instead one of [16] and Theorem 1 to control

the remainder terms. Then, the reasoning goes line by line as in the proof of

Theorem 3.

Remark 4 In particular, Theorem 4 is also true in the regenerative case.
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